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Abstract

It is often convenient to represent probabilis-
tic models in a first-order fashion, using log-
ical atoms such aspartners(X;Y ) as ran-
dom variables parameterized by logical vari-
ables. (de Salvo Braz et al., 2005), follow-
ing (Poole, 2003), give alifted variable elimina-
tion algorithm (FOVE) for computing marginal
probabilities from first-order probabilistic mod-
els (belief assessment, or BA). FOVE is lifted
because it works directly at the first-order level,
eliminating all the instantiations of a set of atoms
in a single step. Previous work could treat only
restricted potential functions. There, atoms’ in-
stantiations cannot constrain each other: predi-
cates can appear at most once, or logical vari-
ables must not interact across atoms. In this
paper, we present two contributions. The first
one is a significantly more general lifted vari-
able elimination algorithm, FOVE-P, that covers
many cases where atoms share logical variables.
The second contribution is to use FOVE-P for
solving the Most Probable Explanation (MPE)
problem, which consists of calculating the most
probable assignment of the random variables in
a model. We introduce the notion oflifted as-
signments, a distribution of values to a set of
random variables rather than to each individual
one. Lifted assignments are cheaper to compute
while being as useful as regular assignments over
that group. Both contributions advance the theo-
retical understanding of lifted probabilistic infer-
ence.
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1. Introduction

Probabilistic models (Pearl, 1988) offer a natural way to
model domains with noise or incomplete information. In
undirected graphical models, one can provide factors, or
potential functions�i, over sets of random variables de-
scribing these facts. When the same dependency applies
across multiple objects of the same type, it is natural to use
parameterized factors, or parfactors, described over para-
meterized random variables. Parameterized random vari-
ables are represented as logical atoms whose parameters
are logical variables, such asretail(C), for whether each
possible companyC is a retailer. Parfactors stand for all
factors obtained from instantiating its logical variables, and
can be annotated by a constraint indicating which instanti-
ations are valid. Consider a domain in which we model
partnerships of companies around a certain product and
whether they are retailers. An example of two parfactors
is�1(partners(P;C1; C2)); C1 6= C2:�2(partners(P;C1; C2); retail(C1); retail(C2)); C1 6= C2:
While more compact and clear than its propositional coun-
terpart, parameterized models still need to be proposition-
alized for solving with a regular probabilistic inference al-
gorithm. Propositionalized models are much larger and do
not contain the original higher-level structure that can po-
tentially be used for faster inference. Consequently, infer-
ence takes time that grows exponentially with domain size.
This has been the approach in much of the work in the
area (Ngo & Haddawy, 1995; Ng & Subrahmanian, 1992;
Jaeger, 1997; Kersting & De Raedt, 2000; Koller & Pfeffer,
1998; Richardson & Domingos, 2004).

(de Salvo Braz et al., 2005), following (Poole, 2003), de-
scribe FOVE (First-Order Variable Elimination), alifted al-
gorithm for calculating marginal probabilities (belief as-
sessment, or BA) from a first-order probabilistic model.
The algorithm islifted in the sense that inference is car-
ried on the first-order level, taking computational advan-
tage of the model’s structure and carrying similar calcula-
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tions across groups of random variables.

FOVE uses two different elimination operations that are re-
stricted in different ways.Inversion eliminationoperates in
time independent from domain size, but can eliminate an
atom only if it contains all logical variables in its parfactor,
and its grounding is disjoint from any other atom’s in that
parfactor.Counting eliminationcan deal with atoms whose
grounding is the same as some other atom in the parfactor,
but logical variables in one atom cannot be constrained by
those of others.

The first contribution of this paper is to present FOVE-P,
a more general algorithm that can solve many cases where
atoms share logical variables. Suppose a model describes
the influence of a company doing business with two other
companies and the occurrence of a conflict, by having a
parfactor�(business(X;Y ); business(X;Z); onflit),
for X 6= Y 6= Z 6= X, where onflit is a 0-arity
predicate indicating the occurrence of any conflict. FOVE
cannot marginalize ononflit, since thebusiness atoms
have the same grounding (preventing inversion elimina-
tion) and share logical variableX (preventing counting
elimination). This can however be solved by FOVE-P
through a new operation calledpartial inversion.

