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Abstract

Statistical relational learning (SRL) algo-
rithms learn statistical models from rela-
tional data, such as that stored in a rela-
tional database. Last year saw the defini-
tion of view learning for SRL, in which the
view of a relational database can be auto-
matically modified, yielding more accurate
statistical models. The present paper ad-
vances beyond the initial view learning ap-
proach in two ways. First, it learns views
that introduce new relational tables, rather
than merely new fields for an existing table
of the database. Second, new tables or new
fields are not limited to being approximations
to some target concept; instead, the new ap-
proach performs a type of predicate inven-
tion. The new approach avoids the classical
problem with predicate invention, of learn-
ing many useless predicates, by keeping only
new fields or tables (i.e., new predicates) that
immediately improve the performance of the
statistical model. Retained fields or tables
can then be used in the definitions of further
new fields or tables.
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1. Introduction

Statistical relational learning (SRL) algorithms learn
statistical models from relational data, such as that
stored in a relational database. SRL can be seen as
a way to permit statistical models to reason about
sets of related objects. Conversely, SRL can be seen
as upgrading logic to handle the inherent uncertainty
present in the world. Despite these advances over ordi-
nary statistical and ordinary relational learning, SRL
techniques are still constrained to use only the tables
and fields already in the database, without modifi-
cation. In contrast, many human users of relational
databases find it beneficial to define alternative views

of a database—further fields or tables that can be com-
puted from existing ones. Last year saw the introduc-
tion of view learning for SRL, in which the view of
a relational database can be automatically modified,
yielding more accurate statistical models (Davis et al.,
2005b). Despite its benefits, the original formulation
of view learning falls short of its full potential.

The present paper advances beyond the initial view
learning approach in two major ways. First, it learns
new views that involve new relational tables, rather
than merely new fields for an existing table of the
database. Second, new tables or new fields are not
limited to being approximations to some target con-
cept; instead, the new approach is performing a type
of predicate invention or constructive induction. Our
approach learns new predicates by performing a search
over the bodies of definite clauses. Within each clause
body, we pick a set of “distinguished” variables, which
will appear in the head of the clause. We evaluate
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each potential predicate by aggregating away a sub-
set of the distinguished variables and introducing the
predicate as a feature into the SRL model. We call
this new approach VISTA (View Invention by Scoring
Tables through Aggregation). VISTA avoids the clas-
sical problem with constructive induction or predicate
invention—learning too many useless predicates— by
keeping only new fields or tables (i.e., new predicates)
that immediately improve the performance of the sta-
tistical model. Retained fields or tables can then, in
turn, be used in the definitions of further new fields or
tables. We present results on three real world applica-
tions: social networks (UW-CSE), citation matching
(Cora) and cancer prediction (Mammography).

2. Motivating Example

The original motivation for view learning centered on
learning a statistical expert system to provide deci-
sion support to radiologists (Davis et al., 2005b). Fol-
lowing the authors of that work, we motivate the ex-
tended version of view learning using the mammog-
raphy task. The authors of that work used SRL be-
cause the learned statistical model sits on top of the
National Mammography Database (NMD) schema, a
standard established by the American College of Ra-
diology (ACR, 2004). View learning automatically
augmented the NMD schema by adding fields learned
using inductive logic programming (ILP). The new
intensionally-defined fields improved the prediction, by
the SRL model, of which mammogram abnormalities
were malignant. The following is an example of an
ILP-induced rule defining a new field.

malignant(A) if:

density(A,D1),

prior-abnormality-same-location(A,B),

density(B,D2),

D1 > D2.

Here, prior-abnormality-same-location is a pred-
icate that is true of a pair of abnormalities A and B

in the same location on the same patient, where B

occurred on an earlier mammogram than A. There-
fore, the rule says that an abnormality is malignant if
there was an earlier abnormality at the same location,
such that the current abnormality has a greater den-
sity than the previous abnormality. Of course, the rule
may not always be true; this change might occur and
yet the abnormality may not be malignant. But the
rule results in a field being added to every abnormality
record, where this field has value 1 for an abnormality
A if the body (condition) of the rule is true of A, and
value 0 otherwise. Even if the rule is not universally

true, it may provide predictive value for the final SRL
model. It is worth noting that, in this use of a rule to
add an additional field, the only purpose really being
served by the head (consequent) of the rule is to distin-
guish A as the variable that links us to any particular
abnormality. Variable A holds the abnormality key; to
compute the value of new field for any particular ab-
normality record, one substitutes that abnormality’s
key for variable A and checks whether the body (con-
dition) of the rule holds.

