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Abstract
Relational learning has attracted more and more
attention in recent years due to its phenomenal
impact in various important applications which
involve multi-type interrelated data objects, such
as bioinformatics, citation analysis, epidemiol-
ogy and web analytics. However, the research
on unsupervised relational learning is still lim-
ited and preliminary. In this paper, we propose
a general model, the collective factorization on
related matrices, for multi-type relational data
clustering. The model is applicable to relational
data with various structures. Under the proposed
model with a specific distance function – Euclid-
ean distance function, we derive a novel spectral
clustering algorithm, spectral relational cluster-
ing, to cluster multi-type interrelated data objects
simultaneously. The algorithm iteratively em-
beds each type of data objects into low dimen-
sional spaces and benefits from the interactions
among the hidden structures of different types
of data objects. Extensive experiments demon-
strate the promise and effectiveness of the pro-
posed model and algorithm.

1. Introduction

Most clustering approaches in the literature focus on ”flat”
data in which each data object is represented as a fixed-
length feature vector (R.O.Duda et al., 2000). However,
many real-world data sets are much richer in structure, in-
volving objects of multiple types that are related to each
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other, such as Web pages, search queries and Web users in
a Web search system, and papers, key words, authors and
conferences in a scientific publication domain. In such sce-
narios, using traditional methods to cluster each type of ob-
jects independently may not work well due to the following
reasons.

First, to make use of relation information under the tradi-
tional clustering framework, the relation information needs
to be transformed into features. In general, this transforma-
tion causes information loss and/or very high dimensional
and sparse data. For example, if we represent the rela-
tions between Web pages and Web users as well as search
queries as the features for the Web pages, this leads to a
huge number of features with sparse values for each Web
page. Second, traditional clustering approaches are unable
to tackle the interactions among the hidden structures of
different types of objects, since they cluster data of sin-
gle type based on static features. Note that the interactions
could pass along the relations, i.e., there exists influence
propagation in multi-type relational data. Third, in some
machine learning applications, users are not only interested
in the hidden structure for each type of objects, but also
the global structure involving multi-types of objects. For
example, in document clustering, in addition to document
clusters and word clusters, the relationship between docu-
ment clusters and word clusters is also useful information.
It is difficult to discover such global structures by clustering
each type of objects individually.

Therefore, multi-type relational data has presented a great
challenge for traditional clustering approaches. In this
study, first, we propose a general model, the collective
factorization on related matrices, to discover the hidden
structures of multi-types of objects based on both feature
information and relation information. By clustering the
multi-types of objects simultaneously, the model performs
adaptive dimensionality reduction for each type of data.
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Through the related factorizations which share factors, the
hidden structures of different types of objects could inter-
act under the model. In addition to the cluster structures
for each type of data, the model also provides information
about the relation between clusters of different types of ob-
jects.

Under this model, we derive a novel spectral clustering al-
gorithm, the spectral relational clustering, to cluster multi-
type interrelated data objects simultaneously. By iteratively
embedding each type of data objects into low dimensional
spaces, the algorithm benefits from the interactions among
the hidden structures of different types of data objects.
The algorithm has the simplicity of spectral clustering ap-
proaches but at the same time also applicable to relational
data with various structures. Theoretic analysis and exper-
imental results demonstrate the promise and effectiveness
of the algorithm.

2. Related Work

Clustering on a special case of multi-type relational data,
bi-type relational data, such as the word-document data, is
called co-clustering or bi-clustering. Several previous ef-
forts related to co-clustering are model based. PLSA (Hof-
mann, 1999) is a method based on a mixture decomposition
derived from a latent class model. A two-sided clustering
model is proposed for collaborative filtering by Hofmann
and Puzicha (1999).

Spectral graph partitioning has also been applied to bi-type
relational data (Dhillon, 2001; H.Zha & H.Simon, 2001).
These algorithms formulate the data matrix as a bipartite
graph and seek to find the optimal normalized cut for the
graph. Due to the nature of a bipartite graph, these algo-
rithms have the restriction that the clusters from different
types of objects must have one-to-one associations.

