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Abstract

Relational learning has attracted more and more
attention in recent years due to its phenomenal
impact in various important applications which
involve multi-type interrelated data objects, such
as bioinformatics, citation analysis, epidemiol-
ogy and web analytics. However, the research
on unsupervised relational learning is still lim-
ited and preliminary. In this paper, we propose
a general model, the collective factorization on
related matrices, for multi-type relational data
clustering. The model is applicable to relational
data with various structures. Under the proposed
model with a specific distance function — Euclid-
ean distance function, we derive a novel spectral
clustering algorithm, spectral relational cluster-
ing, to cluster multi-type interrelated data objects
simultaneously. The algorithm iteratively em-
beds each type of data objects into low dimen-
sional spaces and benefits from the interactions
among the hidden structures of different types
of data objects. Extensive experiments demon-
strate the promise and effectiveness of the pro-
posed model and algorithm.

other, such as Web pages, search queries and Web users in
a Web search system, and papers, key words, authors and
conferences in a scientific publication domain. In such sce-
narios, using traditional methods to cluster each type of ob-
jects independently may not work well due to the following
reasons.

First, to make use of relation information under the tradi-
tional clustering framework, the relation information needs
to be transformed into features. In general, this transforma-
tion causes information loss and/or very high dimensional
and sparse data. For example, if we represent the rela-
tions between Web pages and Web users as well as search
queries as the features for the Web pages, this leads to a
huge number of features with sparse values for each Web
page. Second, traditional clustering approaches are unable
to tackle the interactions among the hidden structures of
different types of objects, since they cluster data of sin-
gle type based on static features. Note that the interactions
could pass along the relations, i.e., there exists influence
propagation in multi-type relational data. Third, in some
machine learning applications, users are not only interested
in the hidden structure for each type of objects, but also
the global structure involving multi-types of objects. For
example, in document clustering, in addition to document
clusters and word clusters, the relationship between docu-
ment clusters and word clusters is also useful information.

Itis difficult to discover such global structures by clustering
each type of objects individually.

Most clustering approaches in the literature focus on "flat"Therefore, multi-type relational data has presented a great
data in which each data object is represented as a fixedthallenge for traditional clustering approaches. In this
length feature vector (R.O.Duda et al., 2000). Howeverstudy, first, we propose a general model, the collective
many real-world data sets are much richer in structure, infactorization on related matrices, to discover the hidden
volving objects of multiple types that are related to eachstructures of multi-types of objects based on both feature
Eiipformation and relation information. By clustering the
dnulti-types of objects simultaneously, the model performs
adaptive dimensionality reduction for each type of data.

1. Introduction

Presented at the ICML Workshop on Open Problems in Statistic
Relational Learning, Pittsburgh, PA, 2006. Copyright 2006 by th
author(s)/owner(s).
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Through the related factorizations which share factors, thequvilent to the Kernel K-means and the Laplacian-based
hidden structures of different types of objects could inter-spectral clustering.

act under the model. In addition to the cluster Strucwre%ompared with co-clustering, clustering on general rela-

for each type of data, the model also provides informatior}ional data, which may consist of more than two types of
about the relation between clusters of different types of ob- '

jects data object_s, has not been ngl studied in the literature.
' Several noticeable efforts are discussed as follows. Taskar
Under this model, we derive a novel spectral clustering alet al. (2001) extend the the probabilistic relational model to
gorithm, the spectral relational clustering, to cluster multi-the clustering scenario by introducing latent variables into
type interrelated data objects simultaneously. By iterativelythe model. Gao et al. (2005) formulate star-structured rela-
embedding each type of data objects into low dimensionalional data as a star-structuredpartite graph and develop
spaces, the algorithm benefits from the interactions amongn algorithm based on semi-definite programming to par-
the hidden structures of different types of data objectstition the graph. Like bipartite graph partitioning, it has
The algorithm has the simplicity of spectral clustering ap-limitations that the clusters from different types of objects
proaches but at the same time also applicable to relationahust have one-to-one associations and it fails to consider
data with various structures. Theoretic analysis and expetthe feature information.
imental results demonstrate the promise and effectivene

of the algorithm. An intuitive idea for clustering multi-type interrelated ob-

jects is the mutual reinforcement clustering. The idea
works as follows: start with initial cluster structures of the
2. Related Work data; derive the new reduced features from the clusters of

