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Abstract

The goal of entity resolution is to recon-
cile database references corresponding to the
same real-world entities. Given the abun-
dance of publicly available databases where
entities are not resolved, we motivate the
problem of quickly processing queries that
require resolved entities from such ‘unclean’
databases. We first propose a cut-based rela-
tional clustering formulation for collective en-
tity resolution. We then show how it can be
performed on-the-fly by adaptively extract-
ing and resolving those database references
that are the most helpful for resolving the
query. We validate our approach on two large
real-world publication databases, where we
show the usefulness of collective resolution
and at the same time demonstrate the need
for adaptive strategies for query processing.
We then show how the same queries can be
answered in real time using our adaptive ap-
proach while preserving the gains of collective
resolution.

1. Introduction

Entity resolution is a practical problem that comes up
in data mining applications in a variety of ways. It
is studied as the data cleaning problem of ‘dedupli-
cation’, where the goal is to identify and consolidate
pairs of records or references within the same relational
table that are duplicates of each other. It is also impor-
tant in data integration as the ‘fuzzy match’ problem,
where tuples from two heterogeneous databases with
different keys, and possibly different schemas, need to
be matched and consolidated.
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In spite of the widespread research interest and the
practical nature of the problem, many publicly accessi-
ble databases remain unresolved, or partially resolved,
at best. The popular publication databases, CiteSeer
and PubMed, are important examples. CiteSeer con-
tains several records for the same paper or author,
while author names in PubMed are not resolved at all.
This is due to a variety of reasons, ranging from rapid
and often uncontrolled growth of the databases and
the computational and other expenses involved. Yet,
millions of users access and query such databases ev-
eryday, mostly seeking information that, implicitly or
explicitly, requires knowledge of the resolved entities.
Clearly, the information gathered from such databases
would be significantly more useful or accurate if the
entities were resolved.

The abundance of such important and unresolved pub-
lic databases motivates us to formulate the problem
of query-time entity resolution. The goal is to en-
able users to query an unresolved or partially resolved
database and resolve the relevant entities on the fly. A
user may access several databases everyday and he will
not want to clean every database that he queries. He
only needs to resolve those entities that matter for his
query. For instance, when looking for books by ‘Stu-
art Russell’ in CiteSeer, it is not useful to resolve all
author references in there. Also, the resolution needs
to be quick, even if it is not entirely accurate.

Though entity resolution queries have not been ad-
dressed in the literature, there has been significant
progress on the general entity resolution problem. Re-
cent research has focused on the use of additional re-
lational information between database references to
improve resolution accuracy (Bhattacharya & Getoor,
2004; Singla & Domingos, 2004; Dong et al., 2005).
This performance improvement is made possible by re-
solving related references jointly, rather than indepen-
dently. Intuitively, this corresponds to the notion that
figuring out that two references refer to the same un-
derlying entity may in turn give us useful information
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for resolving other ‘related’ reference pairs. Our first
contribution in this paper is a cut-based formulation
for entity resolution as a relational clustering prob-
lem. This can be optimized using algorithms that we
have earlier proposed (Bhattacharya & Getoor, 2004;
Bhattacharya & Getoor, 2006) and we demonstrate,
as others have done, that collective resolution signifi-
cantly improves entity resolution accuracy. However,
the added improvement comes at a considerable com-
putation cost arising from the dependencies. Due to
this added computational expense, its application in
query-time resolution is challenging. In this paper, we
motivate and formulate the problem of relational clus-
tering based on queries. We also present adaptive algo-
rithms for extracting the most relevant references for a
query that enable us to resolve entities at query-time,
while preserving the gains of collective resolution.

The rest of the paper is organized as follows. In Sec-
tion 2, we formalize the relational entity resolution
problem. In Section 3, we formulate a cut-based ob-
jective function for relational clustering and present a
greedy clustering algorithm for collective entity reso-
lution. Next, in Section 4, we describe entity resolu-
tion queries and an unconstrained strategy for extract-
ing the references relevant for collectively resolving a
query, and in Section 5 we present our adaptive algo-
rithm. We present experimental results in Section 6,
review related work in Section 7 and finally conclude
in Section 8.