Information-theory based co-clustering has also attracted
attention in the literature. El-Yaniv and Souroujon (2001)
extend the information bottleneck (IB) framework (Tishby
et al., 1999) to repeatedly cluster documents and then
words. Dhillon et al. (2003) propose a co-clustering al-
gorithm to maximize the mutual information between the
clustered random variables subject to the constraints on the
number of row and column clusters. A more generalized
co-clustering framework is presented by Banerjee et al.
(2004) wherein any Bregman divergence can be used in the
objective function.

Recently, co-clustering has been addressed based on matrix
factorization. Both Long et al. (2005) and Li (2005) model
the co-clustering as an optimization problem involving a
triple matrix factorization. Long et al. (2005) propose an
EM-like algorithm based on multiplicative updating rules
and Li (2005) proposes a hard clustering algorithm for bi-
nary data. Ding et al. (2005) extend the non-negative ma-
trix factorization to symmetric matrices and show that it is

equvilent to the Kernel K-means and the Laplacian-based
spectral clustering.

Compared with co-clustering, clustering on general rela-
tional data, which may consist of more than two types of
data objects, has not been well studied in the literature.
Several noticeable efforts are discussed as follows. Taskar
et al. (2001) extend the the probabilistic relational model to
the clustering scenario by introducing latent variables into
the model. Gao et al. (2005) formulate star-structured rela-
tional data as a star-structuredm-partite graph and develop
an algorithm based on semi-definite programming to par-
tition the graph. Like bipartite graph partitioning, it has
limitations that the clusters from different types of objects
must have one-to-one associations and it fails to consider
the feature information.

An intuitive idea for clustering multi-type interrelated ob-
jects is the mutual reinforcement clustering. The idea
works as follows: start with initial cluster structures of the
data; derive the new reduced features from the clusters of
the related objects for each type of objects; based on the
new features, cluster each type of objects with a traditional
clustering algorithm; go back to the second step until the
algorithm converges. Base on this idea, Zeng et al. (2002)
propose a framework for clustering heterogeneous Web ob-
jects and Wang et al. (2003) present an approach to im-
prove the cluster quality of interrelated data objects through
an iterative reinforcement clustering process. However,
there are no sound objective function and theoretical proof
on the effectiveness and correctness (convergence) of the
mutual reinforcement clustering. Long et al. (2006) for-
mulate multi-type relational data as K-partite graphs and
propose a novel algorithm to identify the hidden structures
of a k-partite graph by constructing a relation summary net-
work to approximate the original k-partite graph under a
broad range of distortion measures.

To summarize, the research on multi-type relational data
clustering has attracted substantial attention, especially in
the special cases of relational data. However, there is still
limited and preliminary work on the general relational data.
This paper attempts to derive a theoretically sounded model
and algorithm for general multi-type relational data cluster-
ing.

3. Collective Factorization on Related
Matrices

In this section, we propose a general model for clustering
multi-type relational data based on factorizing multiple re-
lated matrices.

Given m sets of data objects, X1 =
{x11, . . . , x1n1}, . . . ,Xm = {xm1, . . . , xmnm}, which
refer tom different types of objects relating to each other,
we are interested in simultaneously clusteringX1 into k1
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Figure 1.Examples of the structures of multi-type relational data.

disjoint clusters, . . . , andXm into km disjoint clusters.
We call this task ascollective clustering on multi-type
relational data.

To derive a general model for collective clustering, we first
formulate Multi-Type Relational Data (MTRD) as a set of
related matrices, in which two matrices are related in the
sense that their row indices or column indices refer to the
same set of objects. First, if there exist relations between
Xi andXj (denoted asXi ∼ Xj), we represent them as a

relation matrixR(ij) ∈ Rni×nj , where an elementR(ij)
pq

denotes the relation betweenxip andxjq. Second, a set of
objectsXi may have its own features, which could be de-
noted by a feature matrixF (i) ∈ Rni×fi , where an element

F
(i)
pq denotes theqth feature values for the objectxip andfi

is the number of features forXi.

