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Introduction

Recent, widespread interest in structured classification.

Numerous approximate inference algorithms for networked data
exist.

We empirically compare three of the most popular ones:

Iterative Classification Algorithm
Mean Field Relaxation Labeling
Loopy Belief Propagation
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Parameters of Interest

Performance on random graph data.

Effects of noise in attribute values.

Effects of noise in correlations across links.

Effects of varying link density.

Effects of different link patterns.
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Iterative Classification Algorithm (ICA)

Simple, greedy, iterative
algorithm.

Introduced by Besag
[Besag, 1986].

In each iteration,
for each node,
looks at neighbourhood
class labels.

bi (y)←
αφi (y) exp{

∑
Yj∈N (Yi )

wy ,yj}
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Mean Field Relaxation Labeling (MF)

Soft-version of ICA. Many
other versions exist.

Discovered by vision
community
[Hummel & Zucker, 1983].

In each iteration,
for each node,
looks at neighbour’s
label distribution.

bi (y)←
αφi (y) exp{

∑
Yj∈N (Yi ),y ′

wy ,y ′bj(y
′)}
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Loopy Belief Propagation (LBP)

Message-passing algorithm.
Attempts to stop sending
messages in loops.

Discovered by iterative
decoding community
[Kschischang & Frey, 1998,
McEliece et al, 1998,
Kschischang et al, 2001].

Messages computed without
considering destination
node’s message.

mi→j(y)←

α
∑
y′

φi (y
′)ewy,y′

∏
Yk∈N (Yi )\Yj

mk→i (y
′)

bi (y)←

αφi (y)
∏

Yj∈N (Yi )

mj→i (y)
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Synthetic Graph Generation Algorithm

Based on power-law graph generation algorithm
[Bollobas et al, 2003]

1: Begin with a single node graph G .
2: repeat
3: With probability α introduce an edge in G
4: With probability 1− α introduce a new node with a randomly sampled

label, connect new node to G
5: until size of G = n
6: generate attributes for all nodes.
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Preferential attachment scheme used

When choosing node to link
node ν to:

With probability ρ
choose node with same
label.

With probability 1− ρ
choose node with
different label.

Preference given to
nodes with high degree.
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Experimental setup

Performed 3-fold cross validation.

Metric used: avg. classification accuracy.

Compared three models: ICA, MF, LBP

Performed experiments on binary class data.

Parameters of interest
α: controls number of edges

ρ: controls degree of correlation across edges.

ω: controls noise in attribute values.
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Varying Correlations across Links
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Varying Correlations across Links – contd.
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Varying Attribute Noise
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Varying Attribute Noise – contd.
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Effect of different link patterns

In the case of Homophily or Perfect Assortative Mixing (figure on
left), the generated graphs form densely connected clusters
introducing closed loops hampering LBP and MF.
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Conclusion

We empirically compared three of the most popular approximate
inference techniques for networked data.

MF tends to get stuck at local minima in a variety of cases, e.g.,
high link correlation, high link density.

LBP tends to face issues in the presence of high link density and a
specific type of link pattern known as Homophily or Perfect
Assortative Mixing but otherwise performs well.

We found that LBP’s convergence does not necessarily indicate
good results.

ICA is the most consistent of the three approaches considered,
returning reasonable results in a wide variety of conditions.
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