
The Thing We Tried That Worked:
Utile Distinctions for Relational Reinforcement Learning

William Dabney amarack@ou.edu
Amy McGovern amcgovern@ou.edu

School of Computer Science, University of Oklahoma, Norman, Ok 73019

Abstract

This paper introduces a relational function
approximation technique based on McCal-
lum’s UTree algorithm (McCallum, 1995).
We have extended the original approach to
handle relational observations using an at-
tribute graph of observable objects and rela-
tionships (McGovern et al., 2003). Further-
more, we address the inherent challenges that
arise with a relational representation. We
use stochastic sampling to manage the search
space (Srinivasan, 1999), and sampling to ad-
dress issues of autocorrelation (Jensen and
Neville, 2002). We prevent the algorithm
from growing an overly large and complex
tree by incorporating Iterative Tree Induc-
tion’s approach (Utgoff, 1995). We compare
Relational UTree’s performance with similar
relational learning methods (Finney et al.,
2002) (Driessens et al., 2001).

1. Introduction

It is well known that a relational representation can
allow an agent to learn and plan at a higher level of
abstraction than a propositional representation (Kael-
bling et al., 2001). Many real-world learning tasks
are relational in nature, and call for learning methods
that can work in relational environments. Reinforce-
ment learning is an ideal machine learning technique
for real-world control because it is capable of learn-
ing the specified goal without being told how to ac-
complish it. And while using reinforcement learning
to actively learn in propositional environments is well
understood, how to combine it with relational learn-
ing remains an open problem (Finney et al., 2002).

Presented at the ICML Workshop on Open Problems
in Statistical Relational Learning, Pittsburgh, PA, 2006.
Copyright 2006 by the author(s)/owner(s).

Relational reinforcement learning promises to extend
the applicable domains for reinforcement learning, and
improve active learning performance in relational do-
mains.

This paper introduces a novel method for combin-
ing relational learning with an established reinforce-
ment learning algorithm. Relational UTree is an on-
line relational reinforcement learning algorithm based
on the UTree algorithm. We compare this new algo-
rithm to other methods for learning in relational en-
vironments. Specifically Relational UTree shares sim-
ilarities with TG-Algorithm (Driessens et al., 2001),
and other relational learning techniques(Finney et al.,
2002). The deictic G-Algorithm most resembles Rela-
tional UTree because both learn an internal represen-
tation for states using a tree of distinctions made on
observations (Finney et al., 2002). The TG-Algorithm
is an incremental learner which predicts Q-values of
state action pairs using a regression tree (Dzeroski
et al., 2001). Additionally, while both approaches are
applied to blocks world, one is a partially observable
learning task, and the other is a fully observable ver-
sion of the domain. We apply Relational UTree to both
domains and further discuss the similarities and differ-
ences of the algorithms in greater detail in subsequent
sections.

UTree allows an agent to handle tasks when given
both too much and too little perceptual information
(McCallum, 1995). UTree develops its own tree-based
state space, allowing it to focus on the most impor-
tant aspects of observations and to ignore irrelevant
ones. Relational UTree extends this algorithm and al-
lows an agent to learn to identify salient aspects of
complex relational tasks and to learn effectively online
in complicated relational environments. In classical
reinforcement learning, a state representation is either
designed by the user, or learned separately from the
policy. While providing an agent with prior knowl-
edge has many benefits, it is important to identify how
much prior knowledge is actually required to learn cer-

Utile Distinctions for Relational Reinforcement Learning

tain tasks. Relational UTree allows an agent to learn a
state space approximation, and policies for these states
simultaneously. This allows the agent to begin improv-
ing performance before the underlying state space ap-
proximation has converged, and to continue to utilize
this knowledge once convergence is reached.

Learning in a relational representation introduces two
key challenges that we address. The first is the expo-
nential growth in search space. The second challenge
is that relational environments tend to have a higher
degree of autocorrelation, which has been shown to
cause a selection bias that can cause some distinctions
to appear utile when they are not (Jensen and Neville,
2002). Relational UTree compensates for the expo-
nential growth in the state space by using stochastic
sampling (Srinivasan, 1999). Autocorrelation violates
the independent and identically distributed (i.i.d.) as-
sumption made by many statistical techniques. We
compensate for the effects of temporal autocorrelation
by temporally sampling.