Figure 1 shows three examples of the structures of MTRD.
Example (a) refers to a basic bi-type of relational data de-
noted by a relation matrixR(12), such as word-document
data. Example (b) represents a tri-type of star-structured
data, such as Web pages, Web users and search queries in
Web search systems, which are denoted by two relation ma-
trices R(12) and R(23). Example (c) represents the data
consisting of shops, customers, suppliers, shareholders and
advertisement media, in which customers (type 5) have fea-
tures. The data are denoted by four relation matricesR(12),
R(13), R(14) andR(15), and one feature matrixF (5).

It has been shown that the hidden structure of a data matrix
can be explored by its factorization (D.D.Lee & H.S.Seung,
1999; Long et al., 2005). Motivated by this observation, we
propose a general model for collective clustering, which
is based on factorizing the multiple related matrices. In
MTRD, the cluster structure for a type of objectsXi may be
embedded in multiple related matrices; hence it can be ex-
ploited in multiple related factorizations. First, ifXi ∼ Xj ,
then the cluster structures of bothXi andXj are reflected
in the triple factorization of their relation matrixR(ij) such
thatR(ij) ≈ C(i)A(ij)(C(j))T (Long et al., 2005), where
C(i) ∈ {0, 1}ni×ki is acluster indicator matrixforXi such

that
∑ki

q=1 C
(i)
pq = 1 and C

(i)
pq = 1 denotes that thepth

object inXi is associated with theqth cluster. Similarly
C(j) ∈ {0, 1}nj×kj . A(ij) ∈ Rki×kj is the cluster associ-
ation matrixsuch thatAij

pq denotes the association between
clusterp of Xi and clusterq of Xj . Second, ifXi has a fea-

ture matrixF (i) ∈ Rni×fi , the cluster structure is reflected
in the factorization ofF (i) such thatF (i) ≈ C(i)B(i),
whereC(i) ∈ {0, 1}ni×ki is a cluster indicator matrix, and
B(i) ∈ Rki×fi is the feature basis matrix which consists of
ki basis (cluster center) vectors in the feature space.

Based on the above discussions, formally we formulate the
task of collective clustering on MTRD as the following op-
timization problem. Considering the most general case, we
assume that in MTRD, every pair ofXi andXj is related to
each other and everyXi has a feature matrixF (i).

Definition 3.1. Given a distance functionD, m positive
numbers{ki}1≤i≤m and MTRD {X1, . . . ,Xm}, which
is described by a set of relation matrices{R(ij) ∈
Rni×nj}1≤i<j≤m, a set of feature matrices{F (i) ∈
Rni×fi}1≤i≤m, as well as a set of weightsw(ij)

a , w
(i)
b ∈

R+ for different types of relations and features, the task of
the collective clustering on the MTRD is to minimize

L =
∑

1≤i<j≤m

w(ij)
a D(R(ij), C(i)A(ij)(C(j))T )

+
∑

1≤i≤m

w
(i)
b D(F (i), C(i)B(i)) (1)

w.r.t. C(i) ∈ {0, 1}ni×ki , A(ij) ∈ Rki×kj , andB(i) ∈
Rki×fi subject to the constraints:

∑ki

q=1 C
(i)
pq = 1, where

1 ≤ p ≤ ni, 1 ≤ i < j ≤ m.

We call the model proposed in Definition 3.1 as the Collec-
tive Factorization on Related Matrices (CFRM).

The CFRM model clusters multi-type interrelated data ob-
jects simultaneously based on both relation and feature in-
formation. The model exploits the interactions between the
hidden structures of different types of objects through the
related factorizations which share matrix factors, i.e., clus-
ter indicator matrices. Hence, the interactions between hid-
den structures work in two ways. First, ifXi ∼ Xj , the in-
teractions are reflected as the duality of row clustering and
column clustering inR(ij). Second, if two types of objects
are indirectly related, the interactions pass along the rela-
tion ”chains” by a series of related factorizations, i.e., the
model is capable of dealing with influence propagation. In
addition to local cluster structure for each type of objects,
the model also provides the global structure information by
the cluster association matrices, which represent the rela-
tions among the clusters of different types of objects.

