
Model-Assisted Approaches for Relational Reinforcement Learning:
Some challenges for the SRL community

Tom Croonenborghs TOM.CROONENBORGHS@CS.KULEUVEN.AC.BE
Jan Ramon JAN.RAMON@CS.KULEUVEN.AC.BE
Hendrik Blockeel HENDRIK.BLOCKEEL@CS.KULEUVEN.AC.BE
Maurice Bruynooghe MAURICE.BRUYNOOGHE@CS.KULEUVEN.AC.BE

Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Leuven, Belgium

Abstract
For a relational reinforcement learning (RRL)
agent, learning a model of the world can be very
helpful. However, in many situations learning a
perfect model is not possible. Therefore, only
probabilistic methods capable of taking uncer-
tainty into account can be used to exploit the
collected knowledge. It is clear then that RRL
offers an interesting testbed for statistical rela-
tional learning methods. In this paper, we de-
scribe an algorithm taking a middle ground be-
tween model-free and model-based (Relational)
Reinforcement Learning. A model of the world
dynamics in the form of a relational Dynamic
Bayesian Network (DBN) is learned incremen-
tally. Empirical results show that sampling the
partially learned model outperforms traditional
RRL Q-learners.

We also focus on a number of open problems.
First, it is clear that other SRL techniques, be-
sides the one we are using, could be used just
as well. It might be interesting to see what their
strengths and weaknesses are in the specific RRL
context. In addition, it is typical for our approach
that chunks of partial knowledge are obtained,
and little is known about how to combine, evalu-
ate and exploit this partial knowledge more effi-
ciently.

1. Introduction
Relational Reinforcement Learning (Džeroski et al., 2001)
has received a lot of attention over the last few years. The
focus has merely been on the model-free setting, where

Presented at the ICML Workshop on Open Problems in Statistical
Relational Learning, Pittsburgh, PA, 2006. Copyright 2006 by the
author(s)/owner(s).

the agent learns the policy (or value function) directly by
sampling the environment, but without first learning infor-
mation about this environment. Recently, various kinds of
relational MDPs (RMDPs) have been formalized with dif-
ferent methods that deduce an (optimal) policy, given the
full specification of this RMDP as input.

When this RMDP is not given, it can be very useful for an
RRL-agent to learn about his environment by e.g., learn-
ing a transition function. So far, little research has been on
using the agent’s experience in gathering knowledge about
the world dynamics, although we have shown in (Croonen-
borghs et al., 2004) that (partial) models about these dy-
namics can be useful for Relational Reinforcement Learn-
ing. However, learning probabilistic (transition) models
with relational structure is known to be a hard problem.

Furthermore, in a real reinforcement learning setting, learn-
ing about the world dynamics and exploiting this knowl-
edge can not be separated. To learn a good model of the
world, it may be necessary to first develop a good policy
that can reach all the important places of the world. On
the other hand, to develop a good policy, some knowledge
of the world dynamics may be essential. Moreover, since
learning a complete and perfect model is often not possible,
only probabilistic methods capable of taking uncertainty
into account can be used to exploit this collected knowl-
edge.

In this paper, a first model-assisted approach is presented
by combining a model-free (Q-learning) with a model-
based approach. The agent performs Q-Learning, but while
he explores his environment, he simultaneously and incre-
mentally learns a model of the world. This model is then
used to increase the performance of Q-Learning by looking
(a small number of) steps ahead, in order to obtain a better
estimate of the Q-value.

We also discuss a number of open problems in this area.
In particular, though research in recent years helped a lot
to understand the fundamentals of relational probabilistic

Model-Assisted Approaches for Relational Reinforcement Learning: Some challenges for the SRL community

modeling, little is known about how to combine, evalu-
ate and exploit the collected partial knowledge more effi-
ciently.

The remainder of this paper is organized as follows. First,
Section 2 presents some background. Section 3 discusses
related work. Section 4 describes a first indirect approach
to Relational Reinforcement Learning. Before concluding
in Section 6, we discuss a number of challenges and open
problems in Section 5.