From this discussion, we see that we can change the
head of a rule in any way we like without damaging
our ability to use the rule. All we really need in or-
der to use the rule to augment the database are: (1)
the body of the rule, and (2) a “distinguished” vari-
able or variables in the rule body that will hold the
keys to records in the database. Thus for example,
instead of the earlier rule, we would get an identical
result with the following rule, where A is selected as
the distinguished variable denoting the key.

density-increase(A,B) if:

density(A,D1),

prior-abnormality-same-location(A,B),

density(B,D2),

D1 > D2.

This second rule actually defines a new relational table
relating pairs of abnormalities for the same patient.
Note that a new binary predicate, such as density-
increase, is an intensionally defined relational table in
database terminology. Most tables learned by VISTA,
such as density-increase, represent many-to-many re-
lationships between their arguments and so cannot be
captured by merely adding a new field to an existing
table.

An advantage of the VISTA approach is that
density-increase, once it is learned, can appear in
the bodies of other rules. For example, this predicate
could be used in another rule that flags abnormali-
ties that have increased in size and changed shape.
This latter rule could be learned directly, without the
new density-increase predicate, but its length without
using the new density-increase predicate makes it
unlikely to be found by typical ILP algorithms, since
these algorithms examine shorter clauses first.

Learning new predicates, such as density-increase,
is known as predicate invention (Muggleton & Raedt,
1994). A particularly difficult aspect of predicate in-
vention is that many possible predicates can be in-
vented. Consequently, the new predicates cause the
search space for clauses to grow radically and can cause
overfitting. As a result, predicate invention actually
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can hurt performance. A unique aspect of predicate in-
vention as proposed within VISTA is the constraint to
prevent invention of arbitrarily many new predicates.
The constraint already noted is that the invented pred-
icates must themselves be immediately useful; for one
of the variables—e.g., the distinguished variable A in
the clause above—the resulting new feature must im-
prove the precision-recall area (or some other score
metric) of the SRL model.

To further constrain the invented predicates, we keep
a bound of two or three on the number of arguments
in the head of any clause, and hence on the arity of in-
vented predicates. We also require that the arguments
in the head correspond to database keys, i.e., IDs of
abnormalities (as with A and B above), patients, mam-
mograms or physicians.

3. Learning New Predicates

VISTA learns new predicates by performing a search
over the bodies of definite clauses and selecting those
bodies that improve the performance of the statistical
model on a classification task. We use Tree Augmented
Naive Bayes (TAN) (Friedman et al., 1997) as our sta-
tistical model. This section motivates and defines the
VISTA algorithm; we will use the Mammography do-
main to help illustrate key points about our algorithm.

3.1. Algorithm Overview

The VISTA algorithm implements greedy search.

• Initialize: in our experiments this is performed by
initializing a Bayesian network to empty

• While there is time:

1. Randomly select an arity of predicate to in-
vent, and randomly select types for that arity

2. Generate and evaluate clauses until
termination-condition

3. If a good clause was found (2% improvement
in precision-recall area in our experiments),
add it to the network

Next we discuss these steps in more detail. The Gener-

ate clause algorithm implements a top-down, breadth-
first refinement search. The space of candidate literals
to add during refinement is defined using modes, as
in Aleph (Srinivasan, 2001). This clause search termi-

nates in four cases: (i) a good clause is found; (ii) the
search space was fully explored; (iii) the clause limit
was exceeded; (iv) the global time limit was exceeded.

We evaluate clauses by how much they improve the
statistical classifier, more specifically the Bayesian net-
work. Each clause is introduced as a binary vari-
able into the network, just as in the recent algorithms
nFOIL (Landwehr et al., 2005) and SAYU (Davis
et al., 2005a). In nFOIL and SAYU, the head of
a clause has the same predicate and arity as the
example, allowing us to precisely define whether a
clause succeeds for a given example and hence whether
the corresponding variable is true. For an illustra-
tion from Mammography, a positive example has the
form malignant(ab1), where ab1 is a primary key for
some abnormality. Every learned rule has the head
malignant(A) as in the rule we saw earlier:

malignant(A) if:

density(A,D1),

prior-abnormality-same-location(A,B),

density(B,D2),

D1 > D2.

