
First Order Decision Diagrams for Relational MDPs

Saket Joshi sjoshi01@cs.tufts.edu

Roni Khardon roni@cs.tufts.edu

Chenggang Wang cwan@cs.tufts.edu

Department of Computer Science, Tufts University, 161 College Avenue, Medford, MA 02155, USA

Abstract

Dynamic programming algorithms provide a
basic tool identifying optimal solutions in
Markov Decision Processes (MDP). The pa-
per develops a representation for decision di-
agrams suitable for describing value func-
tions, transition probabilities, and domain
dynamics of First Order or Relational MDPs
(FOMDP). By developing appropriate opera-
tions for such diagrams the paper shows how
value iteration can be performed compactly
for such problems. This improves on previ-
ous approaches since the representation com-
bines compact form with efficient operations
and manipulation. The work also raises in-
teresting issues on suitability of different rep-
resentations to different FOMDPs tasks.

1. Introduction

In the past years there has been an increased interest
in developing relational or first-order MDPs. Some ex-
amples include symbolic dynamic programming (SDP)
(Boutilier et al., 2001), the relational Bellman algo-
rithm (ReBel) (Kersting et al., 2004), approximate lin-
ear programming for RMDPs and FOMDPs (Guestrin
et al., 2003; Sanner & Boutilier, 2005), approximate
policy iteration (Fern et al., 2003), and inductive pol-
icy selection using first-order regression (Gretton &
Thiebaux, 2004).

Among these, only SDP and ReBel are exact solution
methods. To our knowledge there is no working imple-
mentation of SDP because it is hard to keep the state
formulas consistent and of manageable size in the con-
text of situation calculus. Compared with SDP, ReBel
provides a more practical solution. ReBel uses sim-

Presented at the ICML Workshop on Open Problems
in Statistical Relational Learning, Pittsburgh, PA, 2006.
Copyright 2006 by the author(s)/owner(s).

pler language (a probabilistic STRIPS-like language)
to represent RMDPs, so that reasoning over formulas
is easier to perform.

Inspired by the successful application of Algebraic
Decision Diagrams (ADD) (Bryant, 1986; McMillan,
1993; Bahar et al., 1993) in solving propositionally
factored MDPs (Hoey et al., 1999; St-Aubin et al.,
2000) we lift propositional ADDs to handle relational
structure and use them in the solution of FOMDPs.
The intuition behind this idea is that ADD representa-
tion allows information sharing, e.g., sharing between
state partitions. If there is a sufficient regularity in the
model, ADDs can be very compact, allowing problems
to be represented and solved efficiently.

First order decision trees and even decision diagrams
have already been considered in the literature (Bloc-
keel & De Raedt, 1998; Groote & Tveretina, 2003)
and several semantics for such diagrams are possible.
In particular Groote and Tveretina (2003) provide a
notation for first order BDDs that can capture formu-
las in Skolemized conjunctive normal form and then
provide a theorem proving algorithm based on this
representation. In this paper we adapt and extend
their approach to handle first order MDPs. In par-
ticular, we extend the definitions to handle existential
quantification and numerical leaves through the use
of an aggregation function. This allows us to capture
value functions using algebraic diagrams in a natural
way. We also provide additional reduction transforma-
tions for algebraic diagrams that help keep their size
small, and allow the use of background knowledge in
reductions. We then develop appropriate representa-
tion and algorithms showing how value iteration can
be performed using the decision diagrams.

It is useful to compare our solutions to the proposi-
tional ones. The main difficulty in lifting the ideas
from the propositional case (Hoey et al., 1999; St-
Aubin et al., 2000) is that in relational domains the
transition function specifies a set of schemas for con-
ditional probabilities. The propositional solution uses

First Order Decision Diagrams for Relational MDPs

the concrete conditional probability to calculate the
regression function. But this is not possible with
schemas. One way around this problem is to first
ground the domain and problem at hand and only then
perform the reasoning (see for example (Sanghai et al.,
2005)). However this does not allow for solutions ab-
stracting over domains and problems. Like SDP and
ReBel our constructions do perform general reasoning
and they do so by using decision diagrams.

2. Markov decision processes

We assume familiarity with standard notions of MDPs
and value iteration (see for example (Bellman, 1957;
Puterman, 1994)). In the following we introduce some
of the notions and our notation.

Markov Decision Processes (MDPs) are mathemati-
cal models of sequential optimization problems with
stochastic actions. A MDP can be characterized by
a state space S, an action space A, a state transition
function Pr(sj |si, a) denoting the probability of tran-
sition to state sj given state si and action a, and an im-
mediate reward function r(s), specifying the immedi-
ate utility of being in state s. A solution to an MDP is
an optimal policy that maximizes expected discounted
total reward as defined by the Bellman equation. The
value iteration algorithm uses the Bellman equation to
iteratively refine an estimate of the value function:

Vn+1(s) = maxa∈A[r(s) + γ
∑

s′∈S Pr(s′|s, a)Vn(s
′)]

where Vn(s) represents our current estimate of the
value function and Vn+1(s) is the next estimate.

The main observation used by Hoey et al. (1999) is
that if we can represent each of r(s), Pr(s′|s, a), and
Vk(s) compactly using an algebraic decision diagram
then value iteration can be done directly using these
representations, avoiding the need to enumerate the
state space which is implicit in the equation above.