2. Background
Reinforcement Learning (RL) (Sutton & Barto, 1998) is of-
ten formulated in the formalism of Markov Decision Pro-
cesses (MDPs). The need to model relational domains
has led to different formalizations of Relational MDPs
(RMDPs) , e.g. (Fern et al., 2006; Kersting & De Raedt,
2004; Kersting et al., 2004; Mausam & Weld, 2003) 1. We
present a simple form of a RMDP that will be used in this
paper.

Definition 1 A Relational MDP (RMDP) is defined as the
five-tuple M = 〈PS , PA, C, T,R〉, where PS is a set of
state predicates, PA is a set of action predicates and C is
a set of constants. A state in the state space S is a set of
ground state atoms, i.e., S = {p(c1, . . . , cn)|p/n ∈ PS and
∀i : ci ∈ C}; an action in the action state is a ground
action atom, i.e., A = {p(c1, . . . , cn)|p/n ∈ PA and
∀i : ci ∈ C}. The transition function T : S×A×S → [0, 1]
defines a probability distribution over the possible next
states, i.e. T (s, a, s′) denotes the probability of landing in
state s′ when executing action a in state s. The reward
function R : S×A → R defines the reward for executing a
certain action in a certain state.

The task of reinforcement learning consists of finding an
optimal policy for a certain MDP, which is (initially) un-
known to the RL-agent. This optimality is often defined
as a function of the discounted, cumulative reward, i.e. the
goal is to find a policy π : S → A that maximizes: V π(s) =
Eπ[

∑
∞

t=0
γiR(st, π(st))|s0 = s], where 0 ≤ γ < 1 is the

discount factor, which indicates the relative importance of
future rewards with respect to immediate rewards.

The RRL-system (Driessens, 2004) applies Q-Learning in
relational domains, by using a relational regression algo-
rithm to approximate the Q-function defined as

Q(s, a) ≡ R(s, a) + γ
∑

s′∈S

T (s, a, s′)maxa′Q(s′, a′) (1)

Knowing these Q-values, an optimal policy π∗ of the MDP
can be constructed as π∗(s) = argmaxa Q(s, a).

1An overview of the different formalizations can be found in
(van Otterlo, 2005).

3. Model-assisted approaches for Relational
Reinforcement Learning

Most model-based approaches in the propositional setting
fit the Dyna architecture (Sutton, 1991). The agent learns
a model of the world and uses these approximations of the
transition and reward function to perform hypothetical ac-
tions to generate extra updates for the Q- or value function.
Algorithms such as prioritized sweeping (Moore & Atke-
son, 1993) (and extensions of these) focus the hypothetical
actions on interesting parts of the state space. In these ap-
proaches table-based methods are used to approximate the
transition and reward distributions, although there has been
some work on learning more structured representations. An
example is (Dearden, 2001), where tree-based representa-
tions of the conditional probabilities are learned to perform
prioritized sweeping based on the structured policy itera-
tion algorithm (Boutilier et al., 1995).

Although indirect RL has shown its advantages, little re-
search has been on indirect RRL. However, it seems that
knowing information about the environment is especially
interesting in the relational setting, where one deals with
complex domains that contain a lot of structure. Of course,
when making the step to relational domains, learning a
model of the world becomes more challenging. Moreover,
learning a perfect model will often be impossible and han-
dling this uncertainty will be an important aspect of indirect
RRL.

One method that focusses specifically on learning transi-
tion functions with relational structure is Pasula et al. (Pa-
sula et al., 2004). They present a method for learning prob-
abilistic relational rules when given a dataset about state
transitions. In (Zettlemoyer et al., 2005) they extend this
method to show that it is applicable in large noisy stochas-
tic worlds. This method is however not directly applicable
to Reinforcement Learning, since it does not work incre-
mentally and in practice the assumption that actions only
have a small number of effects is often violated.