The Bayesian network variable corresponding to
this rule will take value true for the example
malignant(ab1) just if the clause body succeeds
when the logical variable A is bound to ab1. Recall
that in VISTA we may have a clause head such as
density-increase(A,B) instead of malignant(A). In
this case, it is less clear how to match an example, such
as malignant(ab1), to the head. VISTA maps, or
links, one argument to the example key and aggregates
away any remaining arguments. While many natural
options exist for performing aggregation and linkage,
we choose simple approaches which we describe in the
following two sections.

3.2. Aggregation

In order to transform an invented predicate into a fea-
ture in our statistical model, we must perform aggre-
gation. VISTA currently implements two aggregation
operators: exists and count. The exists operator
can be implemented by simply testing whether the
clause is satisfiable. The count operator counts the
number of bindings for free variables with which the
clause succeeds. For simplicity, we focus on aggregat-
ing over a single attribute: if the key corresponds to
the first N − 1 arguments, we aggregate over the last,
Nth argument.

To illustrate the exists operator, consider again the
following clause:

density-increase(A,B) if:

density(A,D1),

prior-abnormality-same-location(A,B),

density(B,D2),
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D1 > D2.

In this clause variable A represents the more recent ab-
normality. Suppose we wish to create a feature for this
clause, using existence aggregation. The feature is true
for a given binding of A if there exists a binding for B
that satisfies the body of the clause. Specifically, for
an example malignant(ab1), this density-increase
feature is true if there exists another abnormality
ab2 such that density-increase is true of the tuple
〈ab1,ab2〉.

Using the same clause and same example abnormality
ab1, we now turn to the count operator. In this case,
we are interested in the number of solutions for B given
that A is set to ab1. This means that the new feature
we will propose is not binary. Currently, VISTA dis-
cretizes aggregated features using a binning strategy
that creates three equal-cardinality bins, where three
was chosen arbitrarily before the running of any ex-
periments.

Aggregation queries are, in general, more expensive to
compute than standard queries, as we may need to
compute all solutions, instead of simply proving satis-
fiability. Thus, using aggregated views when inventing
new views can be very computationally expensive (in
fact, we can aggregate over aggregates). To address
this problem, whenever VISTA learns an aggregated
view, VISTA does not store the learned intensional
definition of the view. Instead, VISTA materializes
the view, that is, computes the model and stores the
logical model as a set of facts. This solution consumes
more storage, but it makes using aggregated views as
efficient as using any other views.

3.3. Linkage

So far we have simplified matters by assuming that
the first argument to the learned predicate has the
same type as the example key. In our examples so
far, this type has been abnormality id. There is no
need to enforce this limitation. For example, in pre-
dicting whether an abnormality is malignant, it might
be useful to use the following clause, where Visit is
a key that refers to all abnormalities found on a given
mammogram:

p(Visit) :-

visit(Visit,Ab),

MassesShape(Ab,oval).

Predicate p is true of a visit, or mammogram, that
contains at least one abnormality with an oval shape.

Linkage declarations are background knowledge that
establish the connection between objects in the ex-

amples and objects in the newly invented predicates.
When these objects are of the same type, the linkage is
trivial; otherwise, it must be defined. For mammogra-
phy, we use linkage definitions that link an abnormal-

ity to its patient or to its visit (mammogram). The
linkages for Cora and UW-CSE are equally straightfor-
ward and are defined when we describe the datasets.

4. Data and Methodology

UW-CSE. This common SRL dataset was con-
structed by Richardson and Domingos (2006) and is
publicly available. The goal is to predict the advisor
of a graduate student. The information comes from
the University of Washington CS Department and con-
tains 113 positive examples versus 2,711 negative ex-
amples. We defined students, professors, courses and
publications as keys that could appear in the head of
a clause. We link a courses to a graduate student by
the TA relationship, and we link papers to a grad-
uate student by the author relationship. We link a
course to a professor by the teaches relationship and
we link papers to a professor by the author relation-
ship. We aggregate over students, professors, papers
and courses.