Taking the next step, the SDP approach (Boutilier
et al., 2001) was developed in the context of the situa-
tion calculus. One of the useful restrictions introduced
in this work is that stochastic actions must be specified
as a non-deterministic choice among deterministic al-
ternatives. In this way one can separate the regression
over action effects, which is now deterministic, from
the probabilistic choice of action. On each regression
step during value iteration, the value of a stochastic
action A(~x) parameterized with free variables ~x is de-
termined in the following manner:

QV (A(~x), s) = rCase(s)⊕
γ[⊕jpCase(nj(~x), s)⊗regr(vCase(do(nj(~x), s)))]

where rCase(s) and vCase(s) denote reward and value
functions in the compact “case notation” of Boutilier
et al. (2001), nj(~x) denotes the possible outcomes of
the action A(~x), and pCase(nj(~x), s) the choice prob-
abilities for nj(~x).

After the regression, we need to maximize over the
action parameters of each Q-function to get the maxi-
mum value that could be achieved by using an instance
of this action. In SDP, this is done by adding the
negation of higher value partitions into the description
of lower value partitions, leading to complex formulas
and reasoning. Finally, to get the next value function
we maximize over the choice of action schema.

The solution of ReBel (Kersting et al., 2004) follows
the same outline but uses a simpler logical language,
a probabilistic STRIPS-like language, for representing
FOMDPs. More importantly the paper uses a decision
list (Rivest, 1987) style representation for value func-
tions and policies. The decision list gives us an implicit
maximization operator since rules higher on the list
are evaluated first. As a result the object maximiza-
tion step is very simple in ReBel. Each state partition
is represented implicitly by the negation of all rules
above it, and explicitly by the conjunction in the rule.
On the other hand regression in ReBel requires that
one enumerate all possible matches between a subset
of a conjunctive goal (or state partition) and action
effects and reason about each of these separately.

3. First-order Decision Diagrams

An Algebraic Decision Diagram is a labeled directed
acyclic graph where non-leaf nodes are labeled with
propositional variables, each non-leaf node has ex-
actly two children corresponding to true and false

branches, and leaves are labeled with numerical values.
Ordered decision diagrams specify a fixed order on
propositions and require that node labels respect this
order on every path in the diagram. In this case ev-
ery function has a unique canonical representation and
diagrams have efficient manipulation algorithms, lead-
ing to successful applications (Bryant, 1986; McMillan,
1993; Bahar et al., 1993).

There are various ways to generalize ADDs to capture
relational structure. One could use closed or open for-
mulas in the nodes, and in the latter case we must
interpret the quantification over the variables. We fo-
cus on the following syntactic definition which does
not have any explicit quantifiers.

Definition of First Order Decision Diagrams
(1) We assume a signature with a fixed set of predi-
cates and constant symbols, and an enumerable set of

First Order Decision Diagrams for Relational MDPs

p (x)
 q (x)

h (y)
 1

0

 1

0

Figure 1. A simple FODD.

variables. We also allow to use an equality between
any pair of terms (constants or variables).
(2) A First Order Decision Diagram (FODD) is a la-
beled directed acyclic graph, where each non-leaf node
has exactly two children. The outgoing edges are
marked with values true and false.
(3) Each non-leaf node is labeled with: an atom
P (t1, . . . , tn) or an equality t1 = t2 where each ti is
a variable or a constant.
(4) Leaves are labeled with numerical values.

Figure 1 shows a FODD with binary leaves. Left going
edges represent true branches. To simplify diagrams
in the paper we draw multiple copies of the leaves 0
and 1 but they represent the same node in the FODD.

The semantics of first order formulas are given rela-
tive to interpretations. An interpretation has a do-
main of elements, a mapping of constants to domain
elements, and for each predicate a relation over the
domain elements which specifies when the predicate
is true. There is more than one way to define the
meaning of FODD B and on interpretation I. In the
following we discuss two possibilities.

Semantics based on a single path: A semantics
for decision trees is given by Blockeel and De Raedt
(1998) that can be adapted to FODDs. The semantics
define a unique path that is followed when travers-
ing B relative to I. All variables are existential and
a node is evaluated relative to the path leading to it.
For example, if we evaluate the diagram in Figure 1 on
the interpretation with domain {1, 2, 3} and relations
{p(1), q(2), h(3)} then we follow the true branch at
the root since ∃x, p(x) is satisfied, but we follow the
false branch at q(x) since ∃x, p(x)∧q(x) is not satis-
fied. Since the leaf is labeled with 0 we say that B does
not satisfies I. This is an attractive approach, since it
builds mutually exclusive partitions over states, and
various FODD operations can be developed for it.
However, for reasons we discuss later this semantics
is not so well suited to value iteration, and it is there-
fore not used in the paper.

Semantics based on a multiple paths: Following
Groote and Tveretina (2003) we define the semantics
first relative to a variable valuation ζ. Given a FODD
B over variables ~x and an interpretation I, a valuation

ζ maps each variable in ~x to a domain element in I.
Once this is done, each node predicate evaluates either
to true or false and we can traverse a single path to
a leaf. The value of this leaf is denoted by MAPB(I, ζ).