We separately address the need to adapt to changes
in the environment by incorporating the efficient tree
restructuring approach from Iterative Tree Induction
(Utgoff, 1995). This allows Relational UTree to cre-
ate more compact trees with the same representational
power. Restructuring prevents the problem of creating
overly complex trees encountered in other tree based
learning algorithms (Driessens et al., 2001).

2. Algorithm Description

The Relational UTree algorithm follows the UTree al-
gorithm closely. We use the standard reinforcement
learning (RL) and partially observable markov deci-
sion process (POMDP) notation where, at each time
step t, the agent executes an action at ∈ A, and re-
ceives an observation ot+1 ∈ O, and a reward rt+1 ∈ <
(Sutton and Barto, 1998; Kaebling et al., 1998).

An observation takes the form of an attributed graph
G = 〈V,E, A(V), A(E), T (V), T (E)〉. V is the set of
all objects in the environment, represented by vertices
in the graph and E is the set of all relationships, rep-
resented by edges (McGovern et al., 2003). A(V) and
A(E) are the set of attributes for the vertices and edges
respectively. T (V) and T (E) are the types for vertices
and edges. A(V) and A(E) can be empty but type is
required. Example observations for blocks world are
shown in Figure 1 (Finney et al., 2002; Driessens et al.,
2001).

Our Relational UTree description uses McCallum’s no-
tations (1995). We refer to the set of distinctions, that
lead to a tree node, as s. When the node is a leaf node,

TT T

R

B G

Mark

Block

Left Relationship

Block

BlockBlock

Block Block Block

On Top Of

Left/Right

Color = Green

Color = Green

Color = Red

Color = Blue

Color = Table Color = Table Color = Table

(a) (b)

(c)

Figure 1. a) Example blocks world configuration. Bold
outline and arrow indicate the agent’s focus and addi-
tional marker location respectively. b) Partially observable
blocksworld1 observation. c) Fully observable blocksworld2
observation.

the state represented by that leaf node is also referred
to as s. A transition instance, Tt = 〈Tt−1, at−1, ot, rt〉,
represents one step of the agent’s experience. The
set of instances contained in a leaf node s is denoted
T (s). The time ordered set of all transition instances
is H = {T0, T1, ..., T|H|}. The leaf node to which a spe-
cific transition instance belongs is denoted by L(Tt).

2.1. Relational Utile Distinctions

We refer to a distinction as being utile if and only if
the distinction statistically separates the set of tran-
sition instances so that the agent is better able to
predict reward. The sets of possible distinctions are:
Object existence {(x, h) | x ∈ T (V), h ∈ Zmax}, re-
lationship existence {(x, o1, o2, h) | x ∈ T (E), o1 6=
o2∀o1, o2 ∈ M(V), h ∈ Zmax}, and attribute value
{(a, valuea, o1, h) | (a, valuea) ∈ A(o1), o1 ∈ {M(V)∪
M(E)}, h ∈ Zmax}, where h is the history index and
M is the memory. Distinctions can be made on previ-
ous observations, up to a user defined maximum dis-
tance from the current one, h ∈ Zmax.

The variables o1 and o2 are pointers to variable mem-
ories. Variable memories reference previous distinc-
tions in s. For each type of distinction, the set of vari-
able memories created when an instance is dropped

Utile Distinctions for Relational Reinforcement Learning

Block Exists, H:0

(0).Color = Green, H:0

Empty List

[List of all blocks]

[List of all blocks]
[One Green block]

Figure 2. Example variable memory creation as an instance
is dropped down the tree. Both distinctions have a history
index of zero, H:0, and therefore are on the current obser-
vation.

down a node, with that distinction, is given by: {v ∈
Vi | T (v) = X} for object distinctions, {(e, v1, v2) ∈
Ei | T (e) = X, v1 6= v2, v1, v2 ∈ Vi} for relationship
distinctions, and {p ∈ Vi∪Ei | (a, valuea) ∈ A(v), a =
X, valuea = Y } for attribute value distinctions.

Figure 2 shows an example of how Relational UTree
uses variable memories. As the observation shown
in Figure 1(c) falls down the root node, blocks are
added to the variable memory. The second node se-
lects which, among these blocks has the attribute value
pair “Color = Green,” and adds all matches to the list.