2. Entity Resolution: Formulation

In the simplest formulation, we have a collection of ref-
erences, R = {ri}, with attributes {R.A1, . . . ,R.Ak}.
Let E = {ej} be the unobserved domain entities. For
any particular reference ri, we denote the entity to
which it maps as E(ri). We will say that two refer-
ences, ri and rj , are co-referent if they correspond to
the same entity, E(ri) = E(rj). Note however that
the database is unresolved — the mapping E(ri) is
not provided. Further, the domain entities E and even
the number of such entities is not known. However, we
may have information about relationships between the
references. To model relationships in a generic way,
we use a hyper-edge set H with possible attributes
{H.A1 . . .H.Al}. Each hyper-edge connects multiple
references. To capture this, we associate a set of refer-
ences H.R with each hyper-edge. Each reference may
be associated with zero or more hyper-edges.

Let us now look at a sample domain to see how it can
represented in our framework. Consider a database
of academic publications similar to DBLP, CiteSeer or
PubMed. Each publication in the database has a set

of author names, which is a reference ri in R. For each
reference, ri.Name records the observed name of the
author in the publication. In addition, we can have at-
tributes such as R.Email to record other information
for each author reference that may be available in the
paper. Also, each publication represents a co-author
relationship among the references in it. So we have a
hyper-edge hi ∈ H for each publication and rj ∈ hi.R
for each reference rj in the publication. If publications
have information such as title, keywords, etc, these are
represented as attributes of H.

1h

A Ansari
1r 2r 3r

A Ansari

2h

5r

C Chen
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9r 10r
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Measuring Protien−bound Fluxetine Autoimmunity in Biliary Cirrhosis

L Li W Wang

C ChenW Wang W Wang
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Figure 1. An example set of papers represented as refer-
ences connected by hyper-edges. References are shaded
according to their entities.

To illustrate, consider the following four papers, which
we will also use as a running example.
1. W. Wang, C. Chen, A. Ansari, “A mouse immunity

model”

2. W. Wang, A. Ansari, “A better mouse immunity model”

3. L. Li, C. Chen, W. Wang,“Measuring protein-bound

fluxetine”

4. W. W. Wang, A. Ansari, “Autoimmunity in biliary cir-

rhosis”

To represent them in our notation, we have 10 refer-
ences {r1, . . . , r10} in R, where r1.Name =‘W Wang’,
etc. There are 4 hyper-edges {h1, . . . , h4} in H for the
four papers. This is represented pictorially in Figure 1.

Given this formulation, the entity resolution task
can be defined as the partitioning or clustering of the
references according to the underlying entity-reference
mapping E(r). To illustrate, assume that we have six
underlying entities. This is illustrated in Figure 1 us-
ing a different shading for each entity. For example,
the Wang’s of papers 1, 2 and 4 are the same indi-
vidual but that from paper 3 is a different person.
Also, the Chen’s from papers 1 and 3 are different indi-
viduals. Then, the correct resolution for our example
database with 10 references returns 6 entity clusters:
{{r1, r4, r9}, {r8}, {r2}, {r7}, {r3, r5, r10}, {r6}}. The
first two clusters correspond to ‘Wang’, the next two
to ‘Chen’, the fifth to ‘Ansari’ and the last to ‘Li’.

Different approaches may be used for the entity resolu-
tion task. In the traditional attribute-based entity
resolution approach, similarity is computed for each
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pair of references based on their attributes and only
those pairs that have similarity above some threshold
are considered to be co-referent. This often runs into
problems. In our example, it is hard to infer with just
attributes that references r1 and r8 are not co-referent
although they have the same name, while r1 and r9 are