We next define MAPB(I) = aggregateζ{MAPB(I, ζ)}
for some aggregation function. That is, we con-
sider all possible valuations ζ, for each we calculate
MAPB(I, ζ) and then we aggregate over all these val-
ues. In (Groote & Tveretina, 2003) leaf labels are
in {0, 1} and variables are universally quantified; this
is easily captured by using minimum as the aggrega-
tion function. In this paper we use maximum as the
aggregation function. This corresponds to existential
quantification in the binary case, and gives useful max-
imization for value functions in the general case. We
therefore define:

MAPB(I) = max
ζ
{MAPB(I, ζ)}

Consider evaluating the diagram in Figure 1 on the
interpretation with domain {1, 2, 3} and relations
{p(1), q(2), h(3)}. The valuation {x/2, y/3} leads to
a leaf with value 1 so the maximum is 1 and we say
that I satisfies B.

We define node formulas (NF) and edge formulas (EF)
recursively as follows. For a node n labeled l(n) with
incoming edges e1, . . . , ek, the node formula NF(n) =
(∨iEF(ei)). Denote the true branch of a node n by
n↓t and the false branch by n↓f . The edge formula
for the true outgoing edge of n is EF(n↓t) = NF(n)∧
l(n). The edge formula for the false outgoing edge of
n is EF(n↓f) = NF(n)∧¬l(n). These formulas, where
all variables are existentially quantified, capture the
conditions under which a node or edge are reached.

Basic Reduction of FODDs: Groote and
Tveretina (2003) define several operators that reduce
a digram into “normal form”. A total order over open
predicates (node labels) is assumed. We describe these
operators briefly and give their main properties.

(R1) Neglect operator: if both children of a node p
in the FODD lead to the same node q then we remove
p and link all parents of p to q directly. (R2) Join
operator: if two nodes p, q have the same label and
point to the same 2 children then we can join p and
q (remove q and link q’s parents to p). (R3) Merge
operator: if a node and its child have the same label
then the parent can point directly to the grandchild.
(R4) Sort operator: If a node p is a parent of q but
the label ordering is violated (l(p) > l(q)) then we can
reorder the nodes locally using 2 copies of p and q such
that labels of the nodes do not violate the ordering.

Define a FODD to be reduced if none of the 4 operators

First Order Decision Diagrams for Relational MDPs

p (x)
 p (y)

 1
 0

1

B1 B2

1

p (x, y)
 p (y, z)

 1

 0

0

p (x, y)
 p (z, x)

 1

 0

0

Figure 2. Examples illustrating weakness of normal form.

can be applied. We have the following:

Theorem 1 (Groote & Tveretina, 2003)
(1) Let O ∈ {Neglect, Join, Merge, Sort} be an oper-
ator and O(B) the result of applying O to FODD B,
then for any ζ, MAPB(I, ζ) = MAPO(B)(I, ζ)
(2) if B1, B2 are reduced and satisfy ∀ζ, MAPB1

(I, ζ)
= MAPB2

(I, ζ) then they are identical.

Property (1) gives soundness, and property (2) shows
that reducing a FODD gives a normal form. However,
this only holds if the maps are identical for every ζ
and this condition is stronger than normal equivalence.
Figure 2 shows two pairs of reduced FODDs such
that MAPB1

(I) = MAPB2
(I) but ∃ζ,MAPB1

(I, ζ) 6=
MAPB2

(I, ζ). In this case although the maps are
the same the FODDs are not reduced to the same
form. This weak normal form suffices for Groote and
Tveretina (2003) who use it to provide a theorem
prover for first order logic.

Combining FODDs: Given two algebraic diagrams
we may need to add the corresponding functions, take
the maximum or use any other binary operation op

over the values represented by the functions. Here we
adopt the solution from the propositional case (Bryant,
1986) in the form of the procedure Apply(p,q,op)
where p and q are the roots of two diagrams. This
procedure chooses a new root label (the lower among
labels of p, q) and recursively combines the correspond-
ing sub-diagrams, according to the relation between
the two labels (<, =, or >). In order to make sure the
result is reduced in the propositional sense one can
use dynamic programming to avoid generating nodes
for which either neglect or join operators ((R1) and
(R2) above) would be applicable.

Additional Reduction Operators: In our context,
especially for algebraic FODDs we may want to reduce
the diagrams further. We distinguish strong reduction
that preserves MAPB(I, ζ) for all ζ and weak reduction
that only preserves MAPB(I). In the following let B

represent any background knowledge we have about
the domain. For example in the Blocks World we may
know that ∀x, y, [on(x, y)→ ¬clear(y)].

(R5) Strong Reduction for Implied Branches:
Consider any node n with label l(n). Let ~x be the
variables in EF(n↓t). If B |= ∀~x, [NF(n) → l(n)] then
whenever node n is reached then the true branch is
followed. In this case we can remove n and connect
its parent directly to the true branch. It is clear that
the map is preserved for any valuation. A similar re-
duction can be formulated for the false branch.

Implied branches may be a result of background knowl-
edge or simply a result of equalities along a path. For
example (x = y) ∧ p(x) → p(y) so we may prune p(y)
if (x = y) and p(x) are known to be true.