CFRM is a general model for relational clustering, since
it is applicable to MTRD with various structures. More-
over, by adopting different distance functions, various al-
gorithms based on various distribution assumptions for a
given data can be derived under the CFRM model. To
demonstrate the potential of CFRM, in the rest of paper
we adopt CFRM with Euclidean distance function to de-
rive a novel spectral clustering algorithm for MTRD. For
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convenience, we re-define the CFRM model under Euclid-
ean distance function as follows.

Definition 3.2. Givenm positive numbers{ki}1≤i≤m and
MTRD {X1, . . . ,Xm}, which is described by a set of re-
lation matrices{R(ij) ∈ Rni×nj}1≤i<j≤m, a set of fea-
ture matrices{F (i) ∈ Rni×fi}1≤i≤m, as well as a set of

weightsw
(ij)
a , w

(i)
b ∈ R+ for different types of relations

and features, the task of the collective clustering on the
MTRD is to minimize

L =
∑

1≤i<j≤m

w(ij)
a ||R(ij) − C(i)A(ij)(C(j))T ||2

+
∑

1≤i≤m

w
(i)
b ||F (i) − C(i)B(i)||2 (2)

w.r.t. C(i) ∈ {0, 1}ni×ki , A(ij) ∈ Rki×kj , andB(i) ∈
Rki×fi subject to the constraints:

∑ki

q=1 C
(i)
pq = 1, where

1 ≤ p ≤ ni, 1 ≤ i < j ≤ m, and || · || denotes the
Frobenius norm for a matrix.

4. Spectral Relational Clustering

Spectral clustering (Ng et al., 2001; Bach & Jordan, 2004)
has been well studied in the literature. The spectral cluster-
ing methods based on the graph partitioning theory focus
on finding the best cuts of a graph that optimize certain pre-
defined criterion functions. The optimization of the crite-
rion functions usually leads to the computation of singular
vectors or eigenvectors of certain graph affinity matrices.
Many criterion functions, such as the average cut (Chan
et al., 1993), the average association (Shi & Malik, 2000),
the normalized cut (Shi & Malik, 2000), and the min-max
cut (Ding et al., 2001), have been proposed.

Traditional spectral clustering focuses on the single type
data. As we discussed before, if we apply traditional spec-
tral clustering to each type of data objects individually,
there are a number of limitations. To our best knowledge,
there is little research on spectral clustering for general
MTRD. In this section, we derive a novel spectral clus-
tering algorithm for MTRD under the CFRM model with
Euclidean distance function.

First, without loss of generality, we re-define the cluster
indicator matricC(i) as the following vigorous cluster in-
dicator matrix,

C(i)
pq =

{
1

|π(i)
q | 12

if xip ∈ π
(i)
q

0 otherwise

where|π(i)
q | denotes the number of objects in theqth clus-

ter ofX (i). ClearlyC(i) still captures the disjoint cluster
memberships and(C(i))T C(i) = Iki whereIki denotes
ki×ki identity matrix. Hence our task is the minimization:

min
{(C(i))T C(i)=Iki

}1≤i≤m

{A(ij)∈Rki×kj }1≤i<j≤m

{B(i)∈Rki×fi}1≤i≤m

L (3)

whereL is the same as in Eq. (2).

Then, we prove the following lemma, which is useful in
proving our main theorem.

Lemma 4.1. If {C(i)}1≤i≤m, {A(ij)}1≤i<j≤m, and
{B(i)}1≤i≤m are the optimal solution to Eq.(3), then

A(ij) = (C(i))T R(ij)C(j) (4)

B(i) = (C(i))T F (i) (5)

for 1 ≤ i ≤ m.

Proof. The objective function in Eq. (3) can be expanded
as follows.

L =
∑

1≤i<j≤m

w(ij)
a tr((R(ij) − C(i)A(ij)(C(j))T )

(R(ij) − C(i)A(ij)(C(j))T )T ) +∑

1≤i≤m

w
(i)
b tr((F (i) − C(i)B(i))(F (i) − C(i)B(i))T )

=
∑

1≤i<j≤m

w(ij)
a (tr(R(ij)(R(ij))T ) +

tr(A(ij)(A(ij))T )− 2tr(C(i)A(ij)(C(i))T (R(ij))T ))

+
∑

1≤i≤m

w
(i)
b (tr(F (i)(F (i))T ) + tr(B(i)(B(i))T )

−2tr(C(i)B(i)(F (i))T )) (6)

where tr denotes the trace of a matrix; the terms
tr(A(ij)(A(ij))T ) and tr(B(i)(B(i))T ) result from the com-
municative property of the trace and(C(i))T (C(i)) = Iki .
Based on Eq. (6), solving∂L

∂A(ij) = 0 and ∂L
∂B(i) = 0 leads

to Eq. (4) and Eq. (5). This completes the proof of the
lemma.