Relational UTree allows static objects to be referenced
so that their non-static attributes may be accessed.
The set of static objects, S, is defined as S =

⋂
H Vi. A

focal object, f ∈ V , is another useful construct which
allows an agent to reason deicticly. Let M(V,N) be
the set of object variable memories for the node N . At
the root node, Nr, M(V,Nr) = S ∪ {f}. The set of
object variable memories created by the distinction at
a given node, N , is denoted m(V,N). If we let Np be
the parent node to N , then the set of object variable
memories at any node, N , is defined as M(V,N) =
M(V,Np) ∪m(V,Np). We similarly define M(E,N),
given M(E,Nr) = ∅.

2.2. The Relational UTree Algorithm

The Relational UTree algorithm works as follows:

1. Create a tree with no distinctions. Initialize
T (s) = ∅ and H = ∅.

2. Take one step of experience in the environment.
Choose the action at−1 to be the policy action
of L(Tt−1), with ε probability of choosing a ran-
dom action. Record the experience as Tt =
〈Tt−1, at−1, ot, rt〉 and H = H ∪ {Tt}.
Using standard decision tree methods, drop Tt

down the tree. Save Tt to the leaf node, L(Tt) = s,

setting T (s) = T (s) ∪ {Tt}. For every tree node
N ∈ s set N.isStale = true.

In some environments, observations ot and
ot+1 are autocorrelated. For example, in the
blocksworld2 environment shown in Figure 1 (c),
the objects and relationships will remain largely
the same regardless of the next action performed.
This is an example of temporal autocorrelation,
and can cause a feature selection bias (Jensen and
Neville, 2002). In these situations, we remove au-
tocorrelation through temporal sampling. Every
c steps, Tt is forgotten, where c is a user defined
value.

3. Perform one step of value iteration (Bellman,
1957), with the leaves of the tree representing the
states, using Equations 1 - 3. The equations for
estimated immediate reward and estimated prob-
ability of arriving in state s′ after executing action
a in state s are given in Equation 2 and 3 and di-
rectly follow McCallum’s equations. We denote
the set of instances contained in a leaf node s,
where the next action is a, as (T)(s, a).

Q(s, a)← R(s, a) + γ
∑
s′

Pr(s′|s, a)U(s′) (1)

R(s, a) =

∑
Ti∈T (s,a) ri

|T (s, a)|
(2)

Pr(s′|s, a) =
|∀Ti ∈ T (s, a) s.t. L(Ti+1) = s′|

|T (s, a)|
(3)

4. Update the tree every k steps by first ensuring
the quality of current distinctions, followed by ex-
panding the tree by adding new distinctions at the
leaves. All stale tree nodes N are updated as fol-
lows.

(a) First, stochastically generate a set of distinc-
tion trees Φ. We denote a single distinction tree
associated with the tree node N by φN . Include
the existing distinction tree, φN , in the set Φ, with
Φ = Φ ∪ {φN}. A distinction tree is made up
of one or more distinctions on a set of instances,
organized into a tree structure. We consider dis-
tinction trees with depth up to some constant k,
and consider larger depths only if no utile distinc-
tion trees are found. Each distinction tree φ ∈ Φ
defines a set of fringe leaf nodes L.

For each fringe leaf node, s ∈ L, the set of ex-
pected future discounted rewards for s makes up

Utile Distinctions for Relational Reinforcement Learning

a distribution δ(s) given by Equation 4 (McCal-
lum, 1995).

δ(s) = {rti + γU(L(ti+1)) | ti ∈ T (s)} (4)

To accurately calculate δ(s), the states’ utility val-
ues must be updated. We currently perform value
iteration to update these values for each distinc-
tion considered. However, due to the high compu-
tation cost involved, Prioritized Sweeping (Moore
and Atkeson, 1993) is a potential replacement.

Calculate the Kolmogorov-Smirnov distance be-
tween each pair of distributions, denoted
KS(δ0, δ1). Let Pφ be the set of these p-values,
given by Equation 5.

Pφ = {KS(δ(si), δ(sj)) | ∀si, sj ∈ L} (5)

Choose the best distinction tree from among Φ
and the current distinction tree, φN , using Equa-
tion 6.