co-referent although their names are different. When
relations between references are available, the naive
relational entity resolution approach considers the
attributes of the related references when computing
similarity between pairs of references. In our running
example, when computing the similarity between ‘W.
Wang’ and ‘W. W. Wang’, it would take into account
that both have co-authors with name ‘A. Ansari’. This
also can be misled when many entities have the same
name and the relationship graph is dense. In our ex-
ample, the two ‘W. Wang’ references, r1 and r8 are
not co-referent, though they both have co-authors with
name ‘C. Chen’. The correct evidence to use here is
that the ‘Chen’s are not co-referent either. In such a
setting, in order to resolve the ‘W. Wang’ references,
it is necessary to resolve the ‘C. Chen’ references as
well, and not just consider their attributes. This is
the goal of collective entity resolution, where res-
olutions are not made independently, but instead one
resolution decision affects other resolutions via hyper-
edges.

3. A Cut-based Objective Function

In this section, we propose a cut-based objective func-
tion for clustering references according to their enti-
ties. Cut-based formulations for clustering are not
new. In the traditional clustering problem, we have
edges between vertex pairs and the weights represent
their similarity or ‘closeness’. Then the clustering task
of grouping similar vertices together reduces to min-
imizing the cost of the ‘cut’, which is the summed
weight of all edges that cut across cluster boundaries
(Shi & Malik, 2000).

c2
c1
c2

c4

c3
c4 c3

c1

Figure 2. A set of vertices with relational edges and two
different ways to partition them into four clusters.

We now motivate a similar cut-based objective func-
tion for the general relational clustering problem. As

in the traditional case, we have weighted edges be-
tween vertex pairs that capture their similarity in
terms of attributes. We will call these the attribute
edges. In addition, we have relational edges (or, hyper-
edges) to represent the relationships observed in the
data. Figure 2 depicts an example set of vertices.
For simplicity, the attribute edges are not shown ex-
plicitly. Assume that vertices that are closer in the
two-dimensional euclidean space are more similar in
terms of their attributes and, accordingly, have higher
weights on their attribute edges. The relational edges
have been shown explicitly using dashed lines. Sup-
pose that the task is to partition these vertices into
four clusters in a way that respects the weights on at-
tribute edges as well as the relational edges. Figure 2
shows two different ways to cluster them. Note they
differ only in the cluster membership of the black ver-
tex. The first partitioning is faithful to the attribute
edges. The second, in comparison, produces a simpler
relational pattern between the clusters. It moves the
black vertex to cluster c3 from c4, since all the other
vertices with relational edges to those in cluster c1 be-
long to cluster c3.

How do we capture this distinction between these two
cases using a cut-based objective function? Counting
the total number of cross-cluster relational edges does
not work, because it is the same in both cases. The
difference is in the number of cluster pairs that share
relational edges. In the first case, we have three such
pairs, (c1, c3), (c2, c4) and (c1, c4). In the second, it
is reduced to two by eliminating the (c1, c4) relational
connection. Deciding which of these two cases rep-
resents a better clustering depends on the attribute
penalty of reassigning that one vertex in comparison
to the gain in terms of relations.

With this motivation, we propose a cut-based objec-
tive function for relational clustering. For any pair of
clusters ci, cj , let simA(ci, cj) denote the cross-cluster
attribute-edge weight and δR(ci, cj) be 1 when ci and
cj share a relational edge, and 0 otherwise. Then the
‘cost’ of a particular assignment of the vertices to clus-
ters {c1, . . . , ck} is given by

∑

i

∑

j

wA × simA(ci, cj) + wR × δ(ci, cj) (1)

where wA and wR are weights representing the rel-
ative importance of attributes and relations respec-
tively. The lower the value of the objective function,
the better is the cluster assignment.