Lemma 4.1 implies that the objective function in Eq. (2)
can be simplified to the function of onlyC(i). This leads to
the following theorem, which is the basis of our algorithm.

Theorem 4.2. The minimization problem in Eq.(3) is
equivalent to the following maximization problem:

max
{(C(i))T C(i)

=Iki
}1≤i≤m

∑

1≤i≤m

w
(i)
b tr((C(i))T F (i)(F (i))T C(i))+

∑

1≤i<j≤m

w(ij)
a tr((C(i))T R(ij)C(j)(C(j))T (R(ij))T C(i)) (7)
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Proof. From Lemma 4.1, we have Eq. (4) and (5). Plug-
ging them into Eq. (6), we obtain

L =
∑

1≤i≤m

w
(i)
b (tr(F (i)(F (i))T )−

tr((C(i))T F (i)(F (i))T C(i))) +∑

1≤i<j≤m

w(ij)
a (tr(R(ij)(R(ij))T )−

tr((C(i))T R(ij)C(j)(C(j))T (R(ij))T C(i))). (8)

Since in Eq. (8), tr(F (i)(F (i))T ) and tr(R(ij)(R(ij))T ) are
constants, the minimization ofL in Eq. (3) is equivalent to
the maximization in Eq. (7). This completes the proof of
the theorem.

We propose an iterative algorithm to determine the optimal
(local) solution to the maximization problem in Theorem
4.2, i.e., at each iterative step we maximize the objective
function in Eq. (7) w.r.t. only one matrixC(p) and fix other
C(j) for j 6= p where1 ≤ p, j ≤ m. Based on Eq. (7), after
a little algebraic manipulation, the task at each iterative step
is equivalent to the following maximization,

max
(C(p))T C(p)=Ikp

tr((C(p))T M (p)C(p)) (9)

where

M (p) = w
(p)
b (F (p)(F (p))T )+

∑

p<j≤m

w(pj)
a (R(pj)C(j)(C(j))T (R(pj))T ) +

∑

1≤j<p

w(jp)
a ((R(jp))T C(j)(C(j))T (R(jp))). (10)

ClearlyM (p) is a symmetric matrix. SinceC(p) is a vig-
orous cluster indicator matrix, the maximization problem
in Eq. (9) is still NP-hard. However, as in the spectral
graph partitioning, if we apply real relaxation toC(p) to let
C(p) be an arbitrary orthonormal matrix, it turns out that
the maximization in Eq. (9) has a closed-form solution.

Theorem 4.3. (Ky-Fan thorem) LetM be a symmetric
matrix with eigenvaluesλ1 ≥ λ2 ≥ . . . ≥ λk, and
the corresponding eigenvectorsU = [u1, . . . , uk]. Then∑k

i=1 λi = maxXT X=Ik
tr(XT MX). Moreover, the opti-

mal X is given by[u1, . . . , uk]Q whereQ is an arbitrary
orthogonal matrix.

Based on Theorem 4.3 (Bhatia, 1997), at each iterative step
we updateC(p) as the leadingkp eigenvectors of the matix
M (p). After the iteration procedure converges, since the re-
sulting eigen-matrices are not indicator matrices, we need
to transform them into cluster indicator matrices by post-
processing (Bach & Jordan, 2004; Zha et al., 2002; Ding &

Algorithm 1 Spectral Relational Clustering

Input: Relation matrices{R(ij) ∈ Rni×nj}1≤i<j≤m , fea-
ture matrices{F (i) ∈ Rni×fi}1≤i≤m, numbers of clusters

{ki}1≤i≤m, weights{w(ij)
a , w

(i)
b ∈ R+}1≤i<j≤m.