φ′ = min
φ∈Φ

∑
p∈Pφ

log(p)

|Pφ|
(6)

If any p ∈ Pφ′ is above the user specified cut-off
value, then the node N is pruned from the tree
because the existing distinction, and any gener-
ated distinctions, are not utile. We used a p-value
of 0.001 for the experiments in this paper. Oth-
erwise, φN is replaced by φ′ through a series of
tree transpositions. For distinction trees of depth
greater than one, the distinctions are ’pulled-up’
one at a time, beginning with the root distinction.

(b) Once the best distinction tree at a given node
is determined, the tree is restructured following
Utgoff (1995). If the current distinction at N is
already the best, φN = φ′, then we are done. Oth-
erwise, a recursive depth first traversal of the tree
is applied until one of the base cases, shown in Fig-
ure 3, is reached. At this point, the utile distinc-
tion, φ′, is ”pulled-up” by recursively performing
the tree transposition steps shown in the figure.
After a single ”pull-up” has been performed, the
next base case in the tree is addressed until the
best distinction tree, φ′, is at the target node, N .

When the tree restructuring operation has com-
pleted for N , mark it as not stale, and if the
node has changed through tree restructuring, then
mark all nodes in its subtree as stale. Continue
to apply step 4 to each child node of N , provided
it is marked as stale. This process continues until

ϕN

ϕ' ϕ'

A B C D

ϕ'

ϕN ϕN

A C B D

ϕN

Leaf Leaf

ϕ'

Leaf Leaf

ϕN

ϕ'

A B

Leaf

ϕ'

A' B'

(a)

(c)(b)

Figure 3. Let N be the current node, and C(N) =
{N1, N2} denote the children of N . a) φN1 = φN2 = φ′.
Perform tree transposition by setting φ′

N1 = φ′
N2 = φN

and φ′
N = φ′. b) φN1 = φ′ and C(N2) = ∅. Set φN = φ′

and C(N) = C(N1). Reclassify the instances T (N2) using
the N0 subtree. c) C(N1) = C(N2) = ∅. Set φN = φ′, and
use φ′ to reclassify the instances T (N1) ∪ T (N2)

no branches are stale, and the quality of the dis-
tinctions in the tree are ensured. Finally, perform
value iteration until convergence.

5. Every k steps, expand the tree at the leaves. For
each leaf node of the tree, s, determine the best
distinction tree for the instances at that node,
through the same process outlined in step 4 (a). If
the distinction tree is utile, then expand the tree
by adding a subtree at the leaf s, and dropping
the instances T (s) down the new distinction tree.
This removes s from the list of leaves, and adds
the set of leaves L to that list.

Continue expanding the tree until it is no longer
utile to do so. Perform value iteration until con-
vergence after expansion is done.

6. Repeat at step 2 until stopped.

2.3. Stochastic Sampling

We use stochastic sampling (Srinivasan, 1999) to ad-
dress the large space of possible distinctions intro-
duced with a relational representation. Srinivasan
shows that if we can sample tests stochastically that we
can look at only a small fraction of the total and still be
highly confident in finding one that is among the best
possible. The number of tests that must be sampled
is given by n ≥ ln (1−α)

ln (1−k) , where α is the probability of
finding a test in the top (100×k)% (Srinivasan, 1999).
The key to this equation is that the sample size does
not depend on the number of possible distinctions.

Utile Distinctions for Relational Reinforcement Learning

For this paper, we have used k = 0.01 and α = 0.99
to be 99% confident in finding a distinction in the top
1%. In this situation we only need to sample 458 dis-
tinctions. By gradually reducing k, we can move the
search for distinctions toward an exhaustive search.
With our values, it took under a second to expand a
leaf node containing 5000 instances. When we reduce
k to 0.001, it takes two minutes to do the same expan-
sion. Similarly, with k = 0.0001 the expansion time for
the leaf node is almost 13 minutes. This demonstrates
that an exhaustive search of the distinction space is
not feasible. To compensate, we use stochastic sam-
pling.

2.4. Tree Restructuring

In the early stages of learning, an agent will have only
seen a fraction of the environment and may create a
state representation that is not well suited to the true
nature of the environment. To prevent the tree from
over-fitting and to allow it to adapt to changing en-
vironments, Relational UTree implements online tree
restructuring based on the Iterative Tree Induction al-
gorithm (Utgoff, 1995). Iterative Tree Induction en-
sures that the best split for the instances is used at
each node of the tree, beginning with the root and
working its way to the leaves.

