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Abstract

It is often convenient to represent probabilis-
tic models in a first-order fashion, using log-
ical atoms such agartners(X,Y) as ran-
dom variables parameterized by logical vari-
ables. (de Salvo Braz et al., 2005), follow-
ing (Poole, 2003), give hfted variable elimina-
tion algorithm (FOVE) for computing marginal
probabilities from first-order probabilistic mod-
els (belief assessment, or BA). FOVE is lifted
because it works directly at the first-order level,
eliminating all the instantiations of a set of atoms
in a single step. Previous work could treat only
restricted potential functions. There, atoms’ in-
stantiations cannot constrain each other: predi-
cates can appear at most once, or logical vari-
ables must not interact across atoms. In this
paper, we present two contributions. The first
one is a significantly more general lifted vari-
able elimination algorithm, FOVE-P, that covers

many cases where atoms share logical variables.

The second contribution is to use FOVE-P for
solving the Most Probable Explanation (MPE)
problem, which consists of calculating the most
probable assignment of the random variables in
a model. We introduce the notion 6fted as-
signments a distribution of values to a set of
random variables rather than to each individual
one. Lifted assignments are cheaper to compute
while being as useful as regular assignments over
that group. Both contributions advance the theo-
retical understanding of lifted probabilistic infer-
ence.
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1. Introduction

Probabilistic models (Pearl, 1988) offer a natural way to
model domains with noise or incomplete information. In
undirected graphical models, one can provide factors, or
potential functionsp;, over sets of random variables de-
scribing these facts. When the same dependency applies
across multiple objects of the same type, it is natural to use
parameterized factorsor parfactors described over para-
meterized random variables. Parameterized random vari-
ables are represented as logical atoms whose parameters
are logical variables, such astail(C), for whether each
possible company’ is a retailer. Parfactors stand for all
factors obtained from instantiating its logical variablasd

can be annotated by a constraint indicating which instanti-
ations are valid. Consider a domain in which we model
partnerships of companies around a certain product and
whether they are retailers. An example of two parfactors
is

o1 (partners(P,Cy,C2)),C1 # Cb.
¢2(partners(P, C1,C2), retail (C1), retail (C2)),C1 # Cs.

While more compact and clear than its propositional coun-
terpart, parameterized models still need to be proposition
alized for solving with a regular probabilistic inferende a
gorithm. Propositionalized models are much larger and do
not contain the original higher-level structure that can po
tentially be used for faster inference. Consequently,rinfe
ence takes time that grows exponentially with domain size.
This has been the approach in much of the work in the
area (Ngo & Haddawy, 1995; Ng & Subrahmanian, 1992;
Jaeger, 1997; Kersting & De Raedt, 2000; Koller & Pfeffer,
1998; Richardson & Domingos, 2004).

(de Salvo Braz et al., 2005), following (Poole, 2003), de-
scribe FOVE (First-Order Variable Elimination)litied al-
gorithm for calculating marginal probabilities (belief-as
sessment, or BA) from a first-order probabilistic model.
The algorithm islifted in the sense that inference is car-

Presented at the ICML Workshop on Open Problems in Statlstic ried on the first-order level, taking computational advan-
Relational Learning, Pittsburgh, PA, 2006. Copyright 2696he

author(s)/owner(s).

tage of the model’s structure and carrying similar calcula-
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tions across groups of random variables. (de Salvo Braz et al., 2005).