The emerging field of Statistical Relational Learning has
seen a lot of work on relational upgrades of Bayesian net-
works. More specifically, (Sanghai et al., 2005) defines Re-
lational Dynamic Bayesian Networks (RDBNs) as a way to
model relational stochastic processes that vary over time.

In the next section, we present a first model-assisted ap-
proach. The transition function is learned online using log-
ical decision trees, which can be seen as a Relational Dy-
namic Bayesian Network. This model is then used to aug-
ment regular Relational Q-Learning with lookahead plan-
ning trees. This lookahead will allow the agent to obtain
more accurate Q-values and hence accelerate convergence.
We believe that Q-learning is not always the optimal choice
for RRL and we would like to investigate alternatives in the

Model-Assisted Approaches for Relational Reinforcement Learning: Some challenges for the SRL community

future, although it would be interesting to upgrade certain
of these Q-based indirect approaches to the relational case,
e.g. (Boutilier et al., 1995). For this first study on model
learning however, starting from and comparing with exist-
ing systems seems useful.

Combining search and RL has shown to be successful in
the past, for instance in the context of game playing (Bax-
ter et al., 1998). In (Davies et al., 1998), online search is
used with a (very) approximate value function to improve
performance in continuous-state domains . Our approach
can be seen as an instance of the Learning Local Search
(LLS) algorithm described there.

To our knowledge, this is the first method that addresses the
problem of indirect Relational Reinforcement Learning. A
recent overview of different methods in the field of RRL
can be found in (van Otterlo, 2005). The most related is
(Sanner, 2005), where a ground relational naive Bayes Net
is learned as an estimation of the Value function. The major
difference however is that this work does not consider the
aspects of time since they consider game playing and hence
restrict themselves to undiscounted, finite-horizon domains
that only have a single terminal reward for failure or suc-
cess.

4. Learning a Relational Dynamic Bayesian
Network with an application in RRL

When learning a model of the world, a substantial part
of the running time, no complete model is known. This
excludes a number of possible ways to exploit the world
model. E.g. planning techniques that construct plans to
reach a goal and rely on preconditions and postconditions
of actions are unlikely to succeed. Still, the models may be
sufficiently good to predict parts of the next states correctly,
and even if the predicted next states are partly wrong, they
can be used to look ahead in what will come. Sampling
possible states a few steps ahead in the future can greatly
help to see the direction to (high) rewards. Our proposed
algorithm consists of two parts: the first module incremen-
tally learns a transition and reward function in the form
of probability distributions T ′(s′|s, a) and R′(r(s, a)|s, a).
Sections 4.1 and 4.2 details this module. A second mod-
ule, described in Section 4.4 exploits the knowledge in the
learned model to determine the agent’s policy.

4.1. Representation and learning of the transition
function

First, we will describe how we model the transition func-
tion that needs to be learned, given PS , PA and C of the
RMDP.

One can model an episode of an agent as a large dynamic
Bayesian network (DBN) (Dean & Kanazawa, 1989) with

in each layer the state of the world and the action of the
agent at a particular time point. However, as we are work-
ing in a relational setting, this DBN is a relational one. As
explained previously, a state is a set of ground state atoms.
Hence, in the layer of the DBN representing a state there is
a binary random variable for every ground state atom. For
every time point t, there is also a random variable at rang-
ing over all atoms of PA and C, representing valid actions.
The action taken depends on the current knowledge of the
agent and the current state. We will not explicitly model its
conditional probability distribution (CPD).

In this work we do not consider dependencies among ran-
dom variables of the same state, i.e. we assume that the ran-
dom variables describing the next state depend only on the
current state. This assumption can easily be loosened by
providing an ordering on the nodes and letting nodes only
depend on smaller nodes in the same state. However, learn-
ing bayesian net structure is known to be a hard problem.
In particular, in the case of online learning, a revision of
the structure would interfere with the learning of the con-
ditional probability tables in uninvestigated ways and will
therefore only be considered in future work.