The original ITI algorithm kept track of a list of statis-
tics for each possible test at each node of the tree. Be-
cause Relational UTree is instance based, this would
be redundant. While ITI looked at the list of statis-
tics for a node to decide the current best test at that
node, Relational UTree regenerates tests for the node
and decides which is best directly. This is much more
computationally expensive. However, keeping track of
all possible tests is not a practical solution in this sit-
uation because of the very large search space for dis-
tinctions in relational environments. This large search
space is a well known problem for inductive logic pro-
gramming (Dzeroski et al., 2001). We believe the ad-
vantages of restructuring compensate for the added
computation time required to recompute distinctions.

3. Experimental Results

3.1. Task Descriptions

We apply Relational UTree to two versions of the
blocks world domain. The first, which we will refer
to as blocksworld1, is the focused deictic domain and
task outlined by Finney et al. (2002). The second, re-
ferred to as blocksworld2, is the same domain used for
the RRL-TG algorithm (Driessens et al., 2001).

In both domains there are multiple movable blocks as

well as unmovable table blocks. The blocks have a
color attribute, with possible values of “red,” “blue,”
“green,” and “table.” Otherwise, the tasks, and what
is observable, varies between the two domains.

In the blocksworld1 domain, the agent has a focus
marker, and one additional marker. The agent per-
ceives all attribute information for the focused object
but none for the marked object. If the marker is ad-
jacent to the focus marker, then that marker is also
visible to the agent, along with a relationship between
the focus block and the marker. For instance, if the
marker is below the focus block then the agent will
perceive a block object, a marker object, and a rela-
tionship indicating the block object is on the marker
object. This is slightly different from Finney’s domain,
but the difference is only due to a translation from a
deictic representation into a truly relational one. The
goal of the task is to pick up the green block, which
requires first removing any blocks covering it.

The actions available to the agent for the blocksworld1
domain are identical to the reference domain. They
are move-focus(direction), focus-on(color), pick-up(),
put-down(), marker-to-focus(marker), and focus-to-
marker(marker) (Finney et al., 2002). This domain
is partially observable, and is run with two movable
blocks. The agent is given a large positive reward
(+10) for reaching the goal state, a small negative re-
ward (-0.2) for invalid moves such as picking up blocks
that are not clear, and a smaller negative reward (-0.1)
per time step.

The second domain, blocksworld2, is fully observable
and is run with three movable blocks. We examine
the task of stacking two specific blocks on top of each
other in this domain. The actions are move(x,y) for
unique blocks x and y. For this domain, we must give
blocks unique identifiers to remain consistent, we used
the color attribute for this purpose. Then, we can
describe the task as stacking the green block on top
of the red block. A reward of 1 was given when the
goal state was reached in the minimal number of steps,
otherwise a 0 reward was given.

These two domains, while both versions of blocks
world, are remarkably different. The blocksworld1 is
partially observable, with low level deictic actions.
The blocksworld2 domain is fully observable with very
high level relational actions. An example observation
for blocksworld1 and blocksworld2 was shown in Fig-
ure 1 (b) and (c) respectively.

Utile Distinctions for Relational Reinforcement Learning

0 1 2 3 4 5 6 7 8 9 10
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Training Instances in blocksworld1

To
ta

l R
ew

ar
d

Pe
r T

ria
l (

Sc
al

ed
)

0 2 4 6 8 10 12 14

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Training Instances in blocksworld2

T
o

ta
l
R

e
w

a
rd

 T
ri

a
l
(S

c
a
le

d
)

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Training Instances in blocksworld1

T
o

ta
l
R

e
w

a
rd

 P
e
r

T
ri

a
l
(S

c
a
le

d
)

Figure 4. Learning curve for Relational UTree in both the blocksworld1 and blocksworld2 domains.

3.2. Blocks World Results

During online learning in the blocksworld1 and
blocksworld2 domains Relational UTree built a state
space approximation while performing value-iteration
on that approximation. The resulting learning curves
for both domains are shown in Figure 4. In both
domains the performance achieved is ε-optimal, with
ε = 0.10. Performance is taken as an average across 20
training experiments for blocksworld1 and 10 experi-
ments for blocksworld2. Because this is actual online
performance, large changes to the tree’s structure are
reflected as temporary drops in performance. Larger
drops indicate that a substantial tree restructuring has
occurred. This happens less and less frequently as the
tree converges.