FOVE uses two different elimination operations that are re-The FOVE and FOVE-P algorithms are developed under
stricted in different waysinversion eliminatioroperates in  the framework of undirected graphical models such as
time independent from domain size, but can eliminate ariviarkov networks (Pearl, 1988). These models are speci-
atom only if it contains all logical variables in its parfact  fied by a set of potential functions (&actorg defined over
and its grounding is disjoint from any other atom’s in that sets of random variables. Following (Poole, 2003), the no-
parfactor.Counting eliminatiorcan deal with atoms whose tion of factor is generalized to that parameterizedac-
grounding is the same as some other atom in the parfactoior (or parfactor). A joint probability on the random vari-
but logical variables in one atom cannot be constrained bybles is defined as being proportional to the product of fac-
those of others. tors. A parfactor describes a potential function on a set of
The first contribution of this paper is to present FOVE-P, random varlaples, but the ran(_JIom variables are how repre-
. sented by logical atoms, possibly parameterized by logical
a more general algorithm that can solve many cases where_ . . X .
. . . variables. The logical variables are typed and each type is
atoms share logical variables. Suppose a model describes . . .
. . . . a discrete domain. One can therefore represent a potential
the influence of a company doing business with two other, . . . ;
i ) - “function ¢(friend(X,Y), friend(Y, X)), X # Y which
companies and the occurrence of a conflict, by having a : : ; o
. . . stands for all factors instantiated from it by substitutiar
parfactor ¢ (business(X, Y), business(X, Z), conflict), X andY that satisfy the constrailX # Y. In general, a
for X # Y # Z # X, whereconflict is a O-arity - ng '

predicate indicating the occurrence of any conflict. FOVEparfactor is a tripley = (¢g, 4, Cg.) of a pme‘.‘“""' func-
L ) . . tion, a set of atoms, and a constraint on its logical varsble
cannot marginalize ovon flict, since théusiness atoms

X Co : .. _The constraints are equational formulas, that is, formulas
have the same grounding (preventing inversion elimina-

. . . . . where the only predicate is equality, with the unique name
tion) and share logical variabl& (preventing counting assumption. The algorithm makes use of a constraint solver
elimination). This can however be solved by FOVE-P ption. 9

: e . for such formulas.
through a new operation callgirtial inversion

The second contribution of this paper is showing how to uséA FOPI probabilistic model is defined by a set of parfactors

FOVE-P to obtain a lifted solution for Most Probable Ex- G and the assomatec_i '09'0"’?' v_arlable domaln_s (the popula-
. : . S tion). Because each instantiation of a parfagtts a factor
planation (MPE). MPE is an important probabilistic infer- . . T : )
. . . . in itself, the joint distribution defined bg on its ground

ence problem which consists of calculating an assignmen . . .

: : o ; . random variables, denotd®lV/ (G), is the product of all in-
with maximum probability to a model’s random variables. stantiations of all parfactors:
While the transition from BA to MPE in the propositional P '
case is straightforward and obtained by replacing sum op- PRV(G) o< [ TI ¢4(449)
erations by maximizing operations, in the lifted case one 9€G 0€[C,]

must dgal with .tWO main ISSUes. F”?“ there is now a no_Where[C’g] is the set of substitutions satisfyidg,. We de-
tion of lifted assignmenthat is, an assignment over groups

of indistinguishable random variables that does not specif note the second product abovedag) and the entire right-

assignments on an individual basis, but describes a distrib hand side a(G).
tion of values to the group as a whole. Second, assignmen
must now be represented in a more explicit way than in th
propositional case, since their descriptions are manipdla The Lifted Belief Assessment inference problem is that of
by the algorithm. calculating the marginal probability on a set of ground ran-

The notion of lifted assignments gives rise to queries on th&0m variablegy:

number of objects in a domain with certain properties. This P(Q) x Z ®(G)

is not something usually done in the propositional case, RV(G\Q

and useful in domains in which one deals with large pop- . L

ulations. In the example above, an instance of MPE WitthOo\r/nEs arfs'tun:ﬁz:hdriolsnzhlfttsersgeﬂ:eatthlz,r gé\éir;.fglyot;’vg.s_
lifted assignments would be the calculation of the numbe™ n i, I grounding : ' ; ;

. . . . - : joint. The process of shattering a model is described in
gg:r?;?rlll ric())gslanles with maximum probability, given the (de Salvo Braz et al., 2005). Note that distinct atoms can

have the same groundings, as it is the case w(fi) and
) p(Y) for X, Y with same domain. The algorithm works by
2. The FOVE Algorithm selecting a set of aton’s to be eliminated at each step:

