
Recursive Random Fields

Daniel Lowd LOWD@CS.WASHINGTON.EDU
Pedro Domingos PEDROD@CS.WASHINGTON.EDU

Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195-2350, USA

Abstract
A formula in first-order logic can be viewed as a
tree, with a logical connective at each node, and
a knowledge base can be viewed as a tree whose
root is a conjunction. Markov logic (Richard-
son & Domingos, 2006) makes this conjunction
probabilistic, as well as the universal quantifiers
directly under it, but the rest of the tree remains
purely logical. This causes an asymmetry in
the treatment of conjunctions and disjunctions,
and of universal and existential quantifiers. We
propose to overcome this by allowing the fea-
tures of Markov logic networks (MLNs) to be
nested MLNs. We call this representation recur-
sive random fields (RRFs). RRFs can represent
many first-order distributions exponentially more
compactly than MLNs. We perform inference in
RRFs using MCMC and ICM, and weight learn-
ing using a form of backpropagation. Weight
learning in RRFs is more powerful than structure
learning in MLNs. Applied to first-order knowl-
edge bases, it provides a very flexible form of
theory revision.

1. Introduction
Recent years have seen the development of increasingly
powerful combinations of relational and probabilistic rep-
resentations, along with inference and learning algorithms
for them. One of the most general representations to date
is Markov logic, which attaches weights to first-order for-
mulas and views them as templates for features of Markov
random fields (Richardson & Domingos, 2006). While
Markov logic may be the language of choice for many ap-
plications, its unification of logic and probability is incom-
plete. This is because it only treats the top-level conjunc-
tion and universal quantifiers in a knowledge base as prob-
abilistic, when in principle any logical combination can be

Presented at the ICML Workshop on Open Problems in Statistical
Relational Learning, Pittsburgh, PA, 2006. Copyright 2006 by the
author(s)/owner(s).

viewed as the limiting case of an underlying probability
distribution. In Markov logic, disjunctions and existential
quantifiers remain deterministic. Thus the symmetry be-
tween conjunctions and disjunctions, and between univer-
sal and existential quantifiers, is lost (except in the infinite-
weight limit).

For example, an MLN with the formula R(X)∧ S(X) can
treat worlds that violate both R(X) and S(X) as worse
than worlds that only violate one. Since an MLN acts as a
soft conjunction, the groundings of R(X) and S(X) sim-
ply appear as distinct formulas. (MLNs convert the knowl-
edge base to CNF before performing learning or inference.)
This is not possible for the disjunction R(X) ∨ S(X):
no distinction is made between satisfying both R(X) and
S(X) and satisfying just one. Since a universally quanti-
fied variable is effectively a conjunction over all ground-
ings, while an existentially quantified variable is a disjunc-
tion over all groundings, this leads to the two quantifiers
being handled differently.

This asymmetry can be avoided by “softening” disjunction
and existential quantification in the same way that Markov
logic softens conjunction and universal quantification. The
result is a representation where MLNs can have nested
MLNs as features. We call these recursive Markov logic
networks, or recursive random fields (RRFs) for short.

RRFs have many desirable properties, including the ability
to represent distributions like noisy DNF, rules with excep-
tions, and m-of-all quantifiers much more compactly than
MLNs. RRFs also allow more flexibilty in revising first-
order theories to maximize data likelihood. Standard meth-
ods for inference in Markov random fields are easily ex-
tended to RRFs, and weight learning can be carried out ef-
ficiently using a variant of the backpropagation algorithm.

RRF theory revision can be viewed as a first-order prob-
abilistic analog of the KBANN algorithm, which initial-
izes a neural network with a propositional theory and uses
backpropagation to improve its fit to data (Towell & Shav-
lik, 1994). A propositional RRF (where all predicates have
zero arity) differs from a multilayer perceptron in that its
output is the joint probability of its inputs, not the regres-

Recursive Random Fields

sion of a variable on others (or, in the probabilistic ver-
sion, its conditional probability). Propositional RRFs are
an alternative to Boltzmann machines, with nested features
playing the role of hidden variables. Because the nested
features are deterministic functions of the inputs, learn-
ing does not require EM, and inference does not require
marginalizing out variables.

The remainder of this paper is organized as follows. We be-
gin by discussing MLNs and their limitations. We then in-
troduce RRFs along with inference and learning algorithms
for them, compare them to MLNs, and present preliminary
experimental results.