(R6) Weak Reduction Removing Dominated
Branches: Consider any node n such that if we can
reach node n using some valuation then we can reach
n↓t using a possibly different valuation. If n↓t always
gives better values than n↓f then we should be able
to remove n↓f from the diagram. We first present a
simple version of this condition and then follow with
a more general case.

Let ~x be the variables that appear in NF(n), and ~y
the variables in l(n) and not in NF(n). Consider the
condition (I1): B |= ∀~x, [NF(n) → ∃~y, l(n)] which re-
quires that every valuation reaching n can be extended
into a valuation reaching n↓t.

Let min(n↓t) be the minimum leaf value in n↓t, and
max(n↓f) be the maximum leaf value in n↓f . Con-
sider next the additional condition (V1): min(n↓t) ≥
max(n↓f). In this case regardless of the valuation we
know that it is better to follow n↓t and not n↓f . If both
I1 and V1 hold then according to maximum aggrega-
tion the value of MAPB(I) will never be determined
by the false branch. Therefore we can safely replace
n↓f with any constant value between 0 and min(n↓t)
without changing the map.

In some cases we can also drop the node n completely
and connect its parents directly to n↓t. This can be
done if (I1A): for every valuation ζ1 that reaches n↓f
there is a valuation ζ2 that reaches n↓t and such that
ζ1 and ζ2 agree on all variables in (the sub-diagram
of) n↓t. To see that this is true consider any valuation
ζ1 for the FODD. If ζ1 leads to n↓t it will continue
reaching n↓t and the value will not change. If ζ1 leads
to n↓f it will now lead to n↓t reaching some leaf of
the diagram (and giving its value instead of the con-
stant value assigned above). By the condition, ζ2 will
reach the same leaf and assign the same value. So un-
der maximum aggregation the map is not changed. It

First Order Decision Diagrams for Relational MDPs

p (x)
 q (x)

 1

p (y)
 t (x)

 2

 0

0

 0

p (x)
 q (x)

 2

t (x)
 1

0

 0

(a)

p (x)
 q (x)

 1

p (y)
 f (y)

 2

 0

0

 0

p (x)
 q (x)

 1

f (y)

 2

0

 0

(b)

B1 B2

Figure 3. Examples illustrating Remove Reduction R6.

is easy to see that I1A follows from I1 if (I1B): no
variable in ~y appears in the sub-diagram of n↓t. More
generally we can state the following condition. Let ~u
be the variables that appear in n↓t, ~v be the variables
that appear in NF(n) but not in n↓t, and ~w the vari-
ables in l(n) and not in ~u or ~w. The condition I1A is
satisfied if (I1C): B |= ∀~u, [[∃~v,NF(n)]→ [∃~v, ~w, l(n)].

Figure 3 illustrates two cases in R6. In part (a) condi-
tions I1, I1B and V1 hold and we can drop p(y) com-
pletely. We cannot drop p(y) in part (b). Intuitively
removing p(y) removes a constraint on y. Consider
an interpretation I with domain {1, 2} and relations
{p(1), q(1), f(2)}. Before reduction, MAPB1(I) = 1.
But if p(y) is removed MAPB2(I) = 2.

A symmetric operation can be applied replacing n↓t
and n↓f . This resolves the first example from Figure 2
but not the second one which has to do with sorting.

Some care is needed when applying weak reductions,
e.g. when replacing a sub-diagram with 0 as above.
While this preserves the map it does not preserve the
map for every valuation. If we apply non-monotonic
operations that depend on all valuations (e.g. subtract
two diagrams that share variables) the result may be
incorrect. The reductions are always safe for mono-
tonic operations and when we only operate in this way
if different diagrams do not share variables.

An important special case of R6 occurs when l(n) is
an equality t1 = y where y is a variable that does not
occur on the FODD above node n. In this case, the
condition I1 holds since we can choose the value of
y. Therefore if V1 holds we can remove the node n

connecting its parents to n↓t and substituting t1 for y
in the diagram n↓t. As we see below this case is typical
when using FODDs for MDPs.

(R6) general case: We first show that the condition
on values can be relaxed. Consider the diagram D =
n↓t−n↓f which we can calculate using Apply. If (V2):
all leaves in D have non-negative values then it is clear
that for any fixed valuation it is better to follow n↓t
instead of n↓f . Consider again condition I1A from
above requiring that for every valuation ζ1 there is a
useful ζ2. Exactly the same argument as above shows
that in this case we can drop the node n and connect
its parents to n↓t.

Finally, we argue that the condition for reachabil-
ity of n↓t can also be relaxed. In particular (I2):
B |= [∃~x,NF(n)] → [∃~x, ~y,EF(n↓t)] requires that if
n is reachable then n↓t is reachable but does not put
any restriction on the valuations (in contrast with the
requirement in I1 to extend the valuation reaching n).
If both I2 and V1 hold then as above we can replace
n↓f with a constant between 0 and min(n↓t) without
changing the map. In order to drop the node n com-
pletely we need to guarantee that I1A holds. Using
the notation for ~u,~v, ~w from above this is satisfied if
(I2A): B |= ∀~u, [∃~v,NF(n)]→ [∃~v, ~w,EF(n↓t)].