The second contribution of this paper is showing how to use
FOVE-P to obtain a lifted solution for Most Probable Ex-
planation (MPE). MPE is an important probabilistic infer-
ence problem which consists of calculating an assignment
with maximum probability to a model’s random variables.
While the transition from BA to MPE in the propositional
case is straightforward and obtained by replacing sum op-
erations by maximizing operations, in the lifted case one
must deal with two main issues. First, there is now a no-
tion of lifted assignment, that is, an assignment over groups
of indistinguishable random variables that does not specify
assignments on an individual basis, but describes a distribu-
tion of values to the group as a whole. Second, assignments
must now be represented in a more explicit way than in the
propositional case, since their descriptions are manipulated
by the algorithm.

The notion of lifted assignments gives rise to queries on the
number of objects in a domain with certain properties. This
is not something usually done in the propositional case,
and useful in domains in which one deals with large pop-
ulations. In the example above, an instance of MPE with
lifted assignments would be the calculation of the number
of retail companies with maximum probability, given the
domain model.

2. The FOVE Algorithm

This section recalls First-Order Probabilistic Inference
(FOPI) definitions and the FOVE algorithm presented in

(de Salvo Braz et al., 2005).

The FOVE and FOVE-P algorithms are developed under
the framework of undirected graphical models such as
Markov networks (Pearl, 1988). These models are speci-
fied by a set of potential functions (orfactors) defined over
sets of random variables. Following (Poole, 2003), the no-
tion of factor is generalized to that ofparameterizedfac-
tor (or parfactor). A joint probability on the random vari-
ables is defined as being proportional to the product of fac-
tors. A parfactor describes a potential function on a set of
random variables, but the random variables are now repre-
sented by logical atoms, possibly parameterized by logical
variables. The logical variables are typed and each type is
a discrete domain. One can therefore represent a potential
function�(friend(X;Y ); friend(Y;X)); X 6= Y which
stands for all factors instantiated from it by substitutions ofX andY that satisfy the constraintX 6= Y . In general, a
parfactor is a tripleg = (�g; Ag; Cg) of a potential func-
tion, a set of atoms, and a constraint on its logical variables.
The constraints are equational formulas, that is, formulas
where the only predicate is equality, with the unique name
assumption. The algorithm makes use of a constraint solver
for such formulas.

A FOPI probabilistic model is defined by a set of parfactorsG and the associated logical variable domains (the popula-
tion). Because each instantiation of a parfactorg is a factor
in itself, the joint distribution defined byG on its ground
random variables, denotedRV (G), is the product of all in-
stantiations of all parfactors:P (RV (G)) / Yg2G Y�2[Cg ℄�g(Ag�)
where[Cg℄ is the set of substitutions satisfyingCg. We de-
note the second product above as�(g) and the entire right-
hand side as�(G).
2.1. Lifted Belief Assessment

The Lifted Belief Assessment inference problem is that of
calculating the marginal probability on a set of ground ran-
dom variablesQ:P (Q) / XRV (G)nQ�(G)
FOVE assumes thatG is shattered, that is, given any two
atoms in it, their groundings are either identical or dis-
joint. The process of shattering a model is described in
(de Salvo Braz et al., 2005). Note that distinct atoms can
have the same groundings, as it is the case withp(X) andp(Y ) for X;Y with same domain. The algorithm works by
selecting a set of atomsE to be eliminated at each step:XRV (G)nQ Yg2G�(g) = XRV (G)nRV (E)nQ XRV (E) Yg2G�(g)
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(by definingGE the parfactors inG depending onRV (E)
andG:E = G nGE)

= XRV (G)nRV (E)nQ Yg2G:E �(g) XRV (E) Yh2GE �(h)
(by fusion(figure 1), we obtain a single parfactorgE such
that�(GE) = �(gE))
= XRV (G)nRV (E)nQ Yg2G:E �(g) XRV (E)�(gE)
(by using the elimination operations described later, we ob-
taing0 such that�(g0) is equal to the last sum)

= XRV (G)nRV (E)nQ Yg2G:E �(g)�(g0)= XRV (G0)nQ Yg2G0 �(g) (whereG0 = G:E[fg0g);
which reduces our problem to an instance with strictly less
random variables.