This section recalls First-Order Probabilistic Inference Z H d(g) = Z Z H (g)
(FOPI) definitions and the FOVE algorithm presented in gy (a)\@ geG RV(G)\RV(E)\Q RV(E) g€G

S ) .
.1. Lifted Belief Assessment



MPE and Partial Inversion in Lifted Probabilistic Variable Elimination

(by definingG z the parfactors irtx depending oV (E)  (by observing that only (i, j) depends og(o;, 0;))
andGﬁE =G \ GE)

( ¢(1,1)) ( ¢(n,n))

= d(g) ®(h) a(o1,01) 4(on,0n)

RV(G)\RV(E)\Q 9€G-g RV(E) heGE = ¢(p(X),q(X,Y))

XY q(X\Y)
(by fusion(figure 1), we obtain a single parfactgg such — ¢ (p(X)) = ¢/(p(X))IY\ - ¢" (p(X)).
thatq)(GE) = (b(gE)) XY X X
However one cannot eliminatg(X,Y) from parfactors

= ®(g) ®(gg) with atoms (p(X, Z),¢(X,Y)) or (¢(X,Y),q(Z,W)).

RV(G)\RV(E)\\Q 9¢€G-& RV(E) The inverted atom (the one under the sum) needs to con-

tain all logical variables because its expansion would erot b

(by using the elimination operations described later, we opone-to-one with the expansion of the products otherwise.

tain g’ such that®(g’) is equal to the last sum) Note that inversion elimination reduces a sum over all as-
signments to theetof random variableV (¢(X,Y)) to
3(9)®(q) one over the assignments to a single one, and its cost is
B independent fromRV (¢(X,Y))|.
RV(G)\RV(ENQ 9€G-& P MRV (¢(X,Y))|
= ®(g) (whereG' = G_g U{g'}), 2.1.2. @UNTING ELIMINATION

RVIGNQ 9€&" Counting elimination requires th&t be all atoms with any

. . i _ logical variables ingg, and that the logical variables in
which redu<_:es our problem to an instance with strictly Iessémy two atoms ofZ do not constrain each other undey.
random variables. Therefore, it can eliminatg(X) from (p(X),q(Y)) but
However, not all choices of? are valid. The algorithm not from (p(X), ¢(Y)) with X # Y since the choice of
must pickE so that it satisfies the conditions for either of X limits the choice ofY". In FOVE, cases not covered by
FOVE's two elimination operations: inversion elimination these operations have to be directly calculated.

and counting elimination. We now recall them both. Before we present the theorem on which counting elimina-

tion is based, some preliminary definitions are necessary.
2.1.1. NVERSION ELIMINATION

First, we define the notion of independent atoms given a
constraint. This happens when choosing a substitution for
one atom from the constraint’s solutions does not change
the possible choices of substitutions for the other atorh. Le

a be any objectLV («) be the logical variables in, and

Inversion elimination requires that there is one aton¥in
whose grounding is disjoint from all other atomsjis and
which contains all its logical variables (the reason fos thi
is provided below). S@(X,Y) can be eliminated from

(¢ {p(X),a(X, Y)}, T): C|., be the projection of a constraidt to a set of logical
variablesL. Let X; and X, be two sets of logical vari-

d(p(X),q(X,Y)) ables andC' a constraint such thak; U X, C LV(O).
RV (q(X.,Y)) XY X, isindependent fronk, givenC if, for any substitution

02 € [Cx,], Cx, & (Ch2)x,. X1 andX, areindepen-
dent givenC if X is independent fronX, given C' and
vice-versa. Twaatomsp; (X;) andp,(X>) areindepen-
dent givenC' if X; andX, are independent gived.