Hence, for every predicate symbol p ∈ PS , we have a con-
ditional probability distribution T ′

p(x|s, a) giving for every
ground atom x with predicate symbol p the probability that
it will be true in the next state given the current state s and
action a.

For every predicate, we will represent the CPD with a prob-
ability tree represented with logical decision trees (Block-
eel & De Raedt, 1998; Fierens et al., 2005). An example
of such a probability tree CPD for clear(X) in the blocks
world is given in Figure 1.

We would like to learn this model in an incremental way
while the agent is doing Q-learning. As we do not consider
structure learning, learning the transition function reduces
to learning the (relational) conditional probability tables.
We will use for this task an on-line relational regression tree
learning algorithm, based on the TG algorithm (Driessens
et al., 2001).

The learning examples for this algorithm simply have to
state if a certain ground atom is present in the resulting
state or not. These examples can easily be created from
the agent’s interaction with his environment. Note that the
number of possible atoms in the next state may be very
large, and therefore we do not generate all possible exam-
ples but apply a suitable sampling strategy.

4.2. Learning other models

Learning the reward function R′(r(s, a)|s, a) is more
straightforward in the sense that this is similar as learning
the Q-function. The only difference is that the learning ex-

Model-Assisted Approaches for Relational Reinforcement Learning: Some challenges for the SRL community

State, move(X, Y), clear(A)

clear(State, A)?

A == Y ?

clear(State, X)?

0.0

yes

1.0

no

yes

1.0

no

yes

on(State, X, A)?

clear(State, Y)?

clear(State, X)?

1.0

yes

0.0

no

0.0

no

yesyes

0.0

no

no

Figure 1. An example probability tree: It shows the probabil-
ity that block A will be clear, given the fact that the action
move(X, Y) is executed in state State. The first node in the
tree checks if block A was already clear (essentially the frame as-
sumption). If this is the case, it can only become not clear when
some other block is moved on top of it. If the block was not clear
in the original state, it can only become clear in the resulting state
if the block directly on top of it got moved to another block.

amples contain the reward received for a certain state and
action instead of the calculated Q-value.

The transition function only indirectly states the precondi-
tions of an action, it could however be convenient to learn
a model that explicitly states the preconditions of a certain
action. It is common to assume that if an illegal action is
tried by the agent, the world remains unchanged. In this
work a simple approach to learning preconditions is taken
by learning a function T ′(s′ = s|s, a) that predicts the
probability that a (part of the) state will be changed when
executing a certain action in it.

4.3. Predicting the resulting state

If a (partially correct) transition function T ′(s′|s, a) is
available, it becomes possible to predict the probability dis-
tribution over the possible next states. At the moment, a
sampling approach is used to predict a possible next state.
It iterates over all possible ground atoms in a state and de-
cides for each atom individually if it is part of the resulting
state, depending on the predicted conditional probability.

4.4. Q-Learning with Lookahead

Being able to predict the next state, allows us to look sev-
eral steps ahead to get a more informed Q-value. The idea
is to build a lookahead planning tree, much in the same
way as a sparse lookahead tree is build in (Kearns et al.,
2002) to obtain near-optimal policies for large MDPs.

Since the transition function can be stochastic or partially
incorrect, an action needs to be sampled several times to
obtain an accurate value. This sampling width SW is a pa-

rameter of the algorithm. Starting from the current state in
the root node, we generate for every possible action, SW
(directed) edges using the action as a label for that edge.
The node at the tail of this edge represents the state ob-
tained from executing that action in the head node. This
can be continued until the tree reaches a certain depth.
The Q-values of the deepest level can be estimated by the
learned Q-function. Using the Bellman equation (Eq. 1)
and the learned reward function these values can then be
back-propagated to their parents by averaging over the dif-
ferent edges (samples), until estimates are obtained for the
top level.