However, not all choices ofE are valid. The algorithm
must pickE so that it satisfies the conditions for either of
FOVE’s two elimination operations: inversion elimination
and counting elimination. We now recall them both.

2.1.1. INVERSION ELIMINATION

Inversion elimination requires that there is one atom inE
whose grounding is disjoint from all other atoms ingE and
which contains all its logical variables (the reason for this
is provided below). Soq(X;Y ) can be eliminated from(�; fp(X); q(X;Y )g;>):XRV (q(X;Y ))YXY �(p(X); q(X;Y ))
(let fo1; : : : ; ong be the domain of bothX and Y , and�(i; j) shorthand for�(p(oi); q(oi; oj)))

= Xq(o1;o1) Xq(o1;o2) � � � Xq(on;on)�(1; 1)�(1; 2) : : : �(n; n)
(by observing that�(i; j) depends onq(oi; oj) only)

= Xq(o1;o1)�(1; 1) � � � Xq(on;on)�(n; n)

(by observing that only�(i; j) depends onq(oi; oj))= � Xq(o1;o1)�(1; 1)� : : :� Xq(on;on)�(n; n)�=YXY Xq(X;Y )�(p(X); q(X;Y ))=YXY �0(p(X)) =YX �0(p(X))jY j =YX �00(p(X)):
However one cannot eliminateq(X;Y ) from parfactors
with atoms (p(X;Z); q(X;Y )) or (q(X;Y ); q(Z;W )).
The inverted atom (the one under the sum) needs to con-
tain all logical variables because its expansion would not be
one-to-one with the expansion of the products otherwise.

Note that inversion elimination reduces a sum over all as-
signments to thesetof random variablesRV (q(X;Y )) to
one over the assignments to a single one, and its cost is
independent fromjRV (q(X;Y ))j.
2.1.2. COUNTING ELIMINATION

Counting elimination requires thatE be all atoms with any
logical variables ingE , and that the logical variables in
any two atoms ofE do not constrain each other underCg.
Therefore, it can eliminatep(X) from (p(X); q(Y )) but
not from (p(X); q(Y )) with X 6= Y since the choice ofX limits the choice ofY . In FOVE, cases not covered by
these operations have to be directly calculated.

Before we present the theorem on which counting elimina-
tion is based, some preliminary definitions are necessary.

First, we define the notion of independent atoms given a
constraint. This happens when choosing a substitution for
one atom from the constraint’s solutions does not change
the possible choices of substitutions for the other atom. Let� be any object,LV (�) be the logical variables in�, andCjL be the projection of a constraintC to a set of logical
variablesL. Let �X1 and �X2 be two sets of logical vari-
ables andC a constraint such that�X1 [ �X2 � LV (C).�X1 is independent from�X2 givenC if, for any substitution�2 2 [Cj �X2 ℄, Cj �X1 , (C�2)j �X1 . �X1 and �X2 areindepen-
dent givenC if �X1 is independent from�X2 givenC and
vice-versa. Twoatomsp1( �X1) andp2( �X2) are indepen-
dent givenC if �X1 and �X2 are independent givenC.

The second notion is that ofjust-differentatoms, a notion
present only implicitly in (de Salvo Braz et al., 2005). This
means that choosing a substitution for the first atom re-
stricts the choices for the second one in exactly one substi-
tution. This is defined only for atoms with the same predi-
cate. Two atomsp( �X1) andp( �X2) arejust-different givenC if Cj �X1[ �X2 , Cj �X1 ^ Cj �X2 ^ �X1 6= �X2. This says that
the set of joint satisfying assignments to�X1 and �X2 must
be no more, and no less, than the set of satisfying assign-



MPE and Partial Inversion in Lifted Probabilistic Variable Elimination

ments to their separate requirements plus the restriction of
them being distinct. UsingCj �X1 andCj �X2 state that the
joint constraint does not remove any solution from�X1 or�X2 other than the ones in which they coincide.