Let us now see what this cost function means for the
task of relational entity resolution. As in traditional
clustering, two author references are more likely to be-
long to the same entity cluster if they are similar in
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their attributes. When we have co-author information
available, they can be represented as relational edges.
Then, if two authors with reasonably similar names are
observed to collaborate with the same other author,
we are more inclined to believe that they are the same
person. This is exactly what this cost function cap-
tures. It finds the minimal number of author-author
collaborations to explain the co-author relations and
the attribute similarities. However, relational entity
resolution enforces some additional constraints. If a
co-author relationship exists between two references,
they cannot be clustered as the same person. A sim-
ple modification to the objective function enables us
to capture this. Adding an incompatibility f(ci, cj) for
any two clusters, we get our new objective function:

∑

i

∑

j

wA×simA(ci, cj)+wR×δ(ci, cj)×f(ci, cj) (2)

In this case, we set f(ci, cj) to ∞ when ci = cj and
to 1 otherwise. Note that in general, more complex
incompatibilities can be defined. Also, for clustering
with relational hyper-edges, Eq. (2) may be general-
ized to capture more complex relationships across clus-
ters. Instead of counting only related cluster pairs, or
2-cliques, we can also count higher-order cliques. For
example, δR(ci, cj , ck) can check if three clusters ci, cj

and ck share a relational edge.

For this paper, we focus on an algorithm that mini-
mizes the objective function in Eq. (2). For the entity
resolution problem, the number of clusters or entities
is hard to specify as a parameter. So we look at an
agglomerative clustering algorithm that starts from an
initial clustering and iteratively merges clusters pairs
in a greedy fashion in terms of reducing the value of
the objective function. The iterations continue until
the improvement, or the ‘gain’, falls below a threshold.
For any pair of clusters, the gain on merging them can
be represented as

∆(ci, cj) = wA × ∆A(ci, cj) + wR × ∆R(ci, cj) (3)

The attribute gain ∆A is essentially simA(ci, cj). For
each attribute in the reference table R, we assume the
existence of a [0, 1] similarity measure. If the hyper-
edges have attributes, those can also be taken into ac-
count. Several sophisticated similarity measures ex-
ist for matching names, and popular TF-IDF schemes
may be used for other textual attributes like keywords.

The relational gain ∆R(ci, cj) is the common cluster
neighborhood of ci and cj . In other words, if NR(ci)
is the set of all clusters that share relational edges
with ci, then ∆R(ci, cj) is the intersection of the two
sets NR(ci) and NR(cj). An interesting aspect is the
dynamic nature of ∆R. For any pair of clusters, it

changes as their cluster neighborhoods evolve. We
have earlier proposed a relational cluster algorithm for
collective entity resolution (RC-ER) (Bhattacharya
& Getoor, 2004; Bhattacharya & Getoor, 2006) where
cluster similarity measure looks identical to Eq. (3).
The cut-based objective function simply provides a
theoretical justification for such an approach. We ex-
perimented with different measures for ∆R and found
that Jaccard similarity of the cluster neighborhoods
works significantly better than the set intersection size.

4. Entity Resolution Queries

Recall that the entity resolution task involves parti-
tioning all the database references according to their
entities. However, in many applications, users are in-
terested in just a few of the clusters rather than all of
them. For example, we may want to retrieve all pa-
pers written by some person named ‘W Wang’. We will
call this an entity resolution query on ‘W Wang’,
since answering it requires knowledge of the underly-
ing entities. We will assume that queries are specified
using R.Name, which is a noisy identifier for entities.
Since names are ambiguous, treating them as identi-
fiers leads to undesirable results. For example, it would
be incorrect to return the set {r1, r4, r8} of all refer-
ences with name ‘W Wang’ as the answer to our query.
This answer does not indicate that r8 is not the same
person as the other two. Also, the answer should in-
clude the paper by ‘W W Wang’ (r9), who is the same
entity as the author of the first paper. Therefore, the
correct answer to the entity resolution query on ‘W
Wang’ should be the partition {{r1, r4, r9}, {r8}}.

Observe that the answer above includes only two out
of all the entity clusters in our toy database. It is
clearly a waste to resolve the entire database in this
case. However, for collective resolution, correctly re-
solving the relevant entities for a query may involve
resolving neighboring entities as well. In general, we
propose a two-phase query processing strategy con-
sisting of an extraction phase followed by a resolution

phase. In the extraction phase, the goal is to extract
the relevant set of references Rel(Q) for answering the
query Q accurately and then, in the resolution phase,
we perform collective resolution on Rel(Q).