Clusteri ial ¢ multict lational dat the related objects for each type of objects; based on the
ustering on a special case of multi-type relational daltay, oy features, cluster each type of objects with a traditional

bi-type relatlonal'data, sgch as the word-documen't data, I§Iustering algorithm; go back to the second step until the
called co-clustering or bi-clustering. Several previous ef'algorithm converges. Base on this idea, Zeng et al. (2002)
forts related to co-clustering are model based. PLSA (Hof- ropose a framework for clustering hete,rogeneous Web ob-
mann, 1999) is a method based on a mixturg decompos_itig&cts and Wang et al. (2003) present an approach to im-
derlveq from a latent class modell. A.two_-5|ded clusterin prove the cluster quality of interrelated data objects through
model 'S proposed for collaborative filtering by Hofmann , jterative reinforcement clustering process. However,
and Puzicha (1999). there are no sound objective function and theoretical proof
Spectral graph partitioning has also been applied to bi-typ@n the effectiveness and correctness (convergence) of the
relational data (Dhillon, 2001; H.Zha & H.Simon, 2001). mutual reinforcement clustering. Long et al. (2006) for-
These algorithms formulate the data matrix as a bipartiténulate multi-type relational data as K-partite graphs and
graph and seek to find the optimal normalized cut for thepropose a novel algorithm to identify the hidden structures
graph. Due to the nature of a bipartite graph, these algoof a k-partite graph by constructing a relation summary net-
rithms have the restriction that the clusters from differentwork to approximate the original k-partite graph under a
types of objects must have one-to-one associations. broad range of distortion measures.

Information-theory based co-clustering has also attractedo summarize, the research on multi-type relational data
attention in the literature. El-Yaniv and Souroujon (2001)clustering has attracted substantial attention, especially in
extend the information bottleneck (IB) framework (Tishby the special cases of relational data. However, there is still
et al., 1999) to repeatedly cluster documents and thefimited and preliminary work on the general relational data.
words. Dhillon et al. (2003) propose a co-clustering al-This paper attempts to derive a theoretically sounded model
gorithm to maximize the mutual information between theand algorithm for general multi-type relational data cluster-
clustered random variables subject to the constraints on theg.

number of row and column clusters. A more generalized

co—clustering_framework is prgsented by Banerjee et alg Collective Factorization on Related

(2004) wherein any Bregman divergence can be used in the .

objective function. Matrices

Recently, co-clustering has been addressed based on mattk this section, we propose a general model for clustering
factorization. Both Long et al. (2005) and Li (2005) model multl—type_relatlonal data based on factorizing multiple re-
the co-clustering as an optimization problem involving alated matrices.

triple matrix factorization. Long et al. (2005) propose anGjven m sets of data objects, X, —

EM-like algorithm based on multiplicative updating rules {4\, . 2.}, ... X, = {Zm1,...,%mn, }, Which

and Li (2005) proposes a hard clustering algorithm for bi-refer tom different types of objects relating to each other,

nary data. Ding et al. (2005) extend the non-negative Mage are interested in simultaneously clusteritiginto k,
trix factorization to symmetric matrices and show that it is
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ture matrixF (9 ¢ R™*fi, the cluster structure is reflected
: in the factorization of (¥ such thatF() ~ C®B®),
o @ ° whereC) € {0, 1}"**: is a cluster indicator matrix, and

B\ e RFi*Ji is the feature basis matrix which consists of
k; basis (cluster center) vectors in the feature space.

Based on the above discussions, formally we formulate the
@) ®) task of collective clustering on MTRD as the following op-

Figure 1.Examples of the structures of multi-type relational data. timization pr9b|em- Considering the most ggneral case, we
assume that in MTRD, every pair & andX; is related to

disjoint clusters, ..., andt,, into k,, disjoint clusters. each other and every; has a feature matrix' (9.
We call this task azollective clustering on multi-type pefinition 3.1. Given a distance functio®, m positive
relational data numbers{k;}1<i<m and MTRD {Xi,...,X,,}, which