Finally, we define multinomial counters. Leta be an
atom (with an associated constraint system) with domainDa. Then themultinomial counter of atoma, denoted~Na, is a vector where~Na;j indicates how many ground-
ings ofa are assigned thej-th value inDa. The multino-
mial coefficient ~Na! is defined as( ~Na;1; : : : ; ~Na;jDaj)! =( ~Na;1+���+ ~Na;jDaj)!~Na;1!::: ~Na;jDaj! .

The set of multinomial counters for asetof atomsA is de-
noted ~NA, and the product

Qa2A ~Na! of their multinomial

coefficients is denoted~NA!. Multinomial counters are a
generalization of binomials (as used in, say, the Bernoulli
distribution) and their function here is to indicate how many
distinct assignments present the same distribution of values
through their random variables.

Theorem 1. Let g be a shattered parfactor andE =fE1; : : : ; Ekg be a subset ofAg such thatRV (E) is dis-
joint from RV (Ag n E), A0 = Ag n E are all ground, and
where each pair of atoms of different predicates are inde-
pendent givenCg and each pair of atoms of same predicate
are just-different givenCg. ThenXRV (E)�(g) = XRV (E) Y�2�g �(Ag�)=X~NE ~NE ! Yv2DE �(v;A0)#(v; ~NE)
#(v; ~NE) = kYi=1� ~NEi;vi � exluded(i)�exluded(i) = jfj < i : Ei; Ej are just-different givenCggj:
The idea behind the proof is that there is a limited number
of valuesv in which E can be instantiated inside�. We
therefore calculate�(v) for each of them and exponenti-
ate it by#(v; ~NE), which is the number of times the value
assignmentv occurs according to~NE . This number is cal-
culated by choosing, for eachvi, from the ~NEi;vi random
variables inRV (Ei) assignedvi, minus the ones already
taken from previous just-different atoms. Once potentials
are expressed in terms of counters, we can group assign-
ments onRV (E) by their counters~NE , taking into account
that there are~NE ! of them.

In particular, this means we cannot apply counting elimi-
nation to parfactors where atoms share logical variables, a
strong restriction.

3. Partial Inversion

In (de Salvo Braz et al., 2005), counting elimination was re-
stricted to cases when eliminated atoms were independent
from each other, or at least just-different. This prevents its
application to some important cases. Suppose a parfactor
establishes the potential for conflict () when a company
does business (b) with more than one other company:Xb(X;Y ) Y6=(X;Y;Z)�(b(X;Y ); b(X;Z); )
In the above,6= (X;Y; Z) stands for pairwise difference
betweenX;Y; Z and theRV (b(X;Y )) under the summa-
tion is written asb(X;Y ) for simplicity. Note that we
could have usedRV (b(X;Z)) under the sum just as well.
Then the shared logical variableX between atoms prevents
counting elimination from being used. Inversion elimina-
tion is not possible either, because no atom contains all log-
ical variables in the parfactor.

Partial inversionis a technique in which a sum-product in-
version onsomeof the logical variables is performed on
the parfactor, binding them. This binding is in many cases
enough to reduce the problem to a solvable one. In our ex-
ample, assuming the domain iso1; : : : ; on, we can invertX
by rewriting the above asXb(o1;Y ) � � � Xb(on;Y )YY;Z 6=(o1;Y;Z) �(b(o1; Y ); b(o1; Z); ) : : :YY;Z 6=(on;Y;Z)�(b(on; Y ); b(on; Z); )= � Xb(o1;Y ) YY;Z 6=(o1;Y;Z)�(b(o1; Y ); b(o1; Z); )� : : :� Xb(on;Y ) YY;Z 6=(on;Y;Z)�(b(on; Y ); b(on; Z); )�=YX Xb(x;Y ) YY;Z 6=(x;Y;Z) �(b(x; Y ); b(x; Z); )
whereX is bound and written asx for emphasis. Because
of that, the summation can be solved with regular counting
elimination, yielding a new potential function�0(). Note
that �0() does not depend on the particular value ofx,
since it acts as an index and the summation has the same
structure regardless of its value. We can therefore calculate
it with any arbitrary value in the domain ofX. We are left
with YX �0() = �0jXj = �00():
We call the atoms whose corresponding summations are
invertedinverted atoms.
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3.1. Groundings of inverted atoms by distinct
substitutions must be disjoint

Sometimes we cannot apply partial inversion. Consider the
case in which the secondb atom isb(Z;X):Xb(o1;Y ) � � � Xb(on;Y )YY;Z 6=(o1;Y;Z)�(b(o1; Y ); b(Z; o1); ) : : :YY;Z 6=(on;Y;Z)�(b(on; Y ); b(Z; on); )
This does not yield the same type of factoring, since every
product involves some random variable from each of the
summations. This motivates the following.