When the function T ′(s′ = s|s, a) is learned as a model
for the preconditions, it can be used to prune the number of
actions in the tree.

An important benefit of being able to predict the next state
is that when doing single step lookahead, instead of learn-
ing the Q(s, a)-function a Q-function can be learned over
the (State, Action, NextState)-triplets. This is not only use-
ful because in a lot of domains, a Q-value can be expressed
more easily in function of the next state, but as shown in
(Croonenborghs et al., 2006) (R)RL-agents can gain from
multiple (possibly redundant) sources. The same applies
for the reward function, therefore we use these functions
to predict the Q-values and rewards of the last level. For
higher levels the lookahead algorithm described above is
used.

Although the Q-values are determined in a slightly differ-
ent way, the same strategy can be used to derive policies
for the agent as in regular Q-learning.

4.5. Empirical evaluation

4.5.1. EXPERIMENTAL SETUP

In all the following experiments, the RRL-TG(Driessens
et al., 2001) system is used to estimate the Q-values. Since
the transition function for these domains are still learned
rather easily, a sampling width of two is used. The agent
also learns the function modelling the preconditions to
prune the lookahead tree. The exploration policy consists
of performing a single step lookahead. The figures show
the average over a 10-fold run where each test run con-
sists of 100 episodes and the average reward over this 100
episodes following a greedy policy, i.e. the percentage of
episodes in which a reward is received, is used as a conver-
gence measure.

Blocks World As a first test domain, we used the blocks
world as it is defined in a lot of work on Relational Re-
inforcement Learning(Driessens, 2004)2. The world con-

2The main difference is that here the agent can execute every
possible action in a certain state instead of only the legal ones.

Model-Assisted Approaches for Relational Reinforcement Learning: Some challenges for the SRL community

tains five blocks and the standard goals, i.e. the stack-goal,
the unstack-goal and the on(A,B)-goal are used. In the
on(A,B)-goal the agent only receives a reward iff block A
is directly on top of block B. The objective of the stack-
goal is to put all blocks in one and the same stack, i.e. if
there is only one block on the floor. And in the unstack-
goal the agent is rewarded iff all blocks are on the floor, i.e.
there is no block on top of another block.

During exploration, episodes have a maximum length of
20 steps above the ones needed by the optimal policy, dur-
ing testing only optimal episodes are allowed. For the
on(A,B) goal, we also tested a more difficult setting with
10 blocks. For this setting, the agent was allowed to take
30 extra steps when exploring and averages are shown over
a 5-fold run. The same language bias is used as in previ-
ous experiments with the RRL-TG algorithm in the Blocks
World (Driessens, 2004).

Logistics The second domain is a logistics domain con-
taining boxes, trucks and cities. The goal is to transport cer-
tain boxes to certain cities3. The possible actions in this do-
main are load box on truck/2, which loads the specified
box on the specified truck if they are both in the same city,
the unload box on truck/2 which takes the box of the
truck and moves it in the depot of the city where the truck
is located. The third possible action is the move/2-action,
which moves the truck to the specified city. The state space
PS consists of the following predicates: box on truck/2,
box in city/2 and truck in city/2. These predicates also
make up the language bias used in these experiments, i.e.,
the tree learning algorithm can test if a certain box is on a
certain truck etc.

In the first setting there are two boxes, two cities and three
trucks and the goal is to bring the two boxes to two specific
cities. During exploration, 150 steps are allowed, but dur-
ing testing the maximum length of an episode is 20 steps.
For the second setting the domain is extended to four boxes,
two cities and two trucks and the goal is to bring three spe-
cific boxes to certain locations within 50 timesteps.

4.5.2. PRELIMINARY EXPERIMENTS

In this section we present some preliminary experiments
to show the potential benefits of indirect Relational Rein-
forcement Learning. Currently, more experiments are per-
formed to compare different sampling strategies in differ-
ent environments. For the blocks world with five blocks
we compared three different settings: a regular Q-learning
agent (std tg), an agent doing single step lookahead4 and an
agent that looks two steps ahead. For the on(A,B)-goal5

3Specific instantiations vary from episode to episode.
4i.e. by learning a Q(S, A, S′)-function
5The most difficult goal for standard TG.