We will introduce two expansion operators which will
help us construct the relevant set for an entity reso-
lution query Q(n). The first operator is the name
expansion operator XN or n-expansion for short.
For a name n, XN (n) returns all references whose
names exactly match that name or are ‘similar’ to
it. Similar names can determined by blocking tech-
niques (McCallum et al., 2000). For a query Q(n),
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Figure 3. Relevant set for the query ‘W. Wang’ constructed
using h-expansion and n-expansion alternately.

we first need to find all references that can potentially
be included in the answer. This base level of refer-
ences can be retrieved by expanding the name n as
Rel0(Q(n)) = XN (n). The first step in Figure 3 shows
n-expansion on ‘W Wang’ in our example.

The second operator is hyper-edge expansion Xh,
or h-expansion. For any reference r, Xh(r) returns all
references that share a hyper-edge with it. For collec-
tive entity resolution, we need to consider all related
references for each references. Therefore, we need to
perform h-expansion on the references in Rel0(Q(n)).
Figure 3 illustrates this operation in our example. The
interesting aspect about collective resolution is that
we cannot stop here. We will need to resolve the
references that we so obtained, and this requires n-
expanding these new references. This suggests a re-
cursive growth of the relevant set. Formally, for a
query Q(n), the expansion process alternates between
n-expansion and h-expansion:
Reli(Q(n)) = XN (n) for i = 0

XH(Reli−1(Q(n))) for odd i
XN (Reli−1(Q(n))) for even i

The improvement in resolution accuracy for Q(n) falls
off quickly with expansion depth, so we can termi-
nate the expansion process at some cut-off depth d∗:

Rel(Q) =
⋃d∗

i=0 Reli(Q). Also, the size of the relevant
set can be significantly reduced by restricting name
expansion to exact n-expansion Xe

N that only con-
siders references with exactly the same name. Inter-
estingly, we can show that the restricted strategy that
alternates between exact n-expansion and h-expansion
does not affect recall significantly.

5. Adaptive Query Expansion

The query expansion strategy from the previous sec-
tion is unconstrained in that it blindly expands all ref-
erences in the current relevant set and also includes
all new references generated by an expansion opera-

tion. However, for many domains the size of the rele-
vant set resulting from such unconstrained expansion
is prohibitive for query-time resolution even for small
expansion depths. Given the limited time to process
a query, a solution is to include the references that
are most helpful for resolving the query. To illustrate
using out example from Figure 3, observe that ‘Chen’
and ‘Li’ are significantly more common or ‘ambigu-
ous’ names than ‘Ansari’ — even different ‘W. Wang’
entities are likely to have collaborators named ‘Chen’
or ‘Li’. Therefore, when h-expanding Rel0(Q) for ‘W.
Wang’, ‘Ansari’ is more informative than ‘Chen’ or
‘Li’. Similarly, when n-expanding Rel1(Q), we can
choose not to expand the name ‘A. Ansari’ any fur-
ther, since two ‘A. Ansari’ references are very likely
to be coreferent. But we need more evidence for the
Chen’s and Li’s. To describe this formally, the am-
biguity of a name n is the probability that any two
references ri and rj in the database that have this
name (ri.Name = rj .Name = n) are not coreferent:
Amb(n) = P (E(ri) 6= E(rj)). The goal of adaptive
expansion is to add less ambiguous references to the
relevant set and, of the references currently in the rel-
evant set, to expand the more ambiguous ones.

For adaptive hyper-edge expansion, we set an
upper-bound hmax on the number of new references
that h-expansion at a particular level can generate.
Formally, we want |XH(Reli(Q))| ≤ hmax|Reli(Q)|.
The value of hmax may depend on depth i but it
is small enough to rule out full h-expansion of the
current relevant set. Then, given hmax, our strat-
egy is to choose the least ambiguous references from
XH(Reli(Q)) since these provide the most informa-
tive evidence for resolving the references in Reli(Q).
We sort the h-expanded references in increasing order
of ambiguity and select the first k from them, where
k = hmax|Reli(Q)|.