Condition 3.1. Partial inversion of logical variablesL in a
parfactorg is applicable only if the groundingsRV (AL�1)
andRV (AL�2) are disjoint, whereAL is fa 2 Ag : L �LV (a)g and�1 and�2 are any two distinct substitutions ofL:8�0; �00 2 [CgjL℄ �0 6= �00 ) RV (AL�0)\RV (AL�00) = ;:
Such a formula can be decided by using the constraint
solver, but we omit the details here.

3.2. Uniform Solution Counting Partition (USCP)

Consider the inversion ofY resulting in the expressionYY Xp(y;Z) YZ 6=y;Z 6=a �(p(y; Z)):
The summation cannot be calculated independently ofy,
sincejRV (p(y; Z))j will depend on whetherY = a. One
needs to consider instead� Xp(a;Z) YZ 6=a�(p(a; Z))�1� Xp(y;Z) YZ 6=y �(p(y; Z))�j[Y 6=a℄j
= �0()1�00()j[Y 6=a℄j = �000()

by using two inversion eliminations. In general, one needs
to consider theuniform solution counting partition(USCP)
of the inverted logical variables. The USCP is a partition of
inverted logical variables substitutions set into subsetsthat
yield a uniform number of solutions for theremaininglog-
ical variables. It can be computed by using the constraint
solver.

3.3. All atoms with inverted logical variables must be
inverted

It is necessary to always invert all atoms of an inverted log-
ical variable, as the following example illustrates. Con-
sider the following valid, but not useful, inversion ofY in

q(X;Y ): Xp(X;Y );q(Y;Z) YXY Z �(p(X;Y )q(Y; Z))= Xp(X;Y ) Xq(Y;Z)YY YXZ �(p(X;Y )q(Y; Z))= Xp(X;Y )YY Xq(y;Z)YXZ �(p(X; y)q(y; Z))
Solving the inner summation provides a function on~Np(X;y) which is different for eachY , preventing us from
eliminating all of them at once. Instead, one should invert
bothp(X;Y ) andq(Y; Z), obtaining=YY Xp(X;y) Xq(y;Z)YXZ �(p(X; y)q(y; Z))
whose sum is counting eliminable.

Finally, it is important to note that when invertingall logi-
cal variables of a parfactor, the inner sum will be a propo-
sitional one that does not involve counters. In this case we
would not have the problem above, and one can invert only
one of the atoms. After that, the atom is eliminated as in the
propositional case since its logical variables will be bound.
This inversion and then propositional elimination amount
to the inversion elimination of this atom as done by FOVE.

4. The FOVE-P algorithm

The FOVE-P algorithm presented in figure 1 is a modifica-
tion of FOVE that incorporates partial inversion. Because
partial inversion, combined with a propositional elimina-
tion, is equivalent to FOVE’s inversion elimination, this
operation is not present in FOVE-P.

FOVE-P works as follows: it selects the next group of
atoms to be eliminated,E, according to the restrictions im-
posed by partial inversion and counting elimination. This
is done by the procedureFIND-ELIMINABLE-ATOMS.

In selecting eliminable atoms, it is important to consider
all parfactors involving their grounding. Even parfactors
with distinctatoms fromE need to be considered, if these
distinct atoms still have the same groundings as some of
the eliminable atoms. This is why the algorithm often usesGe andGE , the subsets of parfactorsG which depend onRV (e) andRV (E), respectively.