To summarize we can replace n↓f with a constant if
both I1 and V1 hold or both I2 and V1 hold. Recall
that (I1∧I1B)∨I1C→I1A. We can drop n completely
if both I1A and V1 hold or both I1A and V2 hold or
both I2A and V2 hold.

(R7) Weak Reduction Removing Dominated
Nodes: Consider a FODD with two nodes p, q where
q is in the sub-FODD of p↓f and their formulas sat-
isfy that if we can follow q↓t then we can also fol-
low p↓t. Formally, let ~x be the variables in EF(p↓t)
and ~y the variables in EF(q↓t). We require that (I3):
B |= [∃~x,EF(q↓t)]→ [∃~y,EF(p↓t)].

If I3 holds and if (V3): min(p↓t) ≥ max(q↓t) then
MAPB(I) will never be determined by q↓t so we can
replace q↓t with a constant between 0 and min(p↓t).
This is true since if a valuation reaches q↓t then there
is another valuation reaching p↓t and by V3 it gives a
higher value so that the map is not changed.

If in addition to I3 and V3 we have (V4): min(p↓t) ≥
max(q↓f) then it is also safe to remove q completely.
To see this consider any valuation reaching q↓t. As
above its true value is dominated by another valuation
reaching p↓t. When we remove q the valuation will
reach q↓f and by V4 the value produced is smaller than
the value from p↓t. So again the map is preserved.

First Order Decision Diagrams for Relational MDPs

p(x)

 1 0

 0

undo
bring
about

Figure 4. A template for the TVD

Here too we can relax the condition for applying the
reduction. Let T be a diagram with q as root but with
q↓f replaced with 0. Consider the diagram D = p↓t−T
which we can calculate using Apply. If (V5): all leaves
in D have non-negative values, then it is clear that for
any fixed valuation it is better to follow p↓t instead of
going through q to q↓t.

Now consider the condition (I3A): for every valuation
ζ1 that reaches q↓t there is a valuation ζ2 that reaches
p↓t and such that ζ1 and ζ2 agree on all variables in p↓t,
q and q↓t. Let ~u be the variables that appear in p↓t or
q↓t or in l(q), ~v be the variables that appear in EF(p↓t)
but are not in ~u, and let ~w be the variables that appear
in EF(q↓t) but are not in ~u. Condition I3A holds if
(I3B): B |= ∀~u, [[∃~w,EF(q↓t)]→ [∃~v,EF(p↓t)]].

If I3B and V5 hold then we can replace q↓t with a
constant as above. To see that this is true consider
any valuation ζ1 that reaches q↓t. By I3A ζ2 reaches
p↓t and by V5 it achieves a higher value. Note that
here we need the fact that ζ1, ζ2 agree on all variables
in ~u so the value from D is correct. As above if we
also have V4 then we can drop q completely.

To summarize if both I3 and V3 hold or both I3B and
V5 hold then we can replace q↓t with a constant. If
V4 holds as well then we can drop q completely.

(R8) Weak Reduction by Unification: Consider a
FODD B and two sets of variables ~x and ~y of the same
cardinality. By B{~x/~y} we denote the FODD result-
ing from replacing variables in ~x by the corresponding
variables in ~y. Now consider the FODD B{~x/~y} − B
which we can calculate using Apply. If all leaves in this
diagram are non negative then we can safely replace
B by B{~x/~y}.

4. Decision Diagrams for MDPs

We follow Boutilier et al. (2001) and specify stochas-
tic actions as a non-deterministic choice among de-
terministic alternatives. We therefore need to use
FODDs to represent the deterministic domain dynam-
ics of actions, the probabilistic choice among actions,
and value functions.

Example Domain: We use the following vari-
ant of the logistics problem (Boutilier et al., 2001)
to illustrate our constructions for MDPs. The do-
main includes boxes, trucks and cities, and pred-
icates are Bin(Box,City), Tin(Truck, City), and
On(Box, Truck) with their obvious meaning. The re-
ward function, capturing a planning goal, awards a
reward of 10 if the formula ∃b,Bin(b, Paris) is true,
that is if there is any box in Paris. Thus the reward
is allowed to include constants but need not be com-
pletely ground.

The domain includes 3 actions load, unload, and drive.
Actions have no effect if their preconditions are not
met. Actions can also fail with some probability.
When attempting load, a successful version loadS is
executed with probability 0.99, and an unsuccessful
version loadF (effectively a no-operation) with prob-
ability 0.01. The drive action is executed determin-
istically. When attempting unload, the probabilities
depend on whether it is raining or not. If it is not rain-
ing then a successful version unloadS is executed with
probability 0.9, and unloadF with probability 0.1. If
it is raining unloadS is executed with probability 0.7,
and unloadF with probability 0.3.

The domain dynamics: are defined by truth value
diagrams (TVDs). For every action schema A(~a) and
each predicate schema p(~x) the TVD T (A(~a), p(~x)) is
a FODD with {0, 1} leaves. The TVD gives the truth
value of p(~x) in the next state when A(~a) has been
performed in the current state. We call ~a action pa-
rameters, and ~x predicate parameters. No other vari-
ables are allowed in the TVD. The truth value is valid
when we fix a valuation of the parameters.