Figure 2. Episode on(A, B)

Figure 3. Timings on(A, B)

(Figure 2) using lookahead clearly outperforms the stan-
dard setting. Doing a two step lookahead further improves
performance, but the differences are small due to the fact
that they both convergence rather fast. Since learning the
transition function is computationally expensive, we also
show the convergence in function of the time needed to
learn the policy in Figure 3. Considering this as a conver-
gence measure, using lookahead still significantly improves
over using regular Q-learning. Since the time to execute a
policy is practically neglectable to the time to learn the dif-
ferent models, looking two steps ahead also outperforms
the single step lookahead under this convergence measure.

For the stack (Figure 4) and unstack goal (Figure 5) sin-
gle step lookahead only improves in the beginning of learn-
ing, but after about a 1000 episodes it does not really gain
over the standard setting. The main reasons for this are
that it is more difficult to identify the goal-states (in the
next state), something which might be improved with more
background knowledge and a richer language bias. On the
other hand, there is in a sense more redundancy between
the current and the afterstate for modelling the Q-function.

Model-Assisted Approaches for Relational Reinforcement Learning: Some challenges for the SRL community

Figure 4. Stack goal

Figure 5. Unstack goal

It also shows that performing an extra step of lookahead
helps for both problems.

In a bigger blocks world (Figure 6), it is hard for the stan-
dard Q-learning to learn a reasonable policy, after 10000
episodes a reward of about 0.3 is reached and looking ahead
significantly improves the learning behavior. In the logis-
tics domain, the variance is rather high, partly due to the
limited background knowledge and language bias. There-
for, in general no optimal policy is learned because during
some test runs no reasonable policy will be learned. It is
clear however that using single step lookahead significantly
outperforms regular Q-learning (Figure 7).

The quality of the transition function is also tested sepa-
rately by applying it as a classification task, i.e. predict if
a certain atom will be part of the afterstate, given a certain
state and action.

Results are show when averaged over 10 samples per step
and 10 testepisodes, False Positives (FP) indicate the num-
ber of atoms that were predicted as true but are not in the
real afterstate and False Negatives (FN) ,i.e. atoms that

Figure 6. Blocks world with 10 blocks

Figure 7. Logistics

were predicted as not being part of the afterstate, but are
in reality. In the blocks world with five blocks (Figure 8),
the transition function is learned rather rapidly and is op-
timal after about 200 episodes. Figure 9 shows the result
of a logistics domain with five boxes, trucks and cities for
the first 100 episodes, but on average it is not able to learn
the transition function perfectly. It is interesting to see that
despite the poor transition function looking ahead helps.

5. Challenges and Open Problems
In the previous sections, we showed how one can incre-
mentally learn a model of the world and that exploiting this
model, even if it is incomplete, can be beneficial for a rein-
forcement learning agent. However, several open problems
remain, mainly in the statistical relational learning domain.

First, we believe that it would be advantageous to evaluate
the different components of the learned model. In a first
stage, the learned model will be very inaccurate, and it will
make little sense to look ahead far, as the predicted next

Model-Assisted Approaches for Relational Reinforcement Learning: Some challenges for the SRL community

Figure 8. Transition function (blocks world)

Figure 9. Transition function (logistics domain)

states will be too noisy. However, it is unclear when to
decide when the model has improved sufficiently to look
ahead further. Notice that a rather accurate evaluation of
the learned model would be needed. A straightforward er-
ror measure such as the mean error is probably insufficient,
as some parts of the world model may be harder to learn
than others, and it makes a large difference whether the
part which is difficult to learn is the part relevant for the
agent (e.g. for predicting his future rewards) or concerns
only a remote and unimportant process in the world. Be-
ing able to evaluate the model quality would also help in
decision making on the meta learning level when several
alternative learning strategies are available (e.g. learning a
Q(s, a, s′) function vs. learning a Q(s, a) and reward func-
tion and combining them).