After E is determined, the algorithmfusesthe parfactors
in GE , that is, calculates an equivalent single parfactorg.
Theng is subjected to as many partial inversions as pos-
sible, possibly reducing the problem to counting or propo-
sitional elimination. IfE is a single atom with all logi-
cal variables ing, applying partial elimination will reduce
the problem to a propositional elimination step, essentially
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reproducing the inversion elimination operation present in
FOVE.

FIND-ELIMINABLE-ATOMSreturns a set of atomsE that
will include all non-ground atoms inGE , a necessary con-
dition for counting elimination. The only exception to this
is when it finds a single atome which contains all logical
variables infusion(Ge), since this will allow the partial
inversion and propositional elimination combination that
reproduces inversion elimination.

It is worthwhile restating what FOVE-P can and cannot do.
The algorithm can process parfactors that are subject to one
or more partial eliminations (as per condition 3.1) and then
to counting (or propositional) elimination. It still cannot
deal with cases in which it is not possible to apply partial
inversion enough in order to reduce to parfactors without
atoms that constrain each other (so that we can apply count-
ing or propositional elimination).

5. Lifted Most Probable Explanation

5.1. Lifted Assignments

In first-order models, assignments might be regular assign-
ments, represented by formulas with equality, orlifted as-
signments. A lifted assignment is in fact a description that
fits an entiresetof assignments, all of them equally max-
imizing potentials. There areuniversallyor existentially
quantified lifted assignments.

Universally quantified lifted assignmentsdeclare that a
certain assignment is valid for all values of a set of log-
ical variables. Its general form is8 C ', whereC is a
constraint on the quantified logical variables and' is a for-
mula representing an assignment, of which an example is8 Y 6= b p(Y ) = a, that is, in a particular lifted assign-
ment,p(Y ) is equal toa, for all Y .

An example of a universal lifted assignment is the follow-
ing: 8Y q(X;Y ) = v1 ^ r(X;Y ) = v2
which means that, for some unboundX, for all values ofY
we haveq(X;Y ) assignedv1 andr(X;Y ) assignedv2.

We often havefunctions returning lifted assignments:f(p(X)) def=8Y q(X;Y ) = f 0(p(X)) ^ r(X;Y ) = f 00(q(X;Y ))
wheref 0 is a function from the domain ofp(X) to the do-
main of q(X;Y ) and f 00 is function from the domain ofq(X;Y ) to the domain ofr(X;Y ).
Existentially quantified lifted assignmentsdeclare that a
specific number of substitutions make a subformula true.
Its general form is[9n(v)v2D L : C℄ '(v), which means that,
for everyv 2 D, there aren(v) substitutions for logical
variablesL satisfying constraintC for which'(v) holds.

PROCEDUREFOVE-P(G, Q)G a set of parfactors,Q � RV (G), G shattered againstQ.
1. If RV (G) = Q, returnG.
2. E  FIND-ELIMINABLE-ATOMS(G;Q).
3. gE  FUSION(GE).
4. g0  ELIMINATE(gE ; E).
5. ReturnFOVE(fg0g [G:E ; Q).

PROCEDUREFIND-ELIMINABLE-ATOMS(G, Q)
1. Choosee fromAG nQ.
2. g  FUSION(Ge)
3. If LV (e) = LV (g) and8e0 2 Ag RV (e0) 6= RV (e)

returnfeg (inversion eliminable).
4. E  feg.
5. WhileE 6= non-ground atoms ofGEE  E [ non-ground atoms ofGE .
6. ReturnE.

PROCEDUREELIMINATE(g, E)
1. If LV (g) = ; (propositional case)

return parfactor(PE �g(Ag); Ag nE;>).
2. If g0  PARTIAL-INVERSION(g;E) suceeds

returng0.
3. ReturnCOUNTING(g; E).

PROCEDUREPARTIAL-INVERSION(g, E)
1. L INVERTIBLE(g;E).
2. U  USCP(Cg; L) (section 3.2).
3. Return

QC2U ELIMINATE(g�C ; E�C)jDLj,
where�C is an arbitrary element of[C℄.

PROCEDUREINVERTIBLE(g, E)
1. If there is a largestL 2 LV (g) such that,

for AL = fa 2 Ag : L � LV (a)g,8�1; �2 2 [CgjL℄ RV (AL�1) \ RV (AL�2) = ;
returnL.