2. Markov Logic Networks
A Markov logic network (MLN) consists of a set of for-
mulas and weights, {(wi, fi)}, that serve as a template for
constructing a Markov random field. Each feature of the
Markov random field is a grounding of one of the formu-
las. The joint probability distribution is therefore:

P (X = x) =
1
Z

exp

(∑
i

wini(x)

)
where ni is the number of true groundings of the ith for-
mula given this assignment, and Z is a normalization con-
stant so that the probabilities of all worlds sum to one.
Richardson and Domingos (2006) show that, in finite do-
mains, this generalizes both first-order logic and Markov
random fields.

Another way to think about a Markov logic network is as
a “softening” of a deterministic knowledge base. A first-
order knowledge base can be represented as a conjunction
of all groundings of all of its formulas. MLNs relax this
conjunction by allowing worlds that violate formulas, but
assign a per-grounding penalty for each formula. Worlds
that violate many formulas are therefore possible, but less
likely than those that violate fewer. In this way, even in-
consistent knowledge bases can be applied.

However, while MLNs soften conjunctions and universals,
disjunctions and existentials remain deterministic. For ex-
ample, in Markov logic ∀x R(x) (with some finite weight)
assigns increasing probability to states with increasing
number of objects x satisfying R(x), but ∃x R(x) assigns
the same probability to all states in which at least one object
satisfies R(x).

3. Recursive Random Fields
A recursive random field (RRF) is a log-linear model in
which each feature is either an observable variable or the
output of another recursive random field. To build up intu-
ition, we first describe the propositional case, then general-

ize it to the more interesting relational case.

3.1. Propositional RRFs

While our primary goal is solving relational problems,
RRFs may be interesting in propositional domains as well.
Propositional RRFs extend Markov random fields and
Boltzmann machines in the same way multilayer percep-
trons extend single-layer ones. The extension is very sim-
ple in principle, but allows RRFs to compactly represent
important concepts, such as m-of-n. It also allows RRFs
to learn features via weight learning, which could be more
effective than current feature-search methods for Markov
random fields.

The probability distribution of a propositional RRF is as
follows:

P (X = x) =
1
Z0

exp

(∑
i

wifi(x)

)
where Z0 is a normalization constant, to ensure that the
probabilities of all possible states x sum to 1. What makes
this different from a standard Markov random field is how
the features fi(x) are defined: either

fi(x) = xj (base case), or

fi(x) =
1
Zi

exp

∑
j

wijfj(x)

 (recursive case)

In the recursive case, the summation is over all features fj

referenced by the “parent” feature fi. The child features,
fj , can reference children of their own, and so on for an ar-
bitrary number of levels. A child feature can appear in more
than one parent feature, and thus an RRF can be viewed as
a directed acyclic graph of features. (Note that the proba-
bilistic graphical model it represents is still undirected.)

Since the overall distribution is simply a recursive feature,
we can also write the probability distribution as follows:

P (X = x) = f0(x)

Except for Z0 (the normalization of the root feature, f0),
the per-feature normalization constants Zi can be absorbed
into the corresponding feature weights wki in their parent
features fk. Therefore, the user is free to choose any con-
venient normalization or even no normalization at all.

It is easy to show that this generalizes Markov random
fields with conjunctive or disjunctive features. Each fi ap-
proximates a conjunction when weights wij are very large.
In the limit, fi will be 1 iff the conjunct is true. fi can also
represent disjuncts using large negative weights, along with
a negative weight for a “parent” feature fk, wki. The neg-
ative weight wki turns the conjunction into a disjunction

Recursive Random Fields

Figure 1. Simple propositional RRF network structure. This
structure can represent any Markov random field with up to m
conjunctive or disjunctive features, as well as many more com-
plex distributions.

just as negation does in De Morgan’s laws. However, one
can also move beyond conjunction and disjunction to repre-
sent m-of-n concepts, or even more complex distributions
where the feature values are given non-uniform weights.

Note that features with small weights have little effect.
Therefore, instead of using heuristics or search to deter-
mine which attributes should appear in which feature, we
can include all predicates and let weight learning sort out
which attributes are relevant for which feature. This is simi-
lar to learning a neural network by initializing it with small,
random values. Since the network can represent any logical
formula, there is no need to commit to a specific structure
ahead of time. An example of such an RRF structure is
shown in Figure 3.1. This is an attractive alternative to the
traditional inductive methods used for learning MRF fea-
tures.

An RRF can be seen as a type of multi-layer neural net-
work, in which the node function is exponential (rather than
sigmoidal) and the network is trained to maximize joint
likelihood. Unlike in neural networks, the random vari-
ables are all inputs, not inputs or outputs. The output is the
likelihood of the random variables’ joint configuration. In
other ways, an RRF resembles a Boltzmann machine, but
with the greater flexibility of multiple layers and learnable
using a variant of the back-propagation algorithm. RRFs
have no hidden variables to sum out, since all nodes in the
network have deterministic values.