(let {o1,...,0,} be the domain of bothlX andY, and
¢(i, j) shorthand foes(p(0:), q(0i, 05)))

The second notion is that giist-differentatoms, a notion
= T ¢(1,1)6(1,2) ... 4(n,n) present only implicitly in (de Salvo Braz et al., 2005). This

4(01,01) g(01,02)  g(on,0n) means that choosing a substitution for the first atom re-
stricts the choices for the second one in exactly one substi-
(by observing thai(i, j) depends oi(o;, 0;) only) tution. This is defined only for atoms with the same predi-

cate. Two atomg(X;) andp(X,) arejust-different given

Cif Cix,ux, © Cix, NCx, AN X1 # X,. This says that

= ¢(1,1)--- ¢(n,n) the set of joint satisfying assignmentsXq and X, must
q(o1,01) q(on,0n) be no more, and no less, than the set of satisfying assign-
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ments to their separate requirements plus the restricfion &3. Partial Inversion
them being distinct. Using’| 5, andC)x, state that the
joint constraint does not remove any solution fraf or
X, other than the ones in which they coincide.

In (de Salvo Braz et al., 2005), counting elimination was re-
stricted to cases when eliminated atoms were independent
from each other, or at least just-different. This prevetsts i
Finally, we define multinomial counters. Let be an application to some important cases. Suppose a parfactor
atom (with an associated constraint system) with domairestablishes the potential for conflief) (when a company
D,. Then themultinomial counter of atona, denoted does business$)with more than one other company:
J\7a, is a vector Wherd\qfw indicates how many ground-
ings ofa are assigned thgth value inD,. The multino-
mial coefficientN,! is defined agN, 1, ..., N, p,)! =
(Nat++Na, Dg))!

Na1!.Na b, !

o(b(X,Y),b(X, Z),c)
b(X,Y) #(X,Y,Z)

In the above# (X,Y, Z) stands for pairwise difference
The set of multinomial counters forsetof atomsA is de-  petweenX, Y, Z and theRV (b(X,Y)) under the summa-
notedN4, and the produc}],,. , N,! of their multinomial  tion is written asb(X,Y) for simplicity. Note that we
coefficients is denotedV,!. Multinomial counters are a could have use®V (b(X, Z)) under the sum just as well.
generalization of binomials (as used in, say, the BernoulliThen the shared logical variah}é between atoms prevents
distribution) and their function here is to indicate how ppan counting elimination from being used. Inversion elimina-
distinct assignments present the same distribution oglu tion is not possible either, because no atom contains all log

through their random variables. ical variables in the parfactor.
Theorem 1. Let g be a shattered parfactor arfd = Partial inversionis a technique in which a sum-product in-
{E1,...,E} be a subset ofi, such thatRV(E) is dis-  version onsomeof the logical variables is performed on

jointfrom RV (A, \ E), A’ = A, \ E are all ground, and the parfactor, binding them. This binding is in many cases
where each pair of atoms of different predicates are indeenough to reduce the problem to a solvable one. In our ex-
pendent giverC’y; and each pair of atoms of same predicateample, assuming the domairis, . . . , o, we can invertX

are just-different givel'y. Then by rewriting the above as
@(g) = ¢(Age) b(01,Y) b(0n,Y)
RV (E) RV (E) 0€0, (o ). b( ).o)
- v.N ¢b01,Y,b01,Z,C...
= Ng! ¢(v, A")#(NE) Y, Z#(01,Y,%)
Ng vEDE
¢(b(on,Y), b(on, Z), ¢)
Y, Z#(on,Y,Z)
k
#(w,Ng) =  (Ng, 0, — excluded(i)) = ( ¢(b(01,Y),b(01, Z), C)) e
i=1 b(01,Y) Y, Z#(01,Y,Z)
excluded(i) = |{j < i : E;, F; are just-different givei®’, }|. $(b(0n, V), b(0n, Z) c))
b(0n,Y) Y,Z#(0n,Y,Z)
The idea behind the proof is that there is a limited number — d(b(z,Y),b(x, Z), c)
of valuesv in which E can be instantiated inside We X b(@Y) Y,Z24(2,Y.2)