Notice that the TVD simultaneously captures the
truth values of all instances of p(~x) in the next state.
Notice also that TVDs for different predicates are sep-
arate and independent. This can be safely done even
if an action has coordinated effects (not conditionally
independent) since the actions are deterministic.

For any domain, a TVD for predicate p(~x) can be de-
fined generically as in Figure 4. The idea is that the
predicate is true if it was true before and is not “un-
done” by the action or was false before and is “brought
about” by the action. TVDs for the logistics domain
in our running example are given in Figure 5. All the
TVDs omitted in the figure are trivial in the sense that
the predicate is not affected by the action. In order
to simplify the presentation we give the TVDs in their
generic form and did not sort the diagrams. Notice
that the TVDs capture the implicit assumption that if
the preconditions of the action are not satisfied then
the action has no effect.

First Order Decision Diagrams for Relational MDPs

Bin (B, C)

B= b*

Tin(t*, C)
 0

0

1

(c)

On (B, T)

B= b*

T= t*

0

0

1

(b)

Bin (B, C)

1 B= b*

On (B, t*)

Tin (t*, C)

1 0

(a)

On (B, T)

1 B= b*

T= t*

Tin (T, c*)

1 0

(d)

Bin (B, c*)

Tin (T, C)

T= t*

C� c*

0 1

T= t*

C= c*

1 0

(e)

rain

0.7 0.9

Bin (b, Paris)

10 0

(f) (g)

C= c*

Figure 5. FODDs for logistics domain: TVDs, action choice, and reward function. (a)(b) The TVDs for Bin(B,C)
and On(B, T) under action choice unloadS(b∗, t∗). (c)(d) The TVDs for Bin(B,C) and On(B, T) under action choice
loadS(b∗, t∗, c∗). Note that c∗ must be an action parameter so that (d) is a valid TVD. (e) The TVD for T in(T,C) under
action choice driveS(t∗, c∗). (f) The probability FODD for the action choice unloadS(b∗, t∗). (g) The reward function.

Notice how we utilize the multiple path semantics with
maximum aggregation. A predicate is true if it is true
according to one of the paths specified so we get a dis-
junction over the conditions for free. If we use the sin-
gle path semantics the corresponding notion of TVD is
significantly more complicated since a single path must
capture all possibilities for a predicate to become true.
To capture that we must test sequentially for different
conditions and then take a union of the substitutions
from different tests and in turn this requires additional
annotation on FODDs with appropriate semantics.

Probabilistic Action Choice: One can consider
modeling arbitrary conditions described by formulas
over the state to control nature’s probabilistic choice
of action. Here the multiple path semantics makes it
hard to specify mutually exclusive conditions using ex-
istentially quantified variables and in this way specify
a distribution. We therefore restrict the conditions to
be either propositional or depend directly on the ac-
tion parameters. Notice that under this condition any
interpretation follows exactly one path (since there are
no variables and thus only the empty valuation) so the
aggregation function does not interact with the proba-
bilities assigned. A diagram showing action choice for
unloadS in our logistics example is given in Figure 5.

Reward and value functions: can be represented
directly using algebraic FODDs. The reward function
for our logistics domain example is given in Figure 5.

5. Value Iteration with FODDs

The general first-order value iteration algorithm works
as follows: given as input the reward function R and
the action model, we set V0 = R,n = 0 and perform
the following steps until termination:
(1) For each action type A(~x), compute:

T
A(~x)
n+1 (Vn) = γ[⊕j(prob(Aj(~x))⊗Regr(Vn, Aj(~x)))].

(2) QA
n+1 = R⊕ obj-max(T

A(~x)
n+1 (Vn))

(3) Vn+1 is obtained by maximizing over Qn+1:
Vn+1 = maxA QA

n+1.

Regression by Block Replacement: We first de-
scribe the calculation of Regr(Vn, Aj(~x)) using a sim-
ple idea we call block replacement. We then proceed
to discuss how to obtain the result efficiently.

Consider Vn and the nodes in its FODD. For each such
node take a copy of the corresponding TVD, where
predicate parameters are renamed so that they corre-
spond to the node’s arguments and action parameters
are unmodified. BR-regress(Vn) is the FODD resulting
from replacing each node in Vn with the corresponding
TVD, with outgoing edges connected to the 0, 1 leaves
of the TVD.

To see that block replacement is correct, consider an
action from state ŝ to state s. Notice that Vn and
BR-regress(Vn) have exactly the same variables. Con-
sider any valuation to these variables and the paths
P, P̂ followed under this valuation in the two diagrams.

First Order Decision Diagrams for Relational MDPs

By the definition of TVDs, the sub-paths of P̂ applied
to ŝ guarantee that the corresponding nodes in P take
the same truth values in s. So P, P̂ reach the same
leaf and the same value is obtained.