In the more difficult, partially observable, domain of
blocksworld1 the agent’s performance improves gradu-
ally over the course of 100,000 training instances. This
improves upon both the speed of convergence and the
accuracy of Finney’s performance in a comparable do-
main (Finney et al., 2002). After 100,000 training in-
stances Finney’s performance was approximately 68%,
and eventually converges to approximately 80%. Our
method converges to 90% of optimal, due to the use of
ε-greedy exploration methods, and does so within the
first 100,000 steps.

For the blocksworld2 domain, our agent converges
much faster than the blocksworld1 domain, taking
only 25,000 instances. The actions in this domain are
higher level, and allow the agent to discover the goal
much faster than in blocksworld1. The performance of
Driessens’ RRL-TG algorithm on the same domain was
comparable (Driessens et al., 2001). RRL-TG does not
explore the environment, and does not use an ε-greedy
exploration method like we do. This allows their al-

gorithm to converge to an average reward of 1, while
we converge to an average reward per trial that is 90%
of optimal. This domain is a simpler version of the
blocks world domain, but is able to demonstrate that
Relational UTree can be applied to a fully observable
domain and still retain its ability to learn an appro-
priate state space approximation.

When the tree restructuring portion of Relational
UTree was disabled, we observed differences in perfor-
mance. In the blocksworld1 domain, performance mir-
rors that of Finney et al. (2002). In the blocksworld2
domain, we observed that performance was almost
identical to that of Figure 4. These findings suggest
that the advantage given by tree restructuring is dif-
ferent depending on the domain, but the properties
causing this remain to be explored.

3.3. Autocorrelation

To detect potential autocorrelation in our environment
we used randomization on sets of observations. We
perform 10000 randomizations on this set of data, each
time performing a Kolmogorov-Smirnov test. The test
statistics form a distribution which we then analyzed.
The equation for calculating Kolmgorov-Smirnov is
partially dependent on the sample sizes used. Thus,
we used a reversal of this equation to calculate the ef-
fective sample size given the test statistic similar to
what was done with χ2 by Jensen and Neville (2002).
If there is no autocorrelation, the effective sample size
should match the actual sample size used in the tests.

p =
max(N1, N2)
(N1 + N2)

(7)

R =
(2× (Kα)2)

Dα
(8)

Utile Distinctions for Relational Reinforcement Learning

NE = 2× R

(4× (p− p2))
(9)

1% < 1%

100%

65% 76%
100%

96% 100% 100%

Object Block Exists Relationship Holding Exists Action Move Up

No Sampling

Every 15th

Every 10th

1% < 1%

100%

65% 76%
100%

96% 100% 100%

Object Block Exists Relationship Holding Exists Action Move Up

No Sampling

Every 15th

Every 10th

1% < 1%

100%

65% 76%
100%

96% 100% 100%

Object Block Exists Relationship Holding Exists Action Move Up

No Sampling

Every 15th

Every 10th

1% < 1%

100%

65% 76%
100%

96% 100% 100%

Object Block Exists Relationship Holding Exists Action Move Up

No Sampling

Every 15th

Every 10th

1% < 1%

100%

65% 76%
100%

96% 100% 100%

Object Block Exists Relationship Holding Exists Action Move Up

No Sampling

Every 15th

Every 10th

1% < 1%

100%

65% 76%
100%

96% 100% 100%

Object Block Exists Relationship Holding Exists Action Move Up

No Sampling

Every 15th

Every 10th

1% < 1%

100%

65% 76%
100%

96% 100% 100%

Object Block Exists Relationship Holding Exists Action Move Up

No Sampling

Every 15th

Every 10th

1% < 1%

100%

65% 76%
100%

96% 100% 100%

Object Block Exists Relationship Holding Exists Action Move Up

No Sampling

Every 15th

Every 10th

1% < 1%

100%

65% 76%
100%

96% 100% 100%

Object Block Exists Relationship Holding Exists Action Move Up

No Sampling

Every 15th

Every 10th

Object Block
Exists

Relationship
Holding Exists

Action Move
Up

1%

65%

96%

<1%

76%

100%

100%

100%

100%

No Sampling

Drop Every 15th

Drop Every 10th

Figure 5. Effective sample size relative to actual sample
size with variable amounts of sampling.