therefore calculate(v) for each of them and exponenti-
ate it by# (v, NE), which is the number of times the value
assignment occurs according t&Vg. This number is cal-

culated by choosing, for eaah, from the N, ,, random that ¢’(c) does not depend on the particular valueaof

variables inRV (E;) assignedy;, minus the ones already _. . . )
. . . ~  since it acts as an index and the summation has the same
taken from previous just-different atoms. Once potentials :
. . structure regardless of its value. We can therefore cdkeula
are expressed in terms of counters, we can group assig

ments onRV ( E) by their countersV, taking into account E\}vmth any arbitrary value in the domain df . We are left

where X is bound and written ag for emphasis. Because
of that, the summation can be solved with regular counting
elimination, yielding a new potential functiafi(c). Note

that there aréVy! of them.
e ¢'(c) = X1 = ¢" (o).
In particular, this means we cannot apply counting elimi- x

nation to parfactors where atoms share logical variables, ¥e call the atoms whose corresponding summations are
strong restriction. invertedinverted atoms
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3.1. Groundings of inverted atoms by distinct q(X,Y):
substitutions must be disjoint

o(p(X.Y)q(Y, Z))
p(X,Y),q(Y,2) XY Z

= ¢(p(Xa Y)q(Y: Z))
p(X,Y)q(Y,Z2) ¥ XZ

Sometimes we cannot apply partial inversion. Consider the
case in which the secorbdatom isb(Z, X ):

pony)ben ) = $(p(X,y)a(y, Z))
¢(b(01,Y),b(Z,01),¢) ... p(X,Y) Y q(y,2) XZ
Y,Z#(01,Y,7) . . . . .
Solving the inner summation provides a function on
¢(b(0n,Y),b(Z,0,),c) N, (x4 Which is different for eaclY’, preventing us from
Y, 7#(0n,Y,7) eliminating all of them at once. Instead, one should invert

This does not yield the same type of factoring, since ever;POthp(X’ ¥’) andq(Y, Z), obtaining

product involves some random variable from each of the

summations. This motivates the following. - o(Xy)aly, 2))

. - . . . . Y p(X,y)a(y,2) XZ
Condition 3.1. Partial inversion of logical variables in a

parfactorg is applicable only if the grounding®V (A 6,) whose sum is counting eliminable.
andRV (A6,) are disjoint, whered, is{a € A, : L C

o 9" Finally, it is important to note that when invertiradj logi-
LV (a)} andf; andé, are any two distinct substitutions of Y P a log

I cal variables of a parfactor, the inner sum will be a propo-
o L oo , "o sitional one that does not involve counters. In this case we
VY, 0" € [Cy 1] 6" # 0" = RV(ALO)NRV(AL") = 0. 5014 not have the problem above, and one can invert only
Such a formula can be decided by using the constrain"€ Of the atoms. After that, the atomis eliminated as in the
propositional case since its logical variables will be bahun
This inversion and then propositional elimination amount
to the inversion elimination of this atom as done by FOVE.

solver, but we omit the details here.

3.2. Uniform Solution Counting Partition (USCP)
Consider the inversion df resulting in the expression 4. The FOVE-P algorithm

o(p(y, Z2)). The FOVE-P algorithm presented in figure 1 is a modifica-
Y p(y,2) Z#y,Z#a tion of FOVE that incorporates partial inversion. Because
partial inversion, combined with a propositional elimina-
tion, is equivalent to FOVE's inversion elimination, this
operation is not present in FOVE-P.