However, naive implementation of block replacement
may not be efficient. If we use block replacement for
regression then the resulting FODD is not necessar-
ily reduced and moreover, since the different blocks
are sorted to start with the result is not even sorted.
Reducing and sorting the results may be an expen-
sive operation. Instead we calculate the result as fol-
lows. For any FODD Vn we traverse BR-regress(Vn)
using postorder traversal in term of blocks and com-
bine the blocks. At any step we have to combine up to
3 FODDs such that the parent block has not yet been
processed (so it is a TVD with binary leaves) and the
two children have been processed (so they are general
FODDs). If we call the parent B, the true branch
child Bt and the false branch child Bf then we can
represent their combination as [B×Bt]+[(1−B)×Bf].
It is easy to see that for any valuation the formula
gives the same value as the original FODD. This is
true since by fixing the valuation we effectively ground
the FODD and all paths are mutually exclusive. We
can therefore replace the combination of the 3 FODDs
with the result of using several calls to Apply to com-
bine them using the formula. Notice that different
blocks share variables so we cannot perform weak re-
ductions during this process. However, we can perform
strong reduction in intermediate steps since it does not
change the map for any valuation. After the process
is completed we can perform any combination of weak
and strong reductions since this does not change the
map of the regressed value function.

Object Maximization: As mentioned above we
get maximization over action parameters for free. We
simply rename the action parameters using new vari-
able names (to avoid repetition between iterations)
and consider them as variables. The aggregation se-
mantics provides the maximization. Since constants
are turned into variables additional reduction is typi-
cally possible at this stage. Any combination of weak
and strong reductions can be used.

Adding and Maximizing Over Actions: These
can be done directly using the Apply procedure. Re-
call that prob(Aj(~x)) is restricted to include only ac-
tion parameters and cannot include variables. We can
therefore calculate prob(Aj(~x)) ⊗ Regr(Vn, Aj(~x)) in
step (1) directly. However, the different regression
results are independent functions so that in the sum
⊕j(prob(Aj(~x))⊗Regr(Vn, Aj(~x))) we must standard-
ize apart the different regression results before adding

q (x)
 p (x)

 10

0

 5

(a)

q (x1)

q (A)

 1

p (x1)

 0

 5 0

 2.5

p (A)
 A=x*

1

 0

(c)

V0 ASucc(x*)

(b)

x1= x*
 q (x1)

+

q (x2)
 p (x2)

 5

0

 2.5

q (x2)
 q (x1)

 p (x1)
 x1= x*

 q (x1)
 7.5

 …

Figure 6. Example illustrating the need to standardize
apart.

the functions (note that action parameters are still
considered constants at this stage). Similarly the max-
imization Vn+1 = maxA QA

n+1 in step (3) must first
standardize apart the different diagrams. The need to
standardize apart complicates the diagrams and often
introduces structure that can be reduced. In each of
these cases we first use the propositional Apply proce-
dure and then follow with weak and strong reductions.

Figure 6 illustrates why we need to standardize apart
different action outcomes. Action A can succeed (de-
noted as ASucc) or fail (denoted as AFail, effectively a
no-operation), and each is chosen with probability 0.5.
Part (a) gives the value function V 0. Part (b) gives
the TVD for P (A) under the action choice ASucc(x∗).
All other TVDs are trivial. Part (c) shows part of the
result of adding the two outcomes for A after standard-
izing apart (to simplify the presentation the diagrams
are not sorted). Consider an interpretation with do-
main {1, 2} and relations {q(1), p(2)}. As can be seen
from (c), by choosing x∗ = 1 i.e. action A(1), the val-
uation x1 = 1, x2 = 2 gives a value of 7.5 after the
action (without considering the discount factor). Ob-
viously if we do not standardize apart (i.e x1 = x2),
there is no leaf with value 7.5 and we get a wrong
value. Intuitively the contribution of ASucc to the
value comes from the “bring about” portion of the di-
agram and AFail’s contribution uses bindings from
the “not undo” portion. Standardizing apart allows
us to capture both simultaneously.

Figure 7 traces several steps in the application of value

First Order Decision Diagrams for Relational MDPs

iteration to the logistics domain. In order to sim-
plify the presentation the diagrams are not completely
sorted allowing equalities in arbitrary locations. Block
replacement is illustrated in the transitions (a) to (b)
and (h) to (i). Comparing (e), (f) and (g) notice the
use of Apply and Remove reductions.

6. Discussion

ADDs have been used successfully to solve proposi-
tional factored MDPs. Our work gives one proposal
of lifting these ideas to FOMDPs. While the gen-
eral steps are similar the technical details are signifi-
cantly more involved than the propositional case. Our
decision diagram representation combines the strong
points of the SDP and ReBel approaches to FOMDP.
On the one hand we get simple regression algorithms
directly manipulating the diagrams. On the other
hand we get object maximization for free as in ReBel.
We also get space saving since different state partitions
can share structure in the diagrams.

In terms of expressiveness, our approach can easily
capture probabilistic STRIPS style formulations as in
ReBel, allowing for more flexibility since we can use
FODDs to capture rewards and transitions. However,
it is more limited than SDP since we cannot use arbi-
trary formulas for rewards, transitions, and probabilis-
tic choice. For example we cannot express universal
quantification using maximum aggregation.

An implementation and empirical evaluation are obvi-
ous next steps. Any implementation can easily incor-
porate the idea of approximation by combining leaves
with similar values (St-Aubin et al., 2000) to control
the size of FODDs. The precise choice of reduction op-
erators and their application will be crucial to obtain
an effective system.