ReliA(Q, hmax) = LeastAmb(k, XH(Reli−1
A (Q))) (4)

The setting for adaptive name expansion is very
similar. For some positive number nmax, exact n-
expansion of Reli(Q) is allowed to include at most
nmax|Reli(Q)| references. Note that now the selec-
tion preference needs to be flipped — more ambiguous
names need more evidence, so they are expanded first.
So we can sort Xe

N (Reli(Q)) in decreasing order of
ambiguity and select the first k from the sorted list,
where k = nmax|Reli(Q)|. But this could potentially
retrieve only references for the most ambiguous name,
totally ignoring references with any other name. To
avoid this, we choose the top k ambiguous references
from Reli(Q) before expansion, and then expand the
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references so chosen.

ReliA(Q, nmax) = Xe
N (MostAmb(k, Reli(Q)))(5)

Though this cannot directly control the number of new
references added, µr×k is a reasonable estimate, where
µr is the average number of references per name.

The adaptive expansion scheme proposed in this sec-
tion is crucially dependent on the estimates of name
ambiguity. We now describe one possible scheme that
worked quite well. Recall that we want to estimate
the probability that two randomly picked references
with Name = n correspond to different entities. For
any single valued attribute R.A of the underlying en-
tity, a naive unsupervised estimate of AmbA(n) is the
fraction of references having A = n. This estimate is
clearly not good since the number of references with
a certain Name does not always match the number of
different entities for that Name. However, we can do
much better if we have an additional attribute R.A1

that also records a single valued attribute of the under-
lying entities. Given A1, ambiguity can be estimated
as AmbA(n) = |A1|

A
n /|A1|

A
∗

where |A1|
A
x is the number

of different values observed for A1 in references r with
r.A = x. For example, we can estimate the ambiguity
of a last name by counting the different first names ob-
served for it, since last name and first name are both
single valued attributes of the underlying people, and
the two are not correlated. In fact, when multiple such
uncorrelated single valued attributes R.Ai are avail-
able, this approach can be generalized to obtain even
better estimates of ambiguity.

6. Experimental Results

We experimented on two datasets to evaluate our
query-time resolution strategies. The first dataset,
arXiv, contains papers from high energy physics and
was used in KDD Cup 20031. It has 58,515 refer-
ences to 9,200 authors, contained in 29,555 publica-
tions. Our second dataset is the Elsevier BioBase
database2 of publications from biology used in the re-
cent IBM KDD-Challenge competition. It contains
156,156 publications with 831,991 author references.
Apart from the size, the average number of author
names per paper is 5.3 for BioBase, as compared
against 1.9 for arXiv. Also, unlike arXiv, BioBase in-
cludes keywords, topic classification, language, coun-
try of correspondence and affiliation of the correspond-
ing author as attributes of the each paper, which we
use as attributes for resolution in addition to author
names.

1
http://www.cs.cornell.edu/projects/kddcup/index.html

2
http://help.sciencedirect.com/robo/projects/sdhelp/about biobase.htm

For entity resolution queries in arXiv, we selected all
ambiguous names that correspond to more than one
author entity. This gave us 75 queries with the number
of true entities for each varying from 2 to 11 (average
2.4). For BioBase, we query the top 100 author names
with the highest number of references. The average
number of references for each of these 100 names is
106. The number of entities for each name ranges from
1 to 100 (average 32), thereby providing a wide variety
of entity resolution settings over the queries.
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Figure 4. Execution time of RC-ER for increasing number
of references.

We first explore the growth rate of the relevant set
for sample queries over expansion depth in the two
datasets. The growth rate for the arXiv query is mod-
erate. The number of relevant references is 7 at depth
0, and grows to 7,500 at depth 7. In contrast, for
BioBase the growth is quite dramatic. The relevant
set size grows from 84 at depth 0 to 586,000 by depth
5 for name similarity expansion and to 384,000 for ex-
act expansion. The growth rates for these two sam-
ples from arXiv and BioBase are typical for all of our
queries in these two datasets.