3.2. Relational RRFs

In the relational case, relations over an arbitrary number
of objects take the place of a fixed number of variables.
To allow parameter tying across different groundings, we
use parameterized features, or parfeatures. We represent
the parameter tuple as a vector, ~g, whose size depends on
the arity of the parfeature. (Note that ~g is a vector of log-
ical variables—i.e., arguments to predicates—as opposed
to the random Boolean variables x—ground atoms—that

represent a state of the world.) We use subscripts to distin-
guish among parfeatures with different parameterizations,
e.g. fi,~g(~x) and fi,~g′(~x) represent different groundings of
the ith parfeature.

Each RRF parfeature is defined in one of two ways:

fi,~g(x) = Ri(gi1 , . . . , gik
) (base case)

fi,~g(x) =
1
Zi

exp

∑
j

wij

∑
~g′

fj,~g,~g′(x)

 (recursive case)

The base case is straightforward: it simply represents the
value of a ground relation (as specified by x). The ground-
ing of the relation depends on the parameters of the par-
feature. The recursive case sums the weighted values of
all child parfeatures. Each parameter gi of a child parfea-
ture is either a parameter of the parent feature (gi ∈ ~g) or
a parameter of a child feature that is summed out and does
not appear in the parent feature (gi ∈ ~g′). (These ~g′ pa-
rameters are analogous to the parameters that appear in the
body but not the head of a Horn clause.) Just as sums of
child features act as conjunctions, the summations over ~g′

parameters act as universal quantifiers with Markov logic
semantics. In fact, these generalized quantifiers can repre-
sent m-of-all concepts, just as the simple feature sums can
represent m-of-n concepts.

The relational version of a recursive random field is there-
fore defined as follows:

P (X = x) = f0(x)

where X is the set of all ground relations (e.g., R(A,B),
S(A)), x is an assignment of ground relations to truth val-
ues, f0 is the root recursive parfeature (which, being the
root, has no parameters). Since f0 is a recursive parfeature,
it is normalized by the constant Z0 to ensure a valid prob-
ability distribution. (As in the propositional case, all other
Zi’s can be absorbed into the weights of their parent fea-
tures, and may therefore be normalized in any convenient
way.)

Any relational RRF can be converted into a propositional
RRF by grounding all parfeatures and expanding all sum-
mations. Each distinct grounding of a parfeature becomes
a distinct feature, but with shared weights.

3.3. RRF Example

To clarify these ideas, let us take the example knowledge
base from Richardson and Domingos (2006). The domain
consists of three predicates: Smokes(g) (g is a smoker);
Cancer(g) (g has cancer); and Friends(g, h) (g is a friend
of h). We abbreviate these predicates as Sm(g), Ca(g), and
Fr(g, h), respectively.

Recursive Random Fields

We wish to represent three beliefs: (i) smoking causes can-
cer; (ii) friends of friends are friends (transitivity of friend-
ship); and (iii) everyone has at least one friend who smokes.
(The most interesting belief from Richardson and Domin-
gos (2006), that people smoke if and only if their friends
do, is omitted here for simplicity.) We demonstrate how to
represent these beliefs by first converting them to first-order
logic, and then converting to an RRF.

One can represent the first belief, “smoking causes cancer,”
in first-order logic as a universally quantified implication:
∀g : Sm(g) ⇒ Ca(g). This implication can be rewritten as
a disjunction: ¬Sm(g) ∨ Ca(g). From De Morgan’s laws,
this is equivalent to: ¬(Sm(g) ∧ ¬Ca(g)), which can be
represented as an RRF feature:

f1,g(x) =
1
Z1

exp(w1,1Sm(g) + w1,2Ca(g))

where w1,1 is positive, w1,2 is negative, and the feature
weight w0,1 is negative (not shown above). In general,
since RRF features can model conjunction and disjunction,
any CNF knowledge base can be represented as an RRF.

A similar approach works for the second belief, “friends
of people are friends.” In first-order logic: ∀g : Fr(g, h) ∧
Fr(h, i) ⇒ Fr(g, i). This is easily rewritten as a disjunction
and turned into the following RRF feature:

f2,g,h,i(x) =
1
Z2

exp(w2,1Fr(g, h) +

w2,2Fr(h, i) + w2,3Fr(g, i))

The first two beliefs are also handled well by Markov logic
networks. The key advantage of recursive random fields is
in representing more complex formulas. The third belief,
“everyone has at least one friend who smokes,” is naturally
represented by nested quantifiers: ∀g : ∃h : Fr(g, h) ∧
Sm(h). This is best represented as an RRF feature that
references a secondary feature:

f3,g(x) =
1
Z3

exp

(∑
h

w3,1f4,g,h(x)

)

f4,g,h(x) =
1
Z4

exp(w4,1Fr(g, h) + w4,2Sm(h))

Note that in RRFs this feature can also represent a distribu-
tion over the number of smoking friends each person has,
depending on the assigned weights. It’s possible that, while
almost everyone has at least one smoking friend, many peo-
ple have at least two or three. With an RRF, we can actually
learn this distribution from data.