To derive a general model for collective clustering, we firstis described by a set of relation matrice{sR(ij) €
formulate Multi-Type Relational Data (MTRD) as a set of R"*"i}, ., ;<,,, a set of feature matrice$F") ¢
related matrices, in which two matrices are related in tthmxfi}1<i<m, as well as a set of Weightsffj),wéi) c
sense that their row indices or column indices refer to thep . for different types of relations and features, the task of
same set of objects. First, if there exist relations betweemne collective clustering on the MTRD is to minimize

&; and A; (denoted ast; ~ X;), we represent them as a

relation matrixR(17) € R"*", where an elemenk);’ L = Y  wfDRD, AW CDH)T)
denotes the relation betweer), andz;,. Second, a set of 1<i<j<m
objectsX; may have its own features, which could be de- (1) (1) () ()

R D(F" Y B\ 1
noted by a feature matrik(?) ¢ R */: where an element + 1<Zi<:m w, DE,C ) @)

F,Sf} denotes theth feature values for the object, and f;
is the number of features fo¥;. wrt. CO ¢ {0,1}mxki  AG) ¢ RRixkiand BY ¢

Figure 1 shows three examples of the structures of MTRDR**/ subject to the constraintst;" , Oy =1, where
Example (a) refers to a basic bi-type of relational data ded <p < n;, 1 <i <j < m.

noted by a relation matri®(*?), such as word-document
data. Example (b) represents a tri-type of star-structur
data, such as Web pages, Web users and search querie
Web search systems, which are denoted by two relation maFhe CFRM model clusters multi-type interrelated data ob-

trices R1?) and R(?®). Example (c) represents the data jects simultaneously based on both relation and feature in-
consisting of shops, customers, suppliers, shareholders afiormation. The model exploits the interactions between the
advertisement media, in which customers (type 5) have feahidden structures of different types of objects through the

tures. The data are denoted by four relation matrit€d),  related factorizations which share matrix factors, i.e., clus-

R(13) R(14) and R15) . and one feature matrik(®. ter indicator matrices. Hence, the interactions between hid-

.den structures work in two ways. First, A ~ X}, the in-

It has been shown that the hidden structure of a data matriyactions are reflected as the duality of row clustering and
can be explored by its factorization (D.D.Lee & H'S'Seung’column clustering imk(). Second, if two types of objects

1999; Long etal,, 2005). Motivated by this observation, we, o indirectly related, the interactions pass along the rela-
propose a general_ r_nodel for co_llectlve clusterlng, whic ion "chains” by a series of related factorizations, i.e., the
ﬁﬁsge(tjhon lfaitorl?ngtthe fmultltple reflatbe_d matrlcebs. Inmodel is capable of dealing with influence propagation. In

b d'd gpus elr[_slruc t"f‘ o(l)r a ty_pe 0_ ﬁ ]eatg{nay be addition to local cluster structure for each type of objects,
embedded in multipie related matrices, hence It can be ey e yogel also provides the global structure information by

ploited in multiple related factorizations. First 4 ~ X; the cluster association matrices, which represent the rela-
then the cluster structures of baif) and X; are reflected tions among the clusters of different types of objects.

in the triple factorization of their relation matriR(*/) such _ _ _ _
that R(9) ~ C(i)A(ij)(C(j))T (Long et al., 2005), where _Cl_:RM is a general model _for relgmonal clustering, since
ol ¢ {0 1}mxki is acluster indicator matrisfor X; such it is appllcable. to MTRD Wlth various strgctures. .More-
ki () (i) over, by adopting different distance functions, various al-
thatd =, Cpg = 1 andCyq = 1 denotes that theth  44ithms based on various distribution assumptions for a
object in&; is associated with theth cluster. Similarly  given data can be derived under the CFRM model. To
CW e {0,1}*ki. A) € RF>k; is the cluster associ-  demonstrate the potential of CFRM, in the rest of paper
ation matrixsuch thatd’/, denotes the association betweenwe adopt CFRM with Euclidean distance function to de-
clusterp of X; and clustey; of X;. Second, itY; has afea- rive a novel spectral clustering algorithm for MTRD. For

eMVe call the model proposed in Definition 3.1 as the Collec-
Jiye Factorization on Related Matrices (CFRM).
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convenience, we re-define the CFRM model under Euclid-
ean distance function as follows.