Next, in Figure 4(b), we observe how the relational
clustering algorithm RC-ER scales with number of
references. All execution times are reported on a Dell
Precision 870 server with 3.2GHz Intel Xeon processor
and 3GB of memory. The plot shows that the algo-
rithm scales linearly with increasing references, but the
gradient is different for the two datasets mainly due to
the difference in the average number of references per
hyperlink. This suggests that RC-ER is well-suited
for query-time resolution for arXiv. But for BioBase,
it would require up to 600 secs for 40,000 references.

In our next experiment, we evaluate several algorithms
for entity resolution queries. We compare entity reso-
lution accuracy of the pair-wise co-reference decisions
using the F1 measure. For a fair comparison, we con-
sider the best F1 for each of these algorithms over all
possible thresholds for determining duplicates. For the
algorithms, we compare attribute-based entity resolu-

tion (A), naive relational entity resolution that uses
attributes of related references (A+N), and our re-
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lational clustering algorithm (RC-ER) for collective

entity resolution with relations using unconstrained ex-
pansion up to depth 3. We also consider transitive clo-
sures over the pair-wise decisions for the first two ap-
proaches (A* and A+N*). For comparing attributes,
we use the Soft TF-IDF with Jaro-Winkler similarity
for names, which has been shown to perform the best
for name-based resolution (Bilenko et al., 2003), and
TF-IDF similarity for the other textual attributes.

Table 1. Entity resolution accuracy (F1) for different algo-
rithms over 75 arXiv queries and 100 BioBase queries

arXiv BioBase

A 0.721 0.701
A* 0.778 0.687
A+N 0.956 0.710
A+N* 0.952 0.753
RC-ER Depth-1 0.964 0.813
RC-ER Depth-3 0.970 0.820

The average F1 scores over all queries are plotted in
Table 1 for each algorithm in the two datasets. It
shows that RC-ER improves accuracy significantly
over the baselines. For example in BioBase, the im-
provement is 21% over A and A+N, 25% over A* and
13% over A+N*. This validates the potential benefits
of collective resolution, as shown by recent research
(Bhattacharya & Getoor, 2004; Singla & Domingos,
2004; Dong et al., 2005; McCallum & Wellner, 2004)
in the context of offline cleaning, and motivates its
application for query-time entity resolution. Signifi-
cantly, most of the accuracy improvement comes from
the depth-1 relevant references. For 56 out of the 100
BioBase queries accuracy does not improve beyond the
depth-1 relevant references and for the remaining the
average improvement is 2%. However, for 8 of the
most ambiguous queries, accuracy improves by more
than 5%, the biggest improvement being as high as
27% (from 0.67 to 0.85 F1). Such instances are fewer
for arXiv, but the biggest improvement is 37.5% (from
0.727 to 1.0). This suggests that while there are poten-
tial benefits to looking at greater depths, the benefits
fall off quite quickly on average beyond depth 1.

The first set of experiments show the benefits of RC-
ER. Next, we measured the processing times over un-
constrained relevant sets up to depth 3 for all queries
in the two datasets. For arXiv, the average processing
time of 1.6 secs (with 406 references in the relevant set
on average) is quite acceptable. However, it is more
than 10 mins for BioBase (avg. relevant set size is
44,129), which clearly necessitates adaptive strategies
for relevant set construction.

Finally, we investigate the effectiveness of our adaptive
expansion strategy on BioBase. For estimating ambi-
guity of references, we use last names with first initial
as the secondary attribute. This resulted in very good
estimates of ambiguity — the estimate for a name is
strongly correlated (correlation coeff. 0.8) with the
number of entities for that name. For each of the
100 queries, we construct the relevant set Rel(Q) with
d∗ = 3 using adaptive h-expansion and adaptive exact
n-expansion. Since most of the improvement from col-
lective resolution comes from depth-1 references, we
consider two different experiments. In the first, we
use adaptive expansion only at depths 2 and beyond
(AX-2) and unconstrained h-expansion at depth 1. In
the second(AX-1), we use adaptive h-expansion even
at depth 1, with hmax = 6. For both of them, we
use adaptive expansion at higher depths 2 and 3 with
parameters hmax = 3 at 3 and nmax = 0.2 at 2.