Equation 9 gives the effective sample size. This de-
pends upon the proportion of instances in the two dis-
tributions being compared. In our experiment, the
actual number of instances were varied, but the pro-
portions that a specific distinction created was con-
stant. Equation 7 shows the calculation of the pro-
portion difference between the two distributions being
compared. Using this value of p to replace the sizes
of the distributions, we were able to directly reverse
the equation for Kolmogorov-Smirnov’s critical values
(Sachs, 1982). This gave Equation 8 and Equation 9,
thus providing NE as the effective sample size.

Figure 5 shows the results of our detection and re-
moval of the temporal autocorrelation in the blocks
world domain. The top pie chart for each group is
the effective sample size without sampling. The lower
two pie charts are for removing every 15th or every
10th instance. Effective sample sizes for an object ex-
istence, relationship, and action test are shown. The
result here is that the effective sample size is dramati-
cally lower without any sampling, and small amounts
of sampling are able to improve the situation. Also
worth notice is that tests on actions have no temporal
autocorrelation. This is because there is no direct cor-
relation between what action will be performed and
what the most recent action was. We already know
that in highly autocorrelated environments a feature
selection bias can cause distinctions to be incorrectly
interpreted (Jensen and Neville, 2002). Therefore we
used sampling as an effective means by which to re-
move the autocorrelation.

4. Discussion

In the partially observable domain, blocksworld1, we
were able to obtain an ε-optimal policy with a rel-

atively small tree. Unbounded tree growth was the
primary cause of poor results in the blocksworld1 do-
main by Finney et al. (2002). Relational UTree’s use
of restructuring slows down tree growth, and prevents
it from growing overly complex trees. We suggest
that the problems with non-convergence in Finney’s
approach are likely due to a tree that was not suffi-
ciently discriminating. Without tree restructuring, it
was forced to grow significantly larger trees to cope.
Capping the tree at a fixed size did not address the
issue as it was unable to converge.

Finney’s approach uses the G-Algorithm and UTree
to learn with a deictic representation. In Finney’s al-
gorithm, once the tree has been expanded at a node,
all the instance information that caused that split is
forgotten by the agent. This strikes a stark contrast
to the approach taken by Relational UTree, which is
instance based and continues to use all observations
to decide if a split is utile. The discarding of old ob-
servations after each split prevents tree restructuring,
and could also be a cause for increased tree growth.
Each split relies only on the most recent observations
to see how the environment behaves. This could lead
to making incorrect assumptions if the current set of
data is not representative of the entire environment.

For the fully observable domain of blocksworld2, our
agent quickly found an optimal policy, as did the TG-
Algorithm. However, Relational UTree’s state space
approximation is able to focus on the most important
aspects of the fully observable environment. Driessens’
approach is a very effective learner, but relies on a pre-
defined state space available to the agent. Relational
UTree automatically learns a state space approxima-
tion.

Due to the significant performance difference between
Finney and the large degree of similarities between our
algorithm and Finney’s, it is useful to discuss why Re-
lational UTree was able to overcome some of the prob-
lems previously encountered.

The problem of relying on observation history to dis-
ambiguate states, and using state utilities to decide
policy before they are disambiguated, is a difficult
problem that can be overcome through the use of tree
restructuring. As the agent continues to learn, it must
carry older instances whose histories reflect outdated
policies. The concern is that as the agent attempts
to build an effective state space approximation, it will
be forced to construct inefficient trees to explain these
spurious observations. However, as the agent’s per-
formance increases the vast majority of new observa-
tions will conform to an increasingly consistent policy.
Given sufficient experience with the new policy, old

Utile Distinctions for Relational Reinforcement Learning

observations will be in such a minority in the leaves
that splitting on them will no longer be statistically
significant. Another method would be to remove the
oldest memories of the agent when they are likely to
no longer be relevant.