Definition 3.2. Givenm positive numberg; }1<;<,, and {(C(U)chgflk’_}mw L ®)
MTRD {&, ..., X}, which is described by a set of re- {ijeRkixkj}I‘Si;j;m
lation matrices{R(7) € R™*"i} <, <y, a set of fea- {BW R it cicom

ture matrices{ F() € R"*fi},.;.,,, as well as a set of
weightsw{?, wé” € R, for different types of relations _ o _
and features, the task of the collective clustering on thelhen, we prove the following lemma, which is useful in

MTRD is to minimize proving our main theorem.
Lemma 4.1. If {CD} i, {A@}cicjcm, and

wherelL is the same as in Eq. (2).

_ (@) ) p(Ed) _ (@) A9 (T (|2 )
L = 1<;< we||R CHAT(C)] {B®},<;<., are the optimal solution to Eq3), then
S<gysm
+ Z w||FO — ¢ B@)|? ) Al = (CNT R CG) (4)
1<i<m B — (O(i))TF(i) (5)

wrt. 00 ¢ {0)1}n,;xk7~,, A ¢ RFixk; and BO) ¢ forl <i<m.
R¥i*fi subject to the constraintij’;;1 cf) = 1, where

1 <p<mn,1<i<j<m,and| ]| denotes the Proof. The objective function in Eq. (3) can be expanded

Frobenius norm for a matrix. as follows.

4. Spectral Relational Clustering L= 3 wu((RY - A CNT)
1<i<j<m

Spectral clustering (Ng et al., 2001; Bach & Jordan, 2004) (R(ij) - C(i)A(ij)(C(j))T)T) +

has been well studied in the literature. The spectral cluster- , . Y ‘ o

ing methods based on the graph partitioning theory focus ST wu((FD — cOBO)(FO — o BO)T)

on finding the best cuts of a graph that optimize certain pre- 1<i<m

defined criterion functions. The optimization of the crite-

— (i5) (i5) ( REINT
rion functions usually leads to the computation of singular Z we ! (R (R)T) +

vectors or eigenvectors of certain graph affinity matrices. 151:,<j§m__ o ) 3
Many criterion functions, such as the average cut (Chan tr(AD (AT _ otr(CD A (0T (RE))TY)
et al., 1993), the average association (Shi & Malik, 2000), (1) (@) ( p(NT (@) RNT
the normalized cut (Shi & Malik, 2000), and the min-max + 1<Z< wy ((EHEE)T) 4 (BB
cut (Ding et al., 2001), have been proposed. e

—2tr(CD BO(F)TY) (6)

Traditional spectral clustering focuses on the single type

data. As we discussed before, if we apply traditional speCyhere tr denotes the trace of a matrix; the terms
tral clustering to each type of data objects individually, t( 4(i7)(A(i))T) and t( B (B®)T) result from the com-
there are a number of limitations. To our best knOWIedgeEunicative property of the trace a@)” (C1) = Iy..

there is little research on spectral clustering for genera o an oL
MTRD. In this section, we derive a novel spectral clus- ased on Eq. (6), solving(; = 0 and 756, = 0 leads

tering algorithm for MTRD under the CFRM model with ro Eq. (4) and Eq. (5). This completes the proof g the
Euclidean distance function. emma

First, without loss of generality, we re-define the cluster) emma 4.1 implies that the objective function in Eq. (2)
indicator matricC as the following vigorous cluster in- .o pe simplified to the function of onty. This leads to

dicator matrix, the following theorem, which is the basis of our algorithm.
1 if 2. el Theorem 4.2. The minimization problem in Eq.(3) is
cll) = {02 R equivalent to the following maximization problem:
0 otherwise
max Y w tr((CO)TFOFO)TO0) 4
(1) . . {(CNTo® £
where|r, | denotes the number of objects in tité clus- e, LSiSm

ter of (V). Clearly C® still captures the disjoint cluster - PRV
memberships andC))7C) = I, wherel,, denotes ~ »_ witr((CO)TRIDCI(CO)T(RD)TOW) (7)
k; x k; identity matrix. Hence our task is the minimization; 1<i<j<m
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Proof. From Lemma 4.1, we have Eqg. (4) and (5). Plug-Algorithm 1 Spectral Relational Clustering
ging them into Eg. (6), we obtain Input: Relation matrice§ R(7) € R™*"i}y o, icp, , fe@-
; N ture matriceq () € R™*fi}, ... numbers of clusters
L= Y ufd r(FO (FO)T)- | s