Output: Cluster indicator matrices{C(p)}1≤p≤m.
Method:
1: Initialize {C(p)}1≤p≤m with othonormal matrices.
2: repeat
3: for p = 1 to m do
4: Compute the matrixM (p) as in Eq. (10).
5: UpdateC(p) by the leadingkp eigenvectors of

M (p).
6: end for
7: until convergence
8: for p = 1 to m do
9: transformC(p) into a cluster indicator matrix by the

k-means.
10: end for

He, 2004). In this paper, we simply adopt the k-means for
the postprocessing.

The algorithm, called Spectral Relational Clustering
(SRC), is summarized in Algorithm 1. By iteratively up-
datingC(p) as the leadingkp eigenvectors ofM (p), SRC
makes use of the interactions among the hidden structures
of different type of objects. After the iteration procedure
converges, the hidden structure for each type of objects is
embedded in an eigen-matrix. Finally, we postprocess each
eigen-matrix to extract the cluster structure.

To illustrate the SRC algorithm, we describe the specific
update rules for the tri-type relational data as shown in Fig-
ure 1(b): updateC(1) as the leadingk1 eigenvectors of

w
(12)
a R(12)C(2)(C(2))T (R(12))T ; updateC(2) as the lead-

ing k2 eigenvectors ofw(12)
a (R(12))T C(1)(C(1))T R(12) +

w
(23)
a R(23)C(3)(C(3))T (R(23))T ; updateC(3) as the lead-

ing k3 eigenvectors ofw(23)
a (R(23))T C(2)(C(2))T R(23).

the computational complexity of SRC can be shown to
be O(tmn2k) where t denotes the number of iterations,
n = Θ(ni) andk = Θ(ki). For sparse data, it could be
reduced toO(tmzk) where z denotes the number of non-
zero elements.

The convergence of SRC algorithm can be proved. We
describe the main idea as follows. Theorem 4.2 and Eq.
(9) imply that the updates of the matrices in Line5 of
Algorithm 1 increase the objective function in Eq. (7),
and hence equivalently decrease the objective function in
Eq.(3). Since the objective function in Eq. (3) has the lower
bound0, the convergence of SRC is guaranteed.
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5. Experimental Results

In this section, we evaluate the effectiveness of the SRC
algorithm on two types of MTRD, bi-type relational data
and tri-type star-structured data as shown in Figure 1(a) and
Figure 1(b), which represent two basic structures of MTRD
and arise frequently in real applications.

The data sets used in the experiments are mainly based on
the20-Newsgroup data (Lang, 1995) which contains about
20, 000 articles from20 newsgroups. We pre-process the
data by removing stop words and file headers and selecting
the top2000 words by the mutual information. The word-
document matrixR is based ontf.idf and each document
vector is normalized to the unit norm vector. In the experi-
ments the classic k-means is used for initialization and the
final performance score for each algorithm is the average
of the 20 test runs unless stated otherwise.

5.1. Clustering on bi-type relational Data

In this section we conduct experiments on a bi-type rela-
tional data, word-document data, to demonstrate the effec-
tiveness of SRC as a novel co-clustering algorithm. A rep-
resentative spectral clustering algorithm, Normalized-Cut
(NC) spectral clustering (Ng et al., 2001; Shi & Malik,
2000), and BSGP (Dhillon, 2001), are used as compar-
isons.

The graph affinity matrix for NC isRT R, i.e., the cosine
similarity matrix. In NC and SRC, the leadingk eigenvec-
tors are used to extract the cluster structure, wherek is the
number of document clusters. For BSGP, the second to the
(dlog2 ke+1)th leading singular vectors are used (Dhillon,
2001). K-means is adopted to postprocess the eigenvectors.
Before postprocessing, the eigenvectors from NC and SRC
are normalized to the unit norm vector and the eigenvectors
from BSGP are normalized as described by Dhillon (2001).
Since all the algorithms have random components resulting
from k-means or itself, at each test we conduct three trials
with random initializations for each algorithm and the op-
timal one provides the performance score for that test run.
To evaluate the quality of document clusters, we elect to
use the Normalized Mutual Information (NMI) (Strehl &
Ghosh, 2002), which is a standard way to measure the clus-
ter quality.