Another problem encountered comes from the nature
of POMDPs. If the agent in blocksworld1 performed
the action focus on color(red), its history of observa-
tions would provide no clues as to what state it is in.
Finney raises this problem and suggests that history
based decision tree algorithms will never be able to
fully disambiguate the state space. While it is true
that the agent’s history would not help it to know
the current state of the world, this information is not
required for optimal behavior. Instead, the optimal
behavior for this agent is to explore. Balancing the
need to explore to discover information about the en-
vironment, and seeking out potential rewards, is a pri-
mary property of POMDPs (Kaebling et al., 1998).
As such, the optimal policy would explore the envi-
ronment, thus providing the agent with the useful his-
torical observations that it needs.

5. Conclusions and Future Work

We have introduced Relational UTree, a significant
modification to the UTree algorithm that allows a re-
inforcement learning agent to automatically create a
useful function approximation in a relational represen-
tation. Relational UTree allows us to apply the advan-
tages of the UTree algorithm to inherently relational
environments without the need to convert into propo-
sitional logic. We demonstrated that Relational UTree
is able to learn in the blocks world domains of Finney
and Driessens. Relational UTree addresses the expo-
nential growth in search space of a relational repre-
sentation using stochastic sampling (Srinivasan, 1999).
This paper demonstrated that stochastic sampling was
critical to learning a good function approximation in
a reasonable amount of time. We also demonstrated
that temporal sampling was necessary to address the
issues of autocorrelation that arise in a relational rep-
resentation. We separately show that incorporating
tree restructuring into Relational UTree gives it the
ability to learn compact representations and to adapt
to changing environments.

Current and future work focuses on applying Rela-
tional UTree to more complex relational domains. We
are currently using the Tsume-Go domain. We are
also exploring ways to improve the efficiency of stor-
ing and handling large numbers of observations. In
addition, we plan to apply Relational UTree to robotic
applications. The ability to approximate a state space

independently of a human designer allows for many
interesting future applications.

6. Acknowledgements

We would like to thank the anonymous reviewers for
their insightful comments. This material is based upon
work supported by the National Science Foundation
under Grant No. NSF/CISE/REU 0453545.

References

Bellman, R. E. (1957). Dynamic Programming. Princeton
University Press.

Driessens, K., Ramon, J., and Blockeel, H. (2001). Speed-
ing up relational reinfocement learning through the use
of an incremental first order decision tree learner. In Pro-
ceedings of ECML - European Conference on Machine
Learning, pages 97–108.

Dzeroski, S., Raedt, L. D., and Driessens, K. (2001).
Relational reinforcement learning. Machine Learning,
43(1/2):5–52.

Finney, S., Gardiol, N., Kaelbling, L., and Oates, T.
(2002). The thing that we tried didn’t work very well :
Deictic representation in reinforcement learning. In Pro-
ceedings of the 18th Annual Conference on Uncertainty
in Artificial Intelligence (UAI-02), pages 154–161.

Jensen, D. and Neville, J. (2002). Linkage and autocorre-
lation cause feature selection bias in relational learning.
pages 259–266.

Kaebling, L. P., Littman, M. L., and Cassandra, A. R.
(1998). Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101(1–2):99–
134.

Kaelbling, L. P., Oates, T., Hernandez, N., and Finney, S.
(2001). Learning in worlds with objects. In The AAAI
Spring Symposium.

McCallum, A. K. (1995). Reinforcement Learning with Se-
lective Perception and Hidden State. PhD thesis, Uni-
versity of Rochester.

McGovern, A., Friedland, L., Hay, M., Gallagher, B., Fast,
A., Neville, J., and Jensen, D. (2003). Exploiting re-
lational structure to understand publication patterns in
high-energy physics. SIGKDD Explorations, 5(2):165–
172.

Moore, A. W. and Atkeson, C. G. (1993). Memory-based
reinforcement learning: Efficient computation with pri-
oritized sweeping. In In Proceedings of Advances in Neu-
ral Information Processing 5.

Sachs, L. (1982). Applied Statistics, A handbook of tech-
niques. Springer.

Srinivasan, A. (1999). A study of two probabilistic methods
for searching large spaces with ilp. Data Mining and
Knowledge Discovery, 3(1):95–123.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement
Learning: An Introduction. MIT Press.

Utgoff, P. (1995). Decision tree induction based on effi-
cient tree restructuring. Technical report, University of
Massachusetts.