The summation cannot be calculated independently, of

since|RV (p(y, Z))| will depend on whetheY = a. One

needs to consider instead

L FOVE-P works as follows: it selects the next group of
é(p(a, Z))) ( d(p(y, Z)) atoms to be eliminatedy, according to the restrictions im-

p(a.7) Z4a p(y,7) Z2y posed by partial inversion and counting elimination. This

— (1)l = () is done by the procedufND-ELIMINABLE-ATOMS
In selecting eliminable atoms, it is important to consider

by using two inversion eliminations. In general, one needsy|| parfactors involving their grounding. Even parfactors
to consider theiniform solution counting partitioQUSCP)  with distinctatoms fromE need to be considered, if these
of the inverted logical variables. The USCP is a partition ofdistinct atoms still have the same groundings as some of
inverted logical variables substitutions set into subB®s  the eliminable atoms. This is why the algorithm often uses

yield a uniform number of solutions for thlemaininglog- G. andGy, the subsets of parfactos which depend on
ical variables. It can be computed by using the constrain]RV(e) andRV (E), respectively.

solver.

) [[Y #al|

After FE is determined, the algorithdfusesthe parfactors

in Gg, that is, calculates an equivalent single parfagtor
Theng is subjected to as many partial inversions as pos-
sible, possibly reducing the problem to counting or propo-
Itis necessary to always invert all atoms of an inverted log-sitional elimination. IfE is a single atom with all logi-
ical variable, as the following example illustrates. Con-cal variables iry, applying partial elimination will reduce
sider the following valid, but not useful, inversion Bfin the problem to a propositional elimination step, essdmptial

3.3. All atoms with inverted logical variables must be
inverted
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reproducing the inversion elimination operation presant i
FOVE.

FIND-ELIMINABLE-ATOMSeturns a set of atomB that
will include all non-ground atoms i’ g, a necessary con-
dition for counting elimination. The only exception to this
is when it finds a single atomwhich contains all logical

PROCEDURHE-OVE-RG, Q)

G a set of parfactors) C RV (G), G shattered againg).
. IfRV(G) = Q, returnG.

. E + FIND-ELIMINABLE-ATOM$G, Q).

. gr < FUSIONG).

. ¢’ + ELIMINATE(gg, E).

1
2
3
4
5. ReturnFOVE({g'} U G-k, Q).

variables infusion(G.), since this will allow the partial
inversion and propositional elimination combination that
reproduces inversion elimination.

It is worthwhile restating what FOVE-P can and cannot do.
The algorithm can process parfactors that are subject to or]
or more partial eliminations (as per condition 3.1) and then
to counting (or propositional) elimination. It still carnno

PROCEDURHEFIND-ELIMINABLE-ATOMS$G, Q)

. Choose: from A¢ \ Q.

. g «< FUSIONG.)

. IfLV(e) = LV(g) andVe' € A, RV (e') # RV (e)
return{e} (inversion eliminable).

. B+ {e}.

. While E # non-ground atoms aff ¢
E + E U non-ground atoms dfg.

. ReturnE.

deal with cases in which it is not possible to apply partial
inversion enough in order to reduce to parfactors withou
atoms that constrain each other (so that we can apply coun
ing or propositional elimination).

PROCEDUREELIMINATE(g, E)

1. If LV (g) = 0 (propositional case)
return parfacto(y_ ; ¢4(Ag), Ag \ E, T).

2. If ¢’ + PARTIAL-INVERSIOLl, E) suceeds
returng’.

3. ReturnCOUNTINGg, E).

t-

5. Lifted Most Probable Explanation
5.1. Lifted Assignments

In first-order models, assignments might be regular assigr
ments, represented by formulas with equalitylitbed as-

PROCEDUREPARTIAL-INVERSIOWY, FE)

1. L + INVERTIBLHg, E).

2. U «+ USCP(Cy, L) (section 3.2).

3. Return[],; ELIMINATE(gfc, E6c) P2l
wherefc is an arbitrary element 4.

signmentsA lifted assignment is in fact a description that
fits an entiresetof assignments, all of them equally max-
imizing potentials. There araniversallyor existentially
guantified lifted assignments.