Cora. The objective of this dataset is to predict
whether two citations refer to the same paper. The
dataset was originally constructed by McCallum et
al. (2000). We used the same version of the data as
Kok and Domingos (2005). Cora includes 1295 ci-
tations to 112 Computer Science papers, resulting in
25072 positive examples and 597310 negative exam-
ples. The background knowledge includes data on ti-
tle, venue, author(s), and year for each citation. We
defined paper, title, venue, author and year as keys
that can appear in heads of clauses. We link a pa-
per to its title, venue, author(s) and year fields. We
aggregate over papers and authors.

Mammography. The objective of this dataset is to
predict whether an abnormality on a mammogram
is benign or malignant (Davis et al., 2005b). This
dataset consists of a radiologist’s interpretation of a
mammogram and not the raw image data. The dataset
contains 435 positive examples and 65365 negative ex-
amples. We used the same version of the data as Davis
et al. (2005b). We define abnormality, visit and patient

as keys that can appear in the head of the clause. We
aggregate over abnormalities.
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SAYU VISTA p-value
Mammography 0.10337 0.1038 0.9693

Cora .36581 .44556 3.55∗10−6

UW-CSE 0.097466 0.16721 0.05807

Table 1. Average AUCPR for recall ≥ 0.5 for each task
using TAN as the statistical model.

5. Experiments and Results

The state-of-the-art view learning implementation is
the SAYU algorithm (Davis et al., 2005a), a follow-
up to the original view learning paper (Davis et al.,
2005b). Therefore, we compare VISTA to SAYU in
our experiments. SAYU only learns additional fields
for existing tables; these fields are defined by learned
rules that are approximations to the target concept.

We used the same methodology for learning with
SAYU and VISTA. We use a training set to learn the
network parameters, while we use a tuning set to score
potential clauses. For all datasets we use area un-
der the precision-recall curve (AUCPR) as our score
metric. However, we only look at AUCPR for recalls
≥ 0.5. We do this for two reasons. First, precision
can have high variance at low levels of recall. Second,
in domains such as mammography, we are only inter-
ested in high levels of recall. A practicing radiologist
would need to achieve at least this level of recall. A
clause must improve the AUCPR by at least 2% in
order to be retained in the network. This is an ar-
bitrary parameter setting; in fact we did not try any
other thresholds. We had a time-based stop criteria
for all our experiments. To offset potential differences
in computer speeds, all experiments were run on iden-
tically configured machines.

UW-CSE. Following Richardson and Domin-
gos (2006), we perform five-fold cross validation on
the UW-CSE dataset. We used two folds for the
training set and two folds for a tuning set. We gave
each fold two hours of run time. Each approach could
evaluate up to 10000 clauses, before either selecting
a new seed (SAYU) or a new predicate head. Let us
examine two predicates learned by VISTA:

p16(Student,Professor):-

ta(Course,Student,Date),

taughtby(Course,Professor,Date).

p22(Student,Professor,Paper):-

publication(Paper,Student),

publication(Paper,Professor).
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Figure 1. Precision-Recall Curves comparing VISTA and
SAYU on UW-CSE

Both p16 and p22 capture intuitive knowledge about
the advisee-advisor relationship. First, a graduate stu-
dents often TA’s a class taught by their advisor. Sec-
ond, a graduate student will usually co-author a pa-
per with their advisor. Predicate p22 makes use of
VISTA’s ability to learn a predicate with a higher ar-
ity than the target predicate.

Table 1 reports the average AUCPR for UW-CSE and
the p-value for a two-tailed paired t-test between the
two algorithms. VISTA comes close to performing sig-
nificantly (0.05 < p < 0.06) better than SAYU on this
domain. Although performance varies widely between
the 5 folds, VISTA had a higher AUCPR than SAYU
on each fold. Figure 1 shows precision-recall curves
for both algorithms on this dataset. We pooled re-
sults across all five folds to generate the curves. Even
though we measured AUCPR for recall ≥ 0.5, VISTA
dominates SAYU for most levels of recall.

