Bias/Variance Analysis for Network Data

Jennifer Neville and David Jensen Knowledge Discovery Laboratory University of Massachusetts Amherst

Collective inference

Apply models to *collectively* infer class labels throughout network

Exploit autocorrelation to improve model performance

Collective SRL models

- Probabilistic relational models (e.g., RBNs, RDNs, RMNs)
- Probabilistic logic models (e.g., BLPs, MLNs)
- Adhoc collective models (e.g., pRNs, LBC)

Comparing collective models

Comparing collective models

Understanding RDN performance

Hypothesis

- High autocorrelation → features selection chooses class
 label rather than observed attributes
- Few labeled test set instances \rightarrow identifiability problem
- Gibbs sampling \rightarrow increased variance

How to evaluate hypothesis?

- Variance is due to *collective inference* procedure
- Need an analysis framework that can differentiate model errors due to learning and inference

Bias/variance analysis

Conventional bias/variance analysis

- Decomposes errors due to learning alone
- Assumes no variation due to inference

Relational bias/variance analysis

- Collective inference introduces new source of error
- SRL models exhibit different types of errors
- Network characteristics affect performance

Conventional bias/variance framework

Conventional bias/variance framework

Synthetic data experiments

Vary group size, linkage, autocorrelation Compare LGMs, RDNs, RMNs

Preliminary findings

- LGMs: high learning bias when algorithm cannot identify underlying group structure
- RDNs: high inference variance when little information seeding inference process
- RMNs: high inference bias when network is densely connected or tightly clustered

Feature selection increases RDN inference variance

Feature selection increases RDN inference variance

Modified inference decreases variance

KDL

Improved performance on real data

Conclusions

Framework can be used to explain mechanisms behind SRL model performance

- Improves understanding of model behavior
- Suggests algorithmic modifications to increase performance

Future work

- Extend framework (e.g., loss functions, joint estimation)
- Investigate interaction effects between learning and inference errors
- Real data experiments to evaluate design choices

Further information:

jneville@cs.umass.edu kdl.cs.umass.edu