Universally quantified lifted assignmentsdeclare that a

PROCEDURHENVERTIBLHg, FE)
1. Ifthereis alargest € LV (g) such that,
forAp ={a€ Ay : L C LV (a)},
V61,02 € [Cyir] RV(AL61) N RV (ALf2) =0
returnL.
2. Fail.

certain assignment is valid for all values of a set of log-
ical variables. Its general form is C' ¢, whereC is a
constraint on the quantified logical variables ani$ a for-

PROCEDURECOUNTINGg, E)
1. If counting elimination ofF valid for g
return(3" g, Nu!T1, ¢0 (v, Ag\B)#*VE), A\ E, T).
< 2. Fail.

mula representing an assignment, of which an example i
V'Y #b p(Y) = a, thatis, in a particular lifted assign-
ment,p(Y’) is equal toa, for all Y.

An example of a universal lifted assignment is the follow-
ing:

PROCEDUREFUSIONG)
1. Ca + N,ec Co-
2. Return parfactof[], . ¢L[CG”/HCQH Ugee 49, Ca)

(fusion is detailed in (de Salvo Braz et al., 2005). Esg
tially, it calculates a parfactor equivalent teetof them).

ben-

VY ¢(X,Y) =v1 Ar(X,Y) = vy
which means that, for some unboud for all values ofY”
we haveg(X,Y) assigned, andr(X,Y) assigneds.

We often havefunctions returning lifted assignments:
(X)) =

VY ¢(X,Y) = f'(p(X)) Ar(X,Y) = f"(q¢(X,Y))
wheref’ is a function from the domain qf( X) to the do-

Notation:

e LV(a): logical variables in objeai.
Dy,: domain of logical variable sdt.
|Y'|: size of domain of logical variabl¥.
g0: parfactor(¢g, Ag6,C40).
C) - constraints projected to a set of logical variables
Gg: subset of parfactor§ which depend oRV (E).
G_g: subset of parfactor& which do not depend o
RV(E).
T: tautology constraint.

main of ¢(X,Y) and f” is function from the domain of

¢(X,Y) to the domain of (X, Y).

Existentially quantified lifted assignmentsdeclare that a
specific number of substitutions make a subformula true
Its general form is{EiZé”l)) L : C] ¢(v), which means that,
for everyv € D, there aren(v) substitutions for logical
variablesL satisfying constrain€ for which ¢(v) holds.

Figure 1.FOVE-P.

An example of a function ONP(X) returning existentially
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quantified lifted assignments is mean for pa-pair potentials. These operations are essen-
B tially two: (a) the product of potentials and (b) the conver-

f'(ﬁp(x)) def Efe(gl\’mxﬂ XY : X £Y]|r(X,Y) = f(v) Sion of potential functions from being defined on assign-
»(0.2() ments to atoms to being defined on counters.

Where# is the function used in Counting elimination. Pa_pair products_ The product of pa_pairs is defined as
follows: Forr ands pa-pairsy x s = (rFsP rA& A sh).

5.2. The mpe operator . . . . .
heop The pa-pair product contributes in forming universally

In the Most Probable Explanation inference problemquantified lifted assignments because universal quantifica
(MPE) we must identify some assignment to random varition is a form of conjunction. Assume thatis a parfac-
ables with maximum potentiahax gy () ®(G). Thisis  tor onp(X),¢(X,Y) with marginals given by? and¢#
very similar t0} "y ) ®(G). In propositional proba-  defining assignments on a previously removéd, ') by
bilistic inference, a common way of solving this problem a functionf. We can invertX, Y and obtain

is to use Variable Elimination, but replacing summations

by maximizations. The maximizing assignment can then mpe ®(g) = mpe <¢§ (p(X),q(X,Y)),

be trivially obtained as a side effect of maximizations, al- 7**¥) 1Y) Xy

though it is not explicitly represented in the expression r(X,Y) = f(p(X),q(X Y)))
above. In lifted MPE, assignments are manipulated in non- ’ R
trivial ways and need to be treated more explicitly. This is— mpe <¢§ (p(X),q(X,Y)),
why we introduce theape operator, a combination ofnax x,y 4(X.Y)
andarg max operators, which allows us to explicitly refer
to maximizing assignments. r(X,Y) = f(p(X), ¢(X, Y))>
For any real functiory and variable;, we define = ( 1(1)1{a¥) ¢§’ (p(X),q(X,Y)),

