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Collective inference

Apply models to collectively infer
class labels throughout network
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Comparing collective models
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Comparing collective models
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Why do RDNs perform poorly when

few instances are labeled in test set?
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Understanding RDN performance

Hypothesis

— High autocorrelation — features selection chooses class
label rather than observed attributes

— Few labeled test set instances — identifiability problem

— Gibbs sampling — increased variance

How to evaluate hypothesis!
— Variance is due to collective inference procedure

— Need an analysis framework that can differentiate model
errors due to leaming and inference
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Bias/variance analysis

Conventional bias/variance analysis
— Decomposes errors due to learning alone

— Assumes no variation due to inference

Relational bias/variance analysis
— Collective inference introduces new source of error
— SRL models exhibit different types of errors

— Network characteristics affect performance
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Conventional bias/variance framework
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Conventional bias/variance framework
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Bias/variance framework for relational data
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Bias/variance framework for relational data
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Bias/variance framework for relational data
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Bias/variance framework for relational data
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Synthetic data experiments

Vary group size, linkage, autocorrelation
Compare LGMs, RDNs, RMNs

Preliminary findings

— LGMs: high learning bias when algorithm cannot identify
underlying group structure

— RDNs: high inference variance when little information
seeding inference process

— RMNs: high inference bias when network is densely
connected or tightly clustered
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Feature selection increases RDN inference variance
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Feature selection increases RDN inference variance
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Modified inference decreases variance
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Improved performance on real data
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Conclusions

Framework can be used to explain mechanisms
behind SRL model performance
— Improves understanding of model behavior

— Suggests algorithmic modifications to increase
performance

Future work
— Extend framework (e.g,, loss functions, joint estimation)

— Investigate interaction effects between learmning and
inference errors

— Real data experiments to evaluate design choices

13/13



Further information:

jneville@cs.umass.edu
kdl.cs.umass.edu
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