A second important issue is the sampling strategy. It is
a non-trivial task to come up with an efficient strategy to
sample next states and look ahead efficiently. On a global
level, one can imagine different search strategies, e.g. we
intend to try an iterative deepening search, examining all
actions at the current state but only the most promosing

ones at deeper levels. On a local level, a single sample of
a next state given the current state and the action should
be generated. (Sanghai et al., 2005) presents some ini-
tial work on efficient state monitoring for Relational Dy-
namic Bayesian Networks, the methods proposed there are
however only applicable in restricted settings. Most frame-
works for representing probabilistic relational knowledge
assign a single constant value to every fact that can be true
(in the next state). However, as (Poole, 2003) points out,
things often get difficult when reasoning over populations,
e.g. probability distributions over all blocks are needed.
Only a few representation frameworks allow to represent
such probability distributions elegantly.

In the future, we also want to reason backwards and apply
planning techniques. An important step into this direction
is provided by (Kersting et al., 2004)). However, this ap-
proach assumes a closed world and does not deal with un-
certain information as in the setting discussed in this paper.
Finally, as already mentioned, there are the general ques-
tions of how other SRL approaches than the one described
here would fare on learning a partial model of the world in
parallel with learning an optimal policy, and in what other
ways results from SRL may be applied to further the state
of the art in RRL.

6. Conclusions
In this paper we presented a first model-assisted method
in which a RRL-agent incrementally learns a model of the
world dynamics in the form of a Dynamic Bayesian Net-
work. Experiments show that the performance of a stan-
dard Q-learning agent can be improved when using this
model to predict the afterstate. We also discussed a number
of open problems for the SRL community in this area.

Acknowledgments
Tom Croonenborghs is supported by the Flemish Institute
for the Promotion of Science and Technological Research
in Industry (IWT). Jan Ramon and Hendrik Blockeel are
post-doctoral fellows of the Fund for Scientific Research
(FWO) of Flanders. The authors would like to thank Daan
Fierens for helpful comments and discussion.

References
Baxter, J., Tridgell, A., & Weaver, L. (1998). Knightcap:

A chess program that learns by combining td(λ) with
game-tree search. Proceedings of the 15th International
Conference on Machine Learning (pp. 28–36). Morgan
Kaufmann.

Blockeel, H., & De Raedt, L. (1998). Top-down induc-
tion of first order logical decision trees. Artificial Intelli-

Model-Assisted Approaches for Relational Reinforcement Learning: Some challenges for the SRL community

gence, 101, 285–297.

Boutilier, C., Dearden, R., & Goldszmidt, M. (1995). Ex-
ploiting structure in policy construction. Proceedings of
the Fourteenth International Joint Conference on Artifi-
cial Intelligence (pp. 1104–1111). San Francisco: Mor-
gan Kaufmann.

Croonenborghs, T., Ramon, J., & Bruynooghe, M. (2004).
Towards informed reinforcement learning. Proceedings
of the ICML2004 Workshop on Relational Reinforcement
Learning (pp. 21–26). Banff, Canada.

Croonenborghs, T., Tuyls, K., Ramon, J., & Bruynooghe,
M. (2006). Multi-agent relational reinforcement learn-
ing. Explorations in multi-state coordination tasks.
Learning and Adaptation in Multi Agent Systems: First
International Workshop , LAMAS 2005, Revised Se-
lected Papers (pp. 192–206). Springer Berlin / Hei-
delberg. URL = http://www.cs.kuleuven.ac.be/cgi-bin-
dtai/publ info.pl?id=41977.

Davies, S., Ng, A., & Moore, A. (1998). Applying on-
line search techniques to continuous-state Reinforce-
ment Learning. Proceedings of the Fifteenth National
Conference on Artificial Intelligence (pp. 753–760).