(i5)
1<i<m

{ki}1<i<m, weights{wg ,wz()i) € Ry hi<icj<m.

i ool ; Output: Cluster indicator matrice§C ") }; <<,

tr((C’( ))TF( )(F( ))TC( ))) + Method: P
Z wgij)(tr(R(ij)(R(ij))T) —

1<i<j<m

1: Initialize {C'"}, <<, With othonormal matrices.

2: repeat
tr((c(i))TR(ij)C(j)(C(j))T(R(ij))TC(i)»' 8) 3: forp=1tomdo _ _

4; Compute the matrix/® as in Eq. (10).
Since in Eq. (8), ttF) (F()T) and t( R (RW)T) are 5 Update C(?) by the leadingk, eigenvectors of
constants, the minimization df in Eq. (3) is equivalent to M®).
the maximization in Eq. (7). This completes the proof of 6: end for
the theorem. O 7: until convergence

8: for p =1tom do

We propose an iterative algorithm to determine the optimal 9:  transformC®) into a cluster indicator matrix by the
(local) solution to the maximization problem in Theorem k-means.
4.2, i.e., at each iterative step we maximize the objectivelO: end for
function in Eq. (7) w.r.t. only one matrig'?) and fix other
C) for j # pwherel < p,j < m. Based on Eq. (7), after
a little algebraic manipulation, the task at each iterative step
is equivalent to the following maximization,

max tr((c(p))TM(p)C(p)) ) He, 2004). In this paper, we simply adopt the k-means for

(CoNTCw =1y, the postprocessing.
where The algorithm, called Spectral Relational Clustering
(SRC), is summarized in Algorithm 1. By iteratively up-
M®) = P (PO (F®)T) 4 datingC'?) as the leading;, eigenvectors of\/(), SRC
, N - - makes use of the interactions among the hidden structures
> wP(RPDCH(CO)T(RPNT) + of different type of objects. After the iteration procedure
p<j<m converges, the hidden structure for each type of objects is
Z ngp)((R(jp))TC(j)(C(j))T(R(jp)))_ (10) embedded_in an eigen-matrix. Finally, we postprocess each
52, eigen-matrix to extract the cluster structure.

To illustrate the SRC algorithm, we describe the specific
Clearly M(?) is a symmetric matrix. Sinc€® is a vig- update rules for the tri-type relational data as shown in Fig-
orous cluster indicator matrix, the maximization problemure 1(b): updateC") as the leading:; eigenvectors of
in Eq. (9) is still NP-hard. However, as in the spectral w('® R(12 @) (C2)T(ROUD)T; updateC® as the lead-
graph partitioning, if we apply real relaxation@®) to let ing k- eigenvectors O{USQ)(R(IZ))TC(I)(C(l))TR(12) +
C® pe an arpitrgry orthonormal matrix, it turns om_Jt that wg23)R(23)C(3)(C(:s))T(R(zs))T; updateC'® as the lead-
the maximization in Eq. (9) has a closed-form solutlon.. ing ks eigenvectors otUL(LZB)(R(gg))Tc(g)(0(2))TR(23)'
Theorem 4.3. (Ky-Fan thorem) LetM be a symmetric
matrix with eigenvalues\; > X, > ... > ), and the computational complexity of SRC can be shown to
the corresponding eigenvectots = [u,...,u;]. Then be O(gzmjk) \(/j‘/zere %‘g:f;o'[is the numzer of itera;t:jork;s,
¥\ = maxyr x5 tr(XTMX). Moreover, the opti- 't = ©(ni) andk = O(k;). For sparse data, It could be
%ér)l( is given gy[i;l’“ . ,(uk]Q Wh)ereQ is an arbitra?y reduced toO(tmzk) where z denotes the number of non-
orthogonal matrix. zero elements.
] ) ) The convergence of SRC algorithm can be proved. We
Based on Theorem 4.3 (Bhatia, 1997), at each iterative Stegescribe the main idea as follows. Theorem 4.2 and Eq.
we updateC(?) as the leading;, eigenvectors of the matix (9) imply that the updates of the matrices in Lifeof
M @), After the iteration procedure converges, since the reAlgorithm 1 increase the objective function in Eq. (7),
sulting eigen-matrices are not indicator matrices, we neednd hence equivalently decrease the objective function in
to transform them into cluster indicator matrices by post-Eq.(3). Since the objective function in Eq. (3) has the lower
processing (Bach & Jordan, 2004; Zha et al., 2002; Ding &ound0, the convergence of SRC is guaranteed.
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5. Experimental Results @ ®

