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1. Motivation
In the past few years, the statistical relational learn-
ing (SRL) community has recognized the importance of
combining the strengths of statistical learning and rela-
tional learning (also known as inductive logic programming
(ILP)), and developed several novel representations, as well
as algorithms to learn their parameters and structure. How-
ever, the problem of statistical predicate invention (SPI)
has so far received little attention in the community. SPI
is the discovery of new concepts, properties and relations
from data, expressed in terms of the observable ones, us-
ing statistical techniques to guide the process and explicitly
representing the uncertainty in the discovered predicates.
These can in turn be used as a basis for discovering new
predicates, which is potentially much more powerful than
learning based on a fixed set of simple primitives. Essen-
tially all the concepts used by humans can be viewed as in-
vented predicates, with many levels of discovery between
them and the sensory percepts they are ultimately based on.

In statistical learning, this problem is known as hidden or
latent variable discovery, and in relational learning as pred-
icate invention. Both hidden variable discovery and pred-
icate invention are considered quite important in their re-
spective communities, but are also very difficult, with lim-
ited progress to date.

One might question the need for SPI, arguing that structure
learning is sufficient. Such a question can also be directed
at hidden variable discovery and predicate invention, and
their benefits, as articulated by their respective communi-
ties, also apply to SPI. The benefits of SPI over structure
learning include the following:

1. SPI gives a more compact and comprehensible model of
a data-generating process than pure structure learning.
An invented predicate efficiently captures dependencies
among observed predicates. Instead of directly model-
ing these, which could require an exponential number
of parameters, we can introduce an invented predicate
and model the dependence between it and each of the
observed predicates, which requires only a linear num-
ber of parameters. We can view the invented predi-
cate as a summary of the information in the observed
predicates, and the conduit through which the informa-
tion is relayed to other observed predicates. For ex-
ample, in citation domains, a standard observed pred-
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icate is Author(person, paper). We could invent a
predicate Coauthor(person, person) representing the
concept of coauthorship, defined as Author(x, z) ∧
Author(y, z) ⇒ Coauthor(x, y). With the invented
predicate, we can more compactly learn (weighted) for-
mulas such as Affiliation(x) ∧ Coauthor(x, y) ⇒
Affiliation(y). By combining features of both sta-
tistical and relational learning, SRL is more complex
than either. Thus SPI’s ability to produce a less com-
plex, more compact model is even more important in
SRL than in statistical learning and relational learning.

2. By having a more compact model, we have fewer pa-
rameters, thereby reducing the risk of overfitting. A
more compact model also reduces the amount of mem-
ory required to represent the model, and could poten-
tially speed up inference.

3. Once a predicate has been invented, it can be used to
learn new formulas, potentially allowing us to take larger
steps through the search space, and learning more com-
plex models than would otherwise be possible.

4. With invented predicates, we can represent unobserved
aspects of a data-generating process, and learn a better
model of it. This could potentially improve the accuracy
of the learned model.

Potential applications of SPI include:

• Perception. In object recognition in visual scenes, we
would like to invent predicates representing pixel con-
figurations that correspond to parts of objects, and pred-
icates representing objects as related sets of parts. Simi-
lar considerations apply to speech recognition, handwrit-
ing recognition, etc.

• Molecular Biology. Computational biology has so
far focused mainly on predicting properties of indi-
vidual molecules (e.g., identifying promoter regions in
DNA, or predicting the secondary structure of proteins).
However, the outcomes that biologists and medical re-
searchers ultimately care about involve the interactions
of many such molecules (Hood & Galas, 2003). With
SPI, we can learn predicates representing gene modules
(i.e., co-regulated sets of genes), metabolic pathways,
substructures of the cell, etc.

• Security. Criminal activities like money laundering or
the preparation of a terrorist attack can often not be de-
tected from a single event, but only by a complex pat-
tern of events that may at first appear unrelated (Jensen
& Goldberg, 1998). SPI enables us to learn predicates
representing the steps of a criminal’s plan, the relations
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among them, the roles played by different individuals,
etc.

2. State of the Art
Elidan, Friedman and coworkers have developed a series of
algorithms for finding variables in Bayesian networks. Eli-
dan et al. (2001) look for structural patterns in the network
that suggest the presence of hidden variables. Elidan and
Friedman (2005) group observed variables by their mutual
information, and create a hidden variable for each group.
Central to both approaches is some form of EM algorithm
that iteratively creates hidden variables, hypothesizes their
values, and learns the parameters of the resulting Bayesian
network. A weakness of such statistical approaches is that
they assume that the data is independently and identically
distributed, which is not true in many real-world applica-
tions.

In relational learning, the problem is known as predicate
invention (see Kramer (1995) for a survey). Predicates
are invented to compress a first-order theory, or to facili-
tate the learning of first-order formulas. Relational learning
employs several techniques for predicate invention. Pred-
icates can be invented by analyzing first-order formulas,
and forming a predicate to represent either their common-
alities (interconstruction (Wogulis & Langley, 1989)) or
their differences (intraconstruction (Muggleton & Buntine,
1988)). A weakness of inter/intraconstruction is that they
are prone to over-generating predicates, many of which are
not useful. Predicates can also be invented by instantiating
second-order templates (Silverstein & Pazzani, 1991), or
to represent exceptions to learned rules (Srinivasan et al.,
1992). Relational predicate invention approaches suffer
from a limited ability to handle noisy data.

Only a few approaches to date combine elements of statis-
tical and relational predicate invention. Popescul and Un-
gar (2004) apply k-means clustering to the objects of each
type in a domain, create predicates to represent the clus-
ters, and learn relations among them. Perlich and Provost
(2003) present a number of approaches for aggregating
multi-relational data (e.g., aggregating over the fields of
a single table and across tables). We would like SPI to
automatically and selectively invent predicates correspond-
ing to useful clusters and aggregates. Craven and Slattery
(2001) proposed a learning mechanism for hypertext do-
mains in which class predictions produced by naive Bayes
are added to an ILP system (FOIL) as invented predicates.
We would like SPI to be a general-purpose mechanism that
can be used across all domains, not only hypertext. Davis
et al. (2005) use an off-the-shelf ILP system to learn Horn
clauses on a mammogram database. They create a pred-
icate for each clause learned, add it as a feature to the
database, and then run a standard Bayesian network struc-
ture learning algorithm. Rather than treating predicate in-
vention and structure learning as two separate sequential
steps, we would like SPI to closely integrate the two.

3. One Approach
We are currently developing an approach to SPI that com-
bines elements of hidden variable discovery and ILP predi-
cate invention. Inspired by Elidan and Friedman (2005), we
group observed predicates that are highly correlated with

each other, and invent a predicate for each group. To do so,
we measure the correlations of all pairs of predicates (con-
sidering all variabilizations in which the predicates share
at least one variable), and discard pairs with low correla-
tion. The result can be viewed as a graph, with predicates as
nodes, and arcs representing correlations. We then find ap-
proximate, possibly overlapping cliques in the graph, and
invent a predicate for each clique. We model the correlation
among the predicates in the group by adding a weighted
edge between the invented predicate and each of its ob-
served predicates. The arguments of the invented predicate
are (a subset of) the arguments of the observed ones. The
weight of an edge reflects the amount of correlation be-
tween an observed predicate and all the others in the group.
We then repeat the process with the new predicates added
to the pool, thus allowing multiple levels of predicates to
be invented.
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