2. Fail.

PROCEDURECOUNTING(g, E)
1. If counting elimination ofE valid for g

return(P ~NE ~NE !Qv �g(v;AgnE)#(v; ~NE); AgnE;>).
2. Fail.

PROCEDUREFUSION(G)
1. CG  Vg2G Cg.

2. Return parfactor(Qg2G �j[CG℄j=j[Cg℄jg ;Sg2GAg; CG)
(fusion is detailed in (de Salvo Braz et al., 2005). Essen-
tially, it calculates a parfactor equivalent to asetof them).

Notation:� LV (�): logical variables in object�.� DL: domain of logical variable setL.� jY j: size of domain of logical variableY .� g�: parfactor(�g; Ag�;Cg�).� CjL: constraints projected to a set of logical variablesL.� GE : subset of parfactorsG which depend onRV (E).� G:E : subset of parfactorsG which do not depend onRV (E).� >: tautology constraint.

Figure 1.FOVE-P.

An example of a function on~Np(X) returning existentially
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quantified lifted assignments isf 0( ~Np(X)) def= [9#(v; ~Np(X))v2Dp(X);p(Y )XY : X 6= Y ℄ r(X;Y ) = f(v)
where# is the function used in counting elimination.

5.2. The mpe operator

In the Most Probable Explanation inference problem
(MPE) we must identify some assignment to random vari-
ables with maximum potentialmaxRV (G)�(G). This is
very similar to

PRV (G)�(G). In propositional proba-
bilistic inference, a common way of solving this problem
is to use Variable Elimination, but replacing summations
by maximizations. The maximizing assignment can then
be trivially obtained as a side effect of maximizations, al-
though it is not explicitly represented in the expression
above. In lifted MPE, assignments are manipulated in non-
trivial ways and need to be treated more explicitly. This is
why we introduce thempe operator, a combination ofmax
andargmax operators, which allows us to explicitly refer
to maximizing assignments.

For any real functionf and variableq, we definempeq f(q) = �maxq0 f(q0); q = argmaxq0 f(q0)�:
The result ofmpe is a pair of the maximum value off(q)
and the maximizing assignment toq, represented by a for-
mula with equality. We call such a pairp a potential-
assignment pair, or pa-pair, and its components arepP andpA respectively. Let�(q) be a function returning potential-
assignment pairs. Then we definempeq �(q) = �maxq0 �P(q); q = argmaxq0 �P(q0)^�A(q)�;
that is, if given a function that provides pa-pairs,mpe re-
turns a pair maximizing that potential forq, with an assign-
ment represented by the conjunction of maximizing assign-
ment toq and whatever assignmentgA(q) is.

5.3. FOVE-P for MPE

Once we have thempe operator and parfactors that map to
pa-pairs rather than simply potentials, it is straightforward
to use the FOVE-P algorithm to solve MPE, by simply re-
placing

P
by mpe and having an empty query. The use

of mpe guarantees that maximization is being performed
and that elimination operations produce parfactors return-
ing maximizing pa-pairs with assignments to previously
eliminated variables.

However, because the algorithm performs some operations
on potentials, it is important to define what these operations

mean for pa-pair potentials. These operations are essen-
tially two: (a) the product of potentials and (b) the conver-
sion of potential functions from being defined on assign-
ments to atoms to being defined on counters.