In this section, we evaluate the effectiveness of the SRC 0414
algorithm on two types of MTRD, bi-type relational data 06 05
and tri-type star-structured data as shown in Figure 1(a) and 08

Figure 1(b), which represent two basic structures of MTRD

_ /A AN
and arise frequently in real applications. o o 0t T woo
The data sets used in the experiments are mainly based on 0 © ) @
the20-Newsgroup data (Lang, 1995) which contains about | $1s !
20,000 articles from20 newsgroups. We pre-process the 082 e,
data by removing stop words and file headers and selecting ETO_S
the top2000 words by the mutual information. The word- . s ° .
document matrixR is based onf.idf and each document 105 02 05 1 O mber Cierations

vector is normalized to the unit norm vector. In the experi-
ments the classic k-means is used for initialization and the
final performance score for each algorithm is the averagéigure 2. (a), (b) and (c) are document embeddings of multi2

of the 20 test runs unless stated otherwise. data set produced by NC, BSGP and SRC, respectivalyaqd
uo denote first and second eigenvectors, respectively). (d) is an

iteration curve for SRC.

Table 1.NMI comparisons of SRC, NC and BSGP algorithms
In this section we conduct experiments on a bi-type rela-

5.1. Clustering on bi-type relational Data

tional data, word-document data, to demonstrate the effec- DATASET SRC NC BSGP
tiveness of SRC as a novel co-clustering algorithm. A rep-

resentative spectral clustering algorithm, Normalized-Cut MULTI 2 0.4979 0.1036 0.1500
(NC) spectral clustering (Ng et al., 2001; Shi & Malik, MULTI 3 0.5763 0.4314 0.4897
2000), and BSGP (Dhillon, 2001), are used as compar- MuLtis - 0.7242  0.6706 0.6118
iSOns. MULTI8 0.6958 0.6192 0.5096

MuLTI10  0.7158 0.6292 0.5071

The graph affinity matrix for NC isR” R, i.e., the cosine
similarity matrix. In NC and SRC, the leadirigeigenvec-  the optimal number of word clusters is beyond the scope of
tors are used to extract the cluster structure, wkesethe  this paper, we simply choose one more word clusters than
number of document clusters. For BSGP, the second to thghe corresponding document clusters, i.e., 3,4, 6, 9, and 11.
([log, k] + 1)th leading singular vectors are used (Dhillon, This may not be the best choice but it is good enough to
2001). K-means is adopted to postprocess the eigenvectorgemonstrate the flexibility and effectiveness of SRC.
Before postprocessing, the eigenvectors from NC and SRE_‘

are normalized to the unit norm vector and the eigenvectors: 4 e
ings of a multi2 sample, which is sampled from two close

from BSGP are normalized as described by Dhillon (2001).
ewsgroupsrec.sports.basebalindrec.sports.hockeyln

Since all the algorithms have random components resulting :
from k-means or itself, at each test we conduct three trials > example, when NC and BSGP fail to separate the doc-

with random initializations for each algorithm and the op- ument cla_sses, SRC St.'" pr_owdes a satlsfac_tory_ separation.
The possible explanation is that the adaptive interactions

timal one provides the performance score for that test run. ;
To evaluate the quality of document clusters, we elect tfmong the hidden structures of word clusters and document

use the Normalized Mutual Information (NMI) (Strehl & clusters remove the noise to lead to better embeddings. (d)