At each test run, five data sets, multi2 (NG 10, 11),
multi3(NG 1,10,20), multi5 (NG 3, 6, 9, 12, 15), multi8
(NG 3, 6, 7, 9, 12, 15, 18, 20) and multi10 (NG 2, 4, 6, 8,
10, 12 ,14 ,16 ,18,20), are generated by randomly sampling
100 documents from each newsgroup. Here NGi means
the ith newsgroup in the original order. For the numbers
of document clusters, we use the numbers of the true doc-
ument classes. For the numbers of word clusters, there are
no options for BSGP, since they are restricted to equal to
the numbers of document clusters. For SRC, it is flexible
to use any number of word clusters. Since how to choose
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Figure 2. (a), (b) and (c) are document embeddings of multi2
data set produced by NC, BSGP and SRC, respectively (u1 and
u2 denote first and second eigenvectors, respectively). (d) is an
iteration curve for SRC.

Table 1.NMI comparisons of SRC, NC and BSGP algorithms

DATA SET SRC NC BSGP

MULTI 2 0.4979 0.1036 0.1500
MULTI 3 0.5763 0.4314 0.4897
MULTI 5 0.7242 0.6706 0.6118
MULTI 8 0.6958 0.6192 0.5096
MULTI 10 0.7158 0.6292 0.5071

the optimal number of word clusters is beyond the scope of
this paper, we simply choose one more word clusters than
the corresponding document clusters, i.e., 3,4, 6, 9, and 11.
This may not be the best choice but it is good enough to
demonstrate the flexibility and effectiveness of SRC.

In Figure 2, (a), (b) and (c) show three document embed-
dings of a multi2 sample, which is sampled from two close
newsgroups,rec.sports.baseballandrec.sports.hockey. In
this example, when NC and BSGP fail to separate the doc-
ument classes, SRC still provides a satisfactory separation.
The possible explanation is that the adaptive interactions
among the hidden structures of word clusters and document
clusters remove the noise to lead to better embeddings. (d)
shows a typical run of the SRC algorithm. The objective
value is the trace value in Theorem 4.2.

Table 1 shows NMI scores on all the data sets. We observe
that SRC performs better than NC and BSGP on all data
sets. This verifies the hypothesis that benefiting from the
interactions among the hidden structures of different types
of objects, the SRC’s adaptive dimensionality reduction has
advantages over the dimensionality reduction of the exist-
ing spectral clustering algorithms.

5.2. Clustering on Tri-type Relational Data

In this section, we conduct experiments on tri-type star-
structured relational data to evaluate the effectiveness of
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Table 2.Taxonomy structures for three data sets

DATA SET TAXONOMY STRUCTURE

TM1 {NG10, NG11}, {NG17, NG18, NG19}
TM2 {NG2, NG3}, {NG8, NG9}, {NG12, NG13}
TM3 {NG4, NG5}, {NG8, NG9}, {NG14, NG15},

{NG17, NG18}

SRC in comparison with other two algorithms for MTRD
clustering. One is based onm-partite graph partitioning,
Consistent Bipartite Graph Co-partitioning (CBGC) (Gao
et al., 2005) (we thank the authors for providing the ex-
ecutable program of CBGC). The other is Mutual Rein-
forcement K-means (MRK), which is implemented based
on the idea of mutual reinforcement clustering as discussed
in Section 2.

The first data set is synthetic data, in which two rela-
tion matrices,R(12) with 80-by-100 dimension andR(23)

with 100-by-80 dimension, are binary matrices with 2-by-
2 block structures.R(12) is generated based on the block

structure
[

0.9 0.7
0.8 0.9

]
, i.e., the objects in cluster 1 ofX (1)

is related to the objects in cluster 1 ofX (2) with probabil-
ity 0.9, and so on so forth.R(23) is generated based on

the block structure
[

0.6 0.7
0.7 0.6

]
. Each type of objects has

two equal size clusters. It is not a trivial task to identify
the cluster structure of this data set, since the block struc-
tures are subtle. We denote this data set as Binary Relation
Matrices (BRM) data.