Cora. Following Kok and Domingos (2005) we per-
form two-fold cross validation on this dataset for five
different random train-test splits. We divide the train-
ing set in half, to form a new train set and a tuning
set. Each fold received three hours of CPU time to
run. SAYU and VISTA can evaluate up to 300 clauses,
before a selecting a new seed or clause head. Let us
discuss two predicates found by VISTA on the Cora
dataset:

p1(Venue1,Venue2):-

commonWordsInVenue80(Venue1,Venue2).

p4(Paper1,Paper2,Paper3):-
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Figure 2. Precision-Recall Curves comparing VISTA and
SAYU on Cora

paperTitle(Paper2,Title),

paperTitle(Paper1,Title),

paperTitle(Paper3,Title).

Predicate p1 captures a crucial piece of partial knowl-
edge in the citation matching domain by checking how
similar the venue field is between two citations. This
rule demonstrates how VISTA can learn predicates
whose “distinguished variables” have a different type
than “distinguished variables” in the target relation.
Predicate p4 establishes a transitive relationship be-
tween papers with exactly the same title.

Table 1 reports the average AUCPR for Cora and the
p-value for for a two-tailed paired t-test between the
two algorithms. VISTA performs significantly better
than SAYU on this domain. Figure 2 shows precision-
recall curves for both algorithms on this dataset. We
pooled results across all folds to generate the curves.
Again, VISTA dominates SAYU throughout precision-
recall space.

Mammography. Following Davis et al. (2005b) we
perform ten-fold cross validation on this dataset. We
used four folds for a training set and five folds as a
tuning set. We allow each fold three hours of CPU
time to run. Each algorithm can evaluate at most
300 clause for a given seed (SAYU) or clause head
(VISTA). Here is a sample predicate found by VISTA:

p23(Ab1,Ab2):-

aggregate(Ab2,count,same_loc(Ab1,Ab2))

This predicate counts the number of prior abnormal-
ities that were in the same location as the current
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Figure 3. Precision-Recall Curves comparing VISTA and
SAYU on Mammography

abnormality. This predicate displays VISTA’s ability
to learn clauses that compute aggregate information
about prior abnormalities.

For the previous two datasets, we initially started with
a Bayesian network that only contained a feature for
the target predicate. However, in the mammography
domain we have access to a set of expert defined fea-
tures (from the NMD). Furthermore, we could define
a set of aggregate features as Davis et al. (2005b) did.
Opposed to starting with an empty network structure,
we begin with a network that contained both NMD
features and the aggregate features.

Table 1 reports the average AUCPR over all folds. We
use a two-tailed paired t-test to compute significant re-
sults, and the p-value for the test can also be found in
the Table 1. We find no significant difference between
VISTA and SAYU on this task. However VISTA does
not perform any worse than SAYU. In this case, SAYU
receives a large number of features—the precomputed
aggregates—that VISTA could potentially learn, but
SAYU cannot capture. Furthermore, by leveraging
Aleph, SAYU has more directed search. Figure 3
shows precision-recall curves for both algorithms on
this dataset. We pooled results across all folds to gen-
erate the curves. On this dataset, VISTA and SAYU
have comparable performance for all levels of recalls.

Reuse of invented predicates. Over the three
tasks, VISTA invented a total of 513 predicates. Of
those 513 predicate definitions, 89 of them (17%)
reused at least one of the other invented predicates. In
total, we saw 118 reuses of previously invented predi-
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cates, meaning that 29 predicate definitions contained
multiple previously-invented predicates.

6. Relationship to Other Work

We already have discussed how the present paper
moves beyond the previous work on view learning
(Davis et al., 2005b). The most-closely related work
we know about is that of Popescul and Ungar on Struc-
tural Logistic Regression (Popescul et al., 2003). Their
work—like the present paper—constructs new predi-
cates that can be used by a statistical learning algo-
rithm. They too “aggregate away” some of the vari-
ables within predicate definitions. The significant dif-
ference is that their learned predicates are not avail-
able for use within the definitions of further learned
predicates; rather, their learned predicates serve solely
as additional features to logistic regression. An ex-
tension to their approach—Cluster-based Concept In-
vention for SRL (Popescul & Ungar, 2004)—does in
fact construct new predicates that can be used within
the definitions of learned predicates. But these new
predicates are based on clustering and are constructed
in an initial pre-processing step, before the learning
of predicates to define features for logistic regression.
Nevertheless, it remains the case that the predicates
learned in order to provide features to logistic regres-
sion still cannot be used in the definitions of further
such learned predicates.