Ghosh, 2002), which is a standard way to measure the cluss-hows. a typical run of t'he SRC algorithm. The objective
ter quality. value is the trace value in Theorem 4.2.
; ; Table 1 shows NMI scores on all the data sets. We observe
At h test , five dat ts, Iti2 (NG 10, 11),
mul?ig((:NGels 1{)”;0) I\r/r?ultig ?Ns(;eg Gmlé |12( 15) multi8) that SRC performs better than NC and BSGP on all data
(NG 3, 6,7 9 1’2 1’5 18, 20) and'mly,llti,lo (f\lG 2’ 4. 6. g Sets. This verifies the hypothesis that benefiting from the
L AR 18 oM are . interactions among the hidden structures of different types

10, 12,14 ,16,18,2 I li . . . . . .
0,12,14,16,18,20), are generated by randomly samplin f objects, the SRC's adaptive dimensionality reduction has

100 documents from each newsgroup. Here Ni@eans ; - ) : X
the ith newsgroup in the original order. For the numbersadvantages over the dimensionality reduction of the exist-

of document clusters, we use the numbers of the true dodM9 spectral clustering algorithms.

ument classes. For the numbers of word clusters, there are ) ] )

no options for BSGP, since they are restricted to equal t&-2- Clustering on Tri-type Relational Data

the numbers of document clusters. For SRC, it is flexible, this section, we conduct experiments on tri-type star-

to use any number of word clusters. Since how to choosgyyctyred relational data to evaluate the effectiveness of

Figure 2, (a), (b) and (c) show three document embed-
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Table 2.Taxonomy structures for three data sets . @ oo ®)
s 0 - Ea ’ -
DATA SET TAXONOMY STRUCTURE o o o
TM1 {NG10, NG1T, {NG17,NG18, NG19 L 08 06 -04 -02 oes 00s
TM2 {NG2, NG3, {NG8, NGY, {NG12, NG13 o o
T™M3 {NG4, NG5}, {NG8, NG9, {NG14, NG15, 1 . 1
{NG17,NG1§ - mw 5 05
T o8 06 04 w02 % 05 1
SRC in comparison with other two algorithms for MTRD u, u,
clustering. One is based on-partite graph partitioning, L © L 0
Consistent Bipartite Graph Co-partitioning (CBGC) (Gao oob o
et al., 2005) (we thank the authors for providing the ex-
ecutable program of CBGC). The other is Mutual Rein- R 0 o5 1 05 0 05
forcement K-means (MRK), which is implemented based E "
on the idea of mutual reinforcement clustering as discussed. _ _ i
in Section 2. Figure 3.Three pairs of embeddings of documents and categories

for the TM1 data set produced by SRC with different weights: (a)
The first data set is synthetic data, in which two rela-and (b) withw('® = 1,w(*® = 1; (c) and (d) withw('® =
tion matrices,R(12) with 80-by-100 dimension an&®®  1,w{* = 0; (e) and (f) withw$'* = 0, w(*® = 1.
with 100-by-80 dimension, are binary matrices with 2-by-

2 block structures.R1?) is generated based on the block the number of word clusters, we adopt the number of cate-

structure{ o 08 } i.e., the objects in cluster 1 gf()  gories, i.e., 5,6 and 8. For the weight§ > anduw(", we

simply use equal weight, i.ew*? = w®® = 1. Figure

' i i 2) wi il-
s related to the objects in cluster 1412 with probabil 3 illustrates the effects of different weights on embeddings

ity 0.9, and so on so forth.R(23) is generated based on .
y o g of documents and categories. Whefi? = w{®¥ = 1,

the block structure g7 ¢ |. Each type of objects has o "SRC makes use of both word-document relations and
two equal size clusters. It is not a trivial task to identify document-category relations, both documents and cate-
the cluster structure of this data set, since the block strucgories are separated into two clusters very well as in (a)
tures are subtle. We denote this data set as Binary Relaticamd (b) of Figure 3, respectively; when SRC makes use of
Matrices (BRM) data. only the word-document relations, the documents are sep-