Other three data sets are built based on the 20-newsgroups
data for hierarchical taxonomy mining and document clus-
tering. In the field of text categorization, hierarchical tax-
onomy classification is widely used to obtain a better trade-
off between effectiveness and efficiency than flat taxonomy
classification. To take advantage of hierarchical classifi-
cation, one must mine a hierarchical taxonomy from the
data set. We can see that words, documents and cate-
gories formulate a tri-type relational data, which consists of
two relation matrices, a word-document matrixR(12) and a
document-category matrixR(23) (Gao et al., 2005).

The true taxonomy structures for three data sets, TM1,
TM2 and TM3, are listed in Table 2. For example, TM1
data set is sampled from five categories, in which NG10
and NG11 belong to the same high level categoryres.sports
and NG17, NG18 and NG19 belong to the same high level
categorytalk.politics. Therefore, for the TM1 data set, the
expected clustering result on categories should be{NG10,
NG11} and {NG17, NG18, NG19} and the documents
should be clustered into two clusters according to their cat-
egories. The documents in each data set are generated by
sampling 100 documents from each category.

The number of clusters used for documents and categories
are 2, 3 and 4 for TM1, TM2 and TM3, respectively. For
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Figure 3.Three pairs of embeddings of documents and categories
for the TM1 data set produced by SRC with different weights: (a)
and (b) withw

(12)
a = 1, w

(23)
a = 1; (c) and (d) withw

(12)
a =

1, w
(23)
a = 0; (e) and (f) withw

(12)
a = 0, w

(23)
a = 1.

the number of word clusters, we adopt the number of cate-

gories, i.e., 5, 6 and 8. For the weightsw
(12)
a andw

(23)
a , we

simply use equal weight, i.e.,w(12)
a = w

(23)
a = 1. Figure

3 illustrates the effects of different weights on embeddings

of documents and categories. Whenw
(12)
a = w

(23)
a = 1,

i.e., SRC makes use of both word-document relations and
document-category relations, both documents and cate-
gories are separated into two clusters very well as in (a)
and (b) of Figure 3, respectively; when SRC makes use of
only the word-document relations, the documents are sep-
arated with partial overlapping as in (c) and the categories
are randomly mapped to a couple of points as in (d); when
SRC makes use of only the document-category relations,
both documents and categories are incorrectly overlapped
as in (e) and (f), respectively, since the document-category
matrix itself does not provide any useful information for
the taxonomy structure.

The performance comparison is based on the cluster quality
of documents, since the better it is, the more accurate we
can identify the taxonomy structures. Table 3 shows NMI
comparisons of the three algorithms on the four data sets.
The NMI score of CBGC is available only for BRM data
set because the CBGC program provided by the authors
only works for the case of two clusters and small size ma-
trices. We observe that SRC performs better than MRK and
CBGC on all data sets. The comparison shows that among
the limited efforts in the literature attempting to cluster
multi-type interrelated objects simultaneously, SRC is an
effective one to identify the cluster structures of MTRD.

6. Conclusions and Future Work

In this paper, we propose a general model CFRM for clus-
tering MTRD. The model is applicable to relational data
with various structures. Under this model, we derive a
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Table 3.NMI comparisons of SRC, MRK and CBGC algorithms

DATA SET SRC MRK CBGC

BRM 0.6718 0.6470 0.4694
TM1 1 0.5243 –
TM2 0.7179 0.6277 –
TM3 0.6505 0.5719 –

novel algorithm SRC to cluster multi-type interrelated data
objects simultaneously. SRC iteratively embeds each type
of data objects into low dimensional spaces. Benefiting
from the interactions among the hidden structures of differ-
ent types of data objects, the iterative procedure amounts to
adaptive dimensionality reduction and noise removal lead-
ing to better embeddings. Extensive experiments demon-
strate the promise and effectiveness of the CFRM model
and SRC algorithm. There are a number of interesting po-
tential directions for future research in the CFRM model
and SRC algorithm, such as extending CFRM to more gen-
eral cases with soft clustering, deriving new algorithms un-
der other distance functions and exploring more applica-
tions for SRC.
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