Other major areas of related work are of course con-
structive induction (Rendell, 1985), predicate inven-
tion (Muggleton & Buntine, 1988; Zelle et al., 1994),
and propositionalization within ILP (Lavrac et al.,
1991). Predicate invention is a specific type of con-
structive induction, where a new predicate is defined
not based directly on examples of that predicate, but
on the ability of that predicate to help in learning the
definitions of other predicates for which examples are
available. The classic difficulties with predicate in-
vention are that, unless predicate invention is strongly
constrained: (1) the search space of possible predicates
is too large, (2) too many new predicates are retained,
thus reducing efficiency of learning, and (3) the ability
to invent arbitrary new predicates leads to overfitting
of training data. The approach in the present paper is
to constrain predicate invention by requiring invented
predicates to be of immediate value to the statistical
learner in order to be retained for further use.

Propositionalization is related to the present paper in
that many propositionalization approaches use learned
rules to define new propositional features. The present
work moves beyond propositionalization in two ma-
jor ways. First, the present work learns rules that

define not merely new fields of the database—which
can be thought of as propositions—but new tables, or
new predicates of arity greater than one. Second, once
learned the new predicates are available for use in the
definitions of additional learned predicates, as noted
earlier in this section.

Finally, we draw on the idea of aggregation in SRL.
Perlich and Provost discuss several approaches for
attribute construction using aggregates over multi-
relational features (Perlich & Provost, 2003). Vens et
al. incorporate complex, aggregate queries into the re-
lational decision tree learner TIDLE (2004). However,
the aggregate functions we consider during learning
are not as complex as those learned by either Perlich
and Provost or Vens et al.

7. Conclusion

SRL algorithms can construct probabilistic models
from relational databases. A key capability of SRL is
the learning of arcs (in the Bayes net sense) connecting
entries in different rows of a relational table, or in dif-
ferent tables. Nevertheless, most SRL approaches cur-
rently are constrained to use only the existing database
schema. View learning (Davis et al., 2005b) provides
the capability to automatically change the schema, or
more specifically, define a new view of the database.
Nevertheless, the previous approach to view learning
could not define new tables for the database schema,
but only new fields for existing tables in the schema.
This paper has presented an SRL algorithm, VISTA,
that can learn new views that include new relational
tables. View learning in this general case is isomorphic
to predicate invention, a type of constructive induction
investigated within ILP.

As with predicate invention, the space of new views
one can define for a given relational database is vast,
leading to problems of overfitting and search complex-
ity. VISTA constrains this space by

• learning definitions of new relations (tables or
fields) one at a time

• considering only new relations that can be de-
fined by short clauses expressed in terms of the
present view of the database (including back-
ground knowledge relations provided as inten-
sional definitions)

• re-constructing the SRL model when testing each
potential new relation, and keeping a new rela-
tion only if the resulting SRL model significantly
outperforms the previous one
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The last step requires matching a subset of the argu-
ments in the relation with the arguments in the data
points, or examples, and aggregating away the remain-
ing arguments in the relation. VISTA moves beyond
prior work on view learning by (1) inventing new re-
lational tables rather than only new fields for existing
tables, and (2) treating these new tables or fields as
“first-class citizens of the database,” that is, as re-
lations that can be used in the definitions of further
new tables or fields. Our experimental results indicate
that VISTA invents interesting relations and performs
as well as, or significantly better than, the prior view
learning approach on challenging SRL tasks.

A number of parameter settings and design decisions
within VISTA were selected arbitrarily, to avoid bi-
asing experimental results, because time did not per-
mit tuning or trying different designs on subsets of
the data. VISTA’s performance probably can be im-
proved, therefore, by testing variations in the design
and by tuning parameters. Plans for such future work
include using best-first search rather than breadth-first
search over intensional definitions of relations, testing
other aggregation operators and other types of linkages
between key types, testing other types of statistical
models, and varying the amount by which a new rela-
tion must improve model performance in order to be
retained. Another direction for further work is to per-
mit the interleaving of steps that refine the definition
of a learned relation and steps that vary the statisti-
cal model, or Bayesian network (in VISTA’s case). A
particular challenge within this direction is deciding
what to do when varying the definition of a relation
that itself appears (is used) in the definition of another
relation.
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