Pa-pair products. The product of pa-pairs is defined as
follows: Forr ands pa-pairs,r � s = (rPsP; rA ^ sA).
The pa-pair product contributes in forming universally
quantified lifted assignments because universal quantifica-
tion is a form of conjunction. Assume thatg is a parfac-
tor onp(X); q(X;Y ) with marginals given by�P and�A
defining assignments on a previously removedr(X;Y ) by
a functionf . We can invertX;Y and obtainmpeq(X;Y )�(g) = mpeq(X;Y )YX;Y��Pg (p(X); q(X;Y ));r(X;Y ) = f(p(X); q(X;Y ))�=YX;Y mpeq(X;Y )��Pg (p(X); q(X;Y ));r(X;Y ) = f(p(X); q(X;Y ))�=YX;Y� maxq(X;Y )�Pg (p(X); q(X;Y ));q(X;Y ) = argmaxq(X;Y ) �Pg (�) ^ r(�) = f(�)�=YX;Y��0P(p(X)); q(X;Y ) = f 0(p(X)) ^ r(�) = f(�)�
(because the marginal and assigned values depend only onp(X) and therefore not onY , we can raise the potentials to
the powerjY j and, by the definition of pa-products)=YX ��0P(p(X))jY j;8Y q(X;Y ) = f 0(p(X)) ^ r(�) = f(�)� = �(g0)
for some appropriate parfactorg0 = (�g0 ; fp(X)g; Cg0).
In general, universally quantified lifted assignments are
formed at the point of the algorithm where a parfactorg
has an irrelevant subsetL of logical variables so that we
haveY�L2[CgjL℄ Y�2[CgjLV (g)nL℄��P(Ag�); �A(Ag�)�= Y�2[CjLV (g)nL℄�(�P)j[CgjL℄j(Ag�); [8L : CgjL℄�A(Ag�)�
5.3.1. CONVERSION TO POTENTIAL FUNCTIONS ON

COUNTERS.

We now show the conversion of potential functions to func-
tions on counters by example and in general. In the fol-
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lowing, mpe is over RV (p(X)), which is the same asRV (p(Y )):mpep(X) YX 6=Y��P(p(X); p(Y )); r(X;Y ) = f(p(X); p(Y ))�
(by performing the counting manipulation)= mpe~Np(X)� Yv2Dp(X);p(Y ) �P(v)#(v; ~Np(X));

[9#(v; ~Np(X))v2Dp(X);p(Y )XY : X 6= Y ℄ r(X;Y ) = f(v)�= mpe~Np(X)�f 0( ~Np(X)); f 00( ~Np(X))�= �max~Np(X) f 0( ~Np(X));~Np(X) = argmax~N 0p(X) f 0( ~N 0p(X)) ^ f 00( ~Np(X))�= ��0P(); �0A())� = �(g0)
whereg0 = (�0; ;;>) is a constant parfactor returning the
maximum potential and the lifted assignment formed by
the distribution of values onp(X) (represented by~Np(X))
maximizing f 0, and, for eachv 2 Dp(X);p(Y ), there are#(v; ~Np(X)) pairs (X;Y ) satisfyingX 6= Y such thatr(X;Y ) is assignedf 00(v).
In general, existentially quantified lifted assignments are
formed as follows:Q�2[Cg℄��Pg (Ag�); �Ag (Ag�)�= �Qv2DAg �Pg (v)#(v; ~NAg ); 9#(v; ~NAg )v2DAg �Ag (v)�.

6. Example

We go back to the model presented in the introduction:�1(partners(P;C1; C2)); C1 6= C2:�2(partners(P;C1; C2); retail(C1); retail(C2)); C1 6= C2
where�1 and �2 are parfactors with appropriate poten-
tial functions for the desired dependencies.�1 performs
the role of a “prior” (although such a notion is not pre-
cise in an undirected model as this). If there are 15 com-
panies in the domain, our implementation (available at
http://l2r.cs.uiuc.edu/˜cogcomp/ ) produces
a lifted assignment that can be read as
“for all products, there are 8 retail companies and 7 non-
retail companies, and 56 pairs of companies are partners
and the rest is not.”

7. Conclusion

This paper makes two contributions towards a greater theo-
retical understanding of lifted probabilistic inference.The

first one is a generalization of FOVE to FOVE-P, which is
able to deal with important cases in first-order probabilistic
inference (FOPI) where atoms share logical variables. The
second one is a representation and manipulation of lifted
assignments so that FOVE-P can be used to solve the MPE
problem as well. Both are steps towards advanced prob-
abilistic inference algorithms that can take advantage of
compact and expressive representations.

Many directions remain to be taken: approximate infer-
ence, queries with non-ground atoms and introduction of
function symbols are among the most important ones.
Moreover, FOVE-P does not cover all possible constraint
configurations in our language, and it is desirable to either
generalize it further or to show this is not possible.
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