Dean, T., & Kanazawa, K. (1989). A Model For Reasoning
About Persistence and Causation. Computational Intel-
ligence, 5, 33–58.

Dearden, R. (2001). Structured prioritized sweeping. Pro-
ceedings of the Eighteenth International Conference on
Machine Learning (pp. 82–89).

Driessens, K. (2004). Relational reinforcement learning.
Doctoral dissertation, Department of Computer Science,
Katholieke Universiteit Leuven.

Driessens, K., Ramon, J., & Blockeel, H. (2001). Speed-
ing up relational reinforcement learning through the use
of an incremental first order decision tree learner. Pro-
ceedings of the 12th European Conference on Machine
Learning (pp. 97–108). Springer-Verlag.

Džeroski, S., De Raedt, L., & Driessens, K. (2001). Re-
lational reinforcement learning. Machine Learning, 43,
7–52.

Fern, A., Yoon, S., & Givan, R. (2006). Approximate pol-
icy iteration with a policy language bias: Solving rela-
tional markov decision processes. Journal of Artificial
Intelligence Research, 25, 85–118.

Fierens, D., Ramon, J., Blockeel, H., & Bruynooghe, M.
(2005). A comparison of approaches for learning prob-
ability trees. Proceedings of 16th European Conference
on Machine Learning, Porto, Portugal (pp. 556–563).

Kearns, M., Mansour, Y., & Ng, A. Y. (2002). A sparse
sampling algorithm for near-optimal planning in large
markov decision processes. Machine Learning, 49, 193–
208.

Kersting, K., & De Raedt, L. (2004). Logical Markov De-
cision Programs and the Convergence of Logical TD(λ).
Proceedings of the 14th International Conference on In-
ductive Logic Programming (pp. 180–197). Springer-
Verlag.

Kersting, K., Van Otterlo, M., & De Raedt, L. (2004). Bell-
man goes relational. Proceedings of the Twenty-First
International Conference on Machine Learning (ICML-
2004) (pp. 465–472). Banff, Canada.

Mausam, & Weld, D. S. (2003). Solving relational mdps
with first-order machine learning. Workshop on Plan-
ning under Uncertainty and Incomplete Information, at
ICAPS.

Moore, A., & Atkeson, C. (1993). Prioritized sweeping:
Reinforcement learning with less data and less real time.
Machine Learning, 13, 103–130.

Pasula, H., Zettlemoyer, L. S., & Kaelbling, L. P. (2004).
Learning probabilistic relational planning rules. Pro-
ceedings of the Fourteenth International Conference on
Automated Planning and Scheduling (ICAPS 2004) (pp.
73–82).

Poole, D. (2003). First-order probabilistic inference.
IJCAI-03, Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence (pp. 985–
991). Acapulco, Mexico: Morgan Kaufmann.

Sanghai, S., Domingos, P., & Weld, D. (2005). Relatioal
Dynamic Bayesian Networks. Journal of Artificial Intel-
ligence Research, 24, 759–797.

Sanner, S. (2005). Simultaneous learning of structure and
value in relational reinforcement learning. Proceedings
of the ICML 2005 Workshop on Rich Representations for
Reinforcement Learning.

Sutton, R., & Barto, A. (1998). Reinforcement learning:
An introduction. Cambridge, MA: The MIT Press.

Sutton, R. S. (1991). Dyna, an integrated architecture for
learning, planning, and reacting. SIGART Bull., 2, 160–
163.

van Otterlo, M. (2005). A survey of reinforcement learning
in relational domainsTechnical Report TR-CTIT-05-31).
University of Twente. ISBN=ISSN 1381-3625.

Zettlemoyer, L. S., Pasula, H., & Kaelbling, L. P. (2005).
Learning planning rules in noisy stochastic worlds. Pro-
ceedings of the Twentieth National Conference on Artifi-
cial Intelligence (AAAI-05) (pp. 911–918).