Other three data sets are built based on the 20-newsgrou gated with partial overlapping as in (c) and the categories

data for hierarchical taxonomy mining and document cIus—Sgéa;i?(rgslyg:%ge:ntlo ?hzoggl:irﬂe?\(:lr;z:s(;rn (?e)l;a\ggﬁg
tering. In the field of text categorization, hierarchical tax- y gory '

onomy classification is widely used to obtain a better trade—b Ot.h documder}ts and ca@eglorle.s arer:ncgrrectly overlapped
off between effectiveness and efficiency than flat taxonomyaS Itn' (e')t ar?f d( ), resptecuve.()j/, since the f (lar_:ufment-tc_:atefgory
classification. To take advantage of hierarchical classiﬁ-tmh:;1 tr;(xcl)igm c;(tari:tﬁreprow € any usetul information for
cation, one must mine a hierarchical taxonomy from the y '
data set. We can see that words, documents and cat@he performance comparison is based on the cluster quality
gories formulate a tri-type relational data, which consists ofof documents, since the better it is, the more accurate we
two relation matrices, a word-document matR¥2) anda  can identify the taxonomy structures. Table 3 shows NMI
document-category matri®(??) (Gao et al., 2005). comparisons of the three algorithms on the four data sets.
The NMI score of CBGC is available only for BRM data
set because the CBGC program provided by the authors
only works for the case of two clusters and small size ma-
Yrices. We observe that SRC performs better than MRK and
BGC on all data sets. The comparison shows that among
he limited efforts in the literature attempting to cluster
multi-type interrelated objects simultaneously, SRC is an

effective one to identify the cluster structures of MTRD.

The true taxonomy structures for three data sets, TM1
TM2 and TM3, are listed in Table 2. For example, TM1
data set is sampled from five categories, in which NG1
and NG11 belong to the same high level categesysports
and NG17, NG18 and NG19 belong to the same high leve,
categorytalk.politics Therefore, for the TM1 data set, the
expected clustering result on categories shouldN@&10,
NG11} and {NG17, NG18, NG19 and the documents
should be clustered into two clusters according to their cat- )

egories. The documents in each data set are generated By Conclusions and Future Work

sampling 100 documents from each category. In this paper, we propose a general model CFRM for clus-

The number of clusters used for documents and categorigering MTRD. The model is applicable to relational data
are 2, 3 and 4 for TM1, TM2 and TM3, respectively. For with various structures. Under this model, we derive a
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Ding, C. H. Q., He, X., Zha, H., Gu, M., & Simon, H. D. (2001).
A min-max cut algorithm for graph partitioning and data clus-
tering. Proceedings of ICDM 200@pp. 107-114).

Table 3.NMI comparisons of SRC, MRK and CBGC algorithms

DATASET ~ SRC MRK  CBGC El-Yaniv, R., & Souroujon, O. (2001). Iterative double clustering
for unsupervised and semi-supervised learniftegCML (pp.

BRM 0.6718 0.6470 0.4694 121-132).

™1 1 0.5243 -

™2 0.7179 0.6277 - Gao, B., Liu, T.-Y,, Zheng, X., Cheng, Q.-S., & Ma, W.-Y. (2005).

TM3 0.6505 0.5719 - Consistent bipartite graph co-partitioning for star-structured
high-order heterogeneous data co-clusterir¢DD '05 (pp.
41-50).

novel algorithm SRC to cluster multi-type interrelated data

objects simultaneously. SRC iteratively embeds each typglofmann, T. (1999). Probabilistic latent semantic analyBisc.

of data objects into low dimensional spaces. Benefiting of Uncertainty in Artificial Intelligence, UAI'99Stockholm.
from the interactions among the hidden structures of differofmann, T., & Puzicha, J. (1999). Latent class models for col-
ent types of data objects, the iterative procedure amounts to laborative filtering.lJCAI'99. Stockholm.

adaptive dimensionality reduction and noise removal lead-
ing to better embeddings. Extensive experiments demort:
strate the promise and effectiveness of the CFRM model
and SRC algorithm. There are a number of interesting pokang, K. (1995). News weeder: Learning to filter netnel@\viL.
tential directions for future research in the CFRM model
and SRC algorithm, such as extending CFRM to more gen
eral cases with soft clustering, deriving new algorithms un-

der other distance functions and exploring more applicatong, B., Wu, X., (mark) zhang, Z., & Yu, P. S. (2006). Unsuper-
tions for SRC. vised learning on k-partite graphkDD '06.

Zha, C.Ding, M. X., & H.Simon (2001). Bi-partite graph parti-
tioning and data clusteringhCM CIKM'0L.

Li, T. (2005). A general model for clustering binary data.
KDD'05.
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