X,y q(X,

mpe f(g) = (mqf,lX f(d'), ¢ = arg max f(q/))- g(X,Y) = argmax ¢¥ (1) Ar(-) = f(.))
q q’ ‘I(va)
_ /P — ¢ N = f(-

The result ofmpe is a pair of the maximum value ¢f(q) _x y<¢ (p(X)),¢(X,Y) = f1(p(X)) Ar() = £( )>

and the maximizing assignmentgorepresented by a for-

mula with equality. We call such a pajr a potential-  (because the marginal and assigned values depend only on
assignment pajror pa-pair, and its components afé and p(X) and therefore not o, we can raise the potentials to

p® respectively. Lety(q) be a function returning potential- the powerY| and, by the definition of pa-products)
assignment pairs. Then we define

= ()M,
mped(q) = (maxd®(g).q = argmaxd®(¢) A 6*(@),  x (
q q’
VY g(X,Y) = f'(p(X)) Ar() = () = B(g)
that is, if given a function that provides pa-painspe re- _
turns a pair maximizing that potential forwith an assign- ~ for some appropriate parfactgt = (¢4, {p(X)}, Cy).
ment represented by the conjunction of maximizing assigny, general

: ; universally quantified lifted assignments are
ment tog and whatever assignmegt (¢) is.

formed at the point of the algorithm where a parfagjor

has an irrelevant subsét of logical variables so that we
5.3. FOVE-P for MPE have

Once we have thepe operator and parfactors that map to <¢P(Ag0), ¢A(Ag0))
pa-pairs rather than simply potentials, it is straightfairay

to use the FOVE-P algorithm to solve MPE, by simply re-
placing>" by mpe and having an empty query. The use = ((¢P)‘[C“”L”(Ag9)7 VL : Cg\L]QSA(AgG))
of mpe guarantees that maximization is being performed  6€[C|Lv(g)\z]

and that elimination operations produce parfactors return

ing maximizing pa-pairs with assignments to previously5.3.1. GONVERSION TO POTENTIAL FUNCTIONS ON
eliminated variables. COUNTERS

01.€[Cq L] €[Cq LV (g)\L]

However, because the algorithm performs some operatiorid/e now show the conversion of potential functions to func-
on potentials, it is important to define what these operationtions on counters by example and in general. In the fol-
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lowing, mpe is over RV (p(X)), which is the same as first one is a generalization of FOVE to FOVE-P, which is
RV (p(Y)): able to deal with important cases in first-order probalidlist

inference (FOPI) where atoms share logical variables. The
mpe <¢P(p(X),p(Y)):T(X, Y)= f(p(X)ap(Y))) second one is a representation and manipulation of lifted
PO x2v assignments so that FOVE-P can be used to solve the MPE
problem as well. Both are steps towards advanced prob-
abilistic inference algorithms that can take advantage of
compact and expressive representations.

(by performing the counting manipulation)

= mpe GP (v)# (V) . : , .
Np(x) 0EDp(xy.p(v) Many directions remain to be taken: approximate infer-
ST x) ence, queries with non-ground atoms and introduction of

Foen, o, XY 1 X #Y]r(X,)Y) = f(v)) function symbols are among the most important ones.

- - Moreover, FOVE-P does not cover all possible constraint

= mpe (f (Np(x)), £ p(X))> configurations in our language, and it is desirable to either

Noex) generalize it further or to show this is not possible.
= (J{fpax F' (Npix)),
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