Table 2. Comparison between unconstrained and adaptive
expansion for 100 BioBase queries

Unconstr. AX-2 AX-1

relv-set size 44,129.5 5,510.52 3,743.52
time (secs) 606.98 43.44 31.28
accuracy (F1) 0.821 0.818 0.820

In Table 2, we compare the two adaptive schemes
against unconstrained expansion with d∗ = 3 over all
queries. Clearly, accuracy remains almost unaffected
for both schemes. First, we note that AX-2 matches
the accuracy of unconstrained expansion and shows al-
most the same improvement over depth 1 even though
it n-expands a small fraction of Rel1(Q) — the average
size of the relevant set reduces to 5,500 from 44,000.
More significantly, AX-1 also matches this improve-
ment even without including many depth-1 references.
This reduction in the size of the relevant set has a im-
mense impact on the query processing time. The av-
erage processing time drops from more than 600 secs
for unconstrained expansion to 43 secs for AX-2 and
further to just 31 secs for AX-1, thus making it pos-
sible to use collective entity resolution for query-time
resolution.

7. Related Work

The entity resolution problem has been studied in
many different areas under different names. A lot of
work has focused on traditional attribute-based entity
resolution. Extensive research has been done on defin-
ing approximate string similarity measures (Monge &
Elkan, 1996; Bilenko et al., 2003) that may be used for
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unsupervised entity resolution.

Many recently proposed approaches take relations into
account for data integration. In earlier work, we have
proposed different measures for relational similarity
and a relational clustering algorithm for collective au-
thor resolution (Bhattacharya & Getoor, 2004; Bhat-
tacharya & Getoor, 2006). Dong et al. (2005) collec-
tively resolve entities of multiple types by propagat-
ing relational evidences in a dependency graph, and
demonstrate the benefits of collective resolution in real
datasets. While some of these approaches have been
shown to be scalable, the focus has not been on query-
time cleaning. Very recently, Long et al. (2006) have
proposed a model for multi-type relational clustering
using matrix factorization. Neville et al. (2003) have
also shown how relations may be combined with at-
tributes for clustering. Among cut-based approaches,
Dhillon (2001) has proposed an objective function for
the co-clustering. However, this applies only to bi-
partite graphs and constrains each cluster to relate to
exactly one other cluster.

Probabilistic models for collective entity resolution
have been applied to named entity recognition and
for citation matching (McCallum & Wellner, 2004; Li
et al., 2005; Singla & Domingos, 2004; Pasula et al.,
2003). While these perform well, they have mostly
been useful for small datasets and probabilistic in-
ference for relational data is not known to be scal-
able in practice. Approaches have been proposed for
localized evaluation of Bayesian networks (Draper &
Hanks, 1994), but not for clustering problems, which
is our approach for entity resolution. As we do, Fux-
man et al. (2005) motivate the problem of querying
databases that violate integrity constraints. However,
the relational aspect of the problem does not come up
in their setting.

8. Conclusions

In this paper, we have motivated the problem of query-
time entity resolution for accessing unresolved third-
party databases. The biggest issue in query-time res-
olution of entities is reducing the computational ex-
pense of collective resolution, while maintaining its
benefits in terms of resolution accuracy. We first pro-
pose a cut-based relational clustering formulation for
collective entity resolution. We motivate its appli-
cation for query-time entity resolution and propose
an adaptive strategy for extracting the set of most
relevant references for collectively resolving a query.
We demonstrate that this adaptive strategy preserves
the accuracy of unconstrained expansion while dra-
matically reducing the number of relevant references,

thereby enabling real time collective resolution. While
we have presented results for bibliographic data, the
techniques are applicable in other relational domains.
Interesting directions of future research include appli-
cation of spectral techniques for optimizing the objec-
tive function, exploring stronger coupling between the
extraction and resolution phases of query processing
and investigating localized resolution for offline data
cleaning as well.
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