There are many open issues concerning the current
representation and algorithms. It would be interest-
ing to investigate conditions that guarantee a normal
form for a useful set of reduction operators. Also, the
representation can be improved to allow further com-
pression. For example we are currently investigating
the effect of allowing edges to rename variables when
they are traversed so as to compress isomorphic sub-
FODDs. It is also important to investigate the impli-
cations and limitations of separating the dynamics to
probabilistic nature’s choice and deterministic actions.

Acknowledgments

This work has been partly supported by NSF Grant IIS-
0099446, and by a Research Semester Fellowship Award
from Tufts University (Khardon).

References

Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D.,
Macii, E., Pardo, A., & Somenzi, F. (1993). Algebraic
decision diagrams and their applications. Proceedings
of the International Conference on Computer-Aided De-
sign.

Bellman, R. E. (1957). Dynamic programming. Princeton
University Press.

Blockeel, H., & De Raedt, L. (1998). Top down induction
of first order logical decision trees. Artificial Intelligence,
101, 285–297.

Boutilier, C., Reiter, R., & Price, B. (2001). Symbolic dy-
namic programming for first-order mdps. Proceedings of
the International Joint Conference of Artificial Intelli-
gence.

Bryant, R. E. (1986). Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Comput-
ers, C-35, 677–691.

Fern, A., Yoon, S., & Givan, R. (2003). Approximate pol-
icy iteration with a policy language bias. International
Conference on Neural Information Processing Systems.

Gretton, C., & Thiebaux, S. (2004). Exploiting first-order
regression in inductive policy selection. Proceedings of
the International Conference on Machine Learning.

Groote, J. F., & Tveretina, O. (2003). Binary decision
diagrams for first-order predicate logic. The Journal of
Logic and Algebraic Programming, 57, 1–22.

Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N.
(2003). Generalizing plans to new environments in re-
lational mdps. Proceedings of the International Joint
Conference of Artificial Intelligence.

Hoey, J., St-Aubin, R., Hu, A., & Boutilier, C. (1999).
Spudd: Stochastic planning using decision diagrams.
Proceedings of the Workshop on Uncertainty in Artifi-
cial Intelligence.

Kersting, K., Otterlo, M. V., & Raedt, L. D. (2004). Bell-
man goes relational. Proceedings of the International
Conference on Machine Learning.

McMillan, K. L. (1993). Symbolic model checking. Kluwer
Academic Publishers.

Puterman, M. L. (1994). Markov decision processes: Dis-
crete stochastic dynamic programming. Wiley.

Rivest, R. L. (1987). Learning decision lists. Machine
Learning, 2, 229–246.

Sanghai, S., Domingos, P., & Weld, D. (2005). Relational
dynamic bayesian networks. Journal of Artificial Intel-
ligence Research, 24, 759–797.

Sanner, S., & Boutilier, C. (2005). Approximate linear
programming for first-order mdps. Proceedings of the
Workshop on Uncertainty in Artificial Intelligence.

St-Aubin, R., Hoey, J., & Boutilier, C. (2000). Apri-
codd: Approximate policy construction using decision
diagrams. International Conference on Neural Informa-
tion Processing Systems.

First Order Decision Diagrams for Relational MDPs

V0

Bin (b, Paris)

10 0

Bin (b, Paris)

10 b= b*

On (b, t*)

Tin (t*, Paris)

10 0

(b)

0

Bin (b, Paris)

7

b= b*

On (b, t*)

Tin (t*, Paris)

rain

9

(h) (i)

(c)

0 9

Bin (b1, Paris)

10

On (b1, t*)
 Tin (t*, Paris)

 rain

 7

(e)

Bin (b, Paris)

19 On (b, t)
 Tin (t, Paris)

 rain

 6.3 0 8.1

V1

Bin (b, Paris)

b= b*

On (b, t*)

Tin (t*, Paris)

19
On (b, t)

b= b*

t= t*

0

0

Tin (t, Paris)

rain

 6.3 8.1

0

(f)

Bin (b1, Paris)

b1= b*

On (b1, t*)

Tin (t*, Paris)

10

rain

10

Bin (b2, Paris)

10

rain

10 7

rain

9

Bin (b2, Paris)

b1= b*

On (b1, t*)

Tin (t*, Paris)

7

rain

9

0 0

(a)

Bin (b, Paris)

3 1

rain 0

(d)

Bin (b, Paris)

19 On (b, t)
 Tin (t, Paris)

 rain

 6.3 0 8.1

unloadQ1

(g)

b1= b*

Figure 7. Regression in the Logistics Domain: (a) The value function V 0. (b) Regression of V 0 through unloadS(b∗, t∗). (c)
Multiply (b) with the choice probability FODD. (d) Regression of V 0 over unloadF (b∗, t∗) multiplied with the probability.
(e) The unreduced result of adding two outcomes for unload(b∗, t∗). (f) The reduced result after addition. Notice that the
left branch reduces to 10 by using both the recursive part of Apply and R6. The middle part is dropped by R7. (g) Multiply
by γ = 0.9, perform object maximization, and add the reward to get Qunload

1 . Notice that in object maximization we have
also dropped the equality on the right branch by the special case of R6. (h) V 1, the value function after first iteration.
In this case the diagram for unload dominates the other actions (not shown). (i) Block replacement in computing V 2

through action unloadS(b∗, t∗) .