This third belief is very problematic for an MLN. First of
all, in an MLN it is purely logical: there’s no change in

probability with the number of smoking friends once that
number exceeds one. Secondly, MLNs do not represent the
belief efficiently. In an MLN, the existential quantifier is
converted to a very large disjunction:

(Fr(g,A) ∧ Sm(A)) ∨ (Fr(g,B) ∧ Sm(B)) ∨ · · ·

If there are 1000 objects in the database, then this disjunc-
tion is over 1000 conjunctions. Further, the MLN will con-
vert this DNF into CNF form, leading to 21000 CNF clauses
from each grounding of this rule.

These features define a full joint distribution as follows:
P (X = x) = 1

Z0
exp

(∑
g w0,1f1,g(x)+∑

g,h,i w0,2f2,g,h,i(x)∑
g w0,3f3,g(x))

Figure 2 diagrams the first-order knowledge base contain-
ing all of these beliefs, along with the corresponding RRF.

4. Inference
Since RRFs generalize MLNs, which in turn generalize fi-
nite first-order logic and Markov random fields, exact in-
ference is intractable. Instead, we use MCMC inference, in
particular Gibbs sampling. This is straightforward: we sim-
ply sample each unknown ground predicate in turn, con-
ditioned on all other ground predicates. The probability
of a particular ground predicate may easily be computed
by evaluating the relative likelihoods when the predicate is
true and when it is false.

We speed this up significantly by caching feature sums.
When a predicate is updated, it notifies its parents of the
change so that only the necessary values are recomputed.

Our current implementation of MAP inference uses iterated
conditional modes (ICM) (Besag, 1986), a simple method
for finding a mode of a distribution. Starting from a ran-
dom configuration, ICM sets each variable in turn to its
most likely value, conditioned on all other variables. This
procedure continues until no single-variable change will
further improve the likelihood. ICM is easy to imple-
ment, fast to run, and guaranteed to converge. Unfortu-
nately, it has no guarantee of converging to the most likely
overall configuration. Possible improvements include ran-
dom restarts, simulated annealing, or other ways of adding
noise. MaxWalkSAT (Kautz et al., 1996) has been suc-
cessfully applied to MAP inference in MLNs (Singla &
Domingos, 2005), and in the future we may be able to adapt
MaxWalkSat to RRFs as well.

We also use ICM to find an initial state for the Gibbs sam-
pler. By starting at a mode, we significantly reduce the
burn-in time and achieve better predictions sooner.

Recursive Random Fields

¬Sm(g)

!!

Ca(g) ¬Fr(g,h) ¬Fr(h,i) Fr(g,i)

"

g # g,h,i # g

Fr(g,h) Sm(h)

"

$ h

f0

%g f1,g

Sm(g) Ca(g)

w1,4 w1,5

%g,h,i f2,g,h,i

Fr(g,h) Fr(h,i) Fr(g,i)

w2,6 w2,7
w2,8

%g
f3,g

Fr(g,h) Sm(h)

%h f9,g,h

w3,9

w9,10 w9,11

w0,1
w0,2

w0,3

¬Sm(g)

!!

Ca(g) ¬Fr(g,h) ¬Fr(h,i) Fr(g,i)

"

g # g,h,i # g

Fr(g,h) Sm(h)

"

$ h

f0

%g f1,g

Sm(g) Ca(g)

w1,4 w1,5

%g,h,i f2,g,h,i

Fr(g,h) Fr(h,i) Fr(g,i)

w2,6 w2,7
w2,8

%g
f3,g

Fr(g,h) Sm(h)

%h f9,g,h

w3,9

w9,10 w9,11

w0,1
w0,2

w0,3

Figure 2. Comparison of first-order logic and RRF structures. The RRF structure closely mirrors that of first-order logic, but ANDs and
ORs are replaced by weighted sums.

5. Learning
Given a particular RRF structure and initial set of weights,
we learn weights using a novel variant of the back-
propagation algorithm. As in traditional back-propagation,
the goal is to efficiently compute the derivative of the loss
function with respect to each weight in the model. In this
case, the loss function is not the error in predicting the out-
put variables, but rather the joint log likelihood of all vari-
ables. We must also consider the partition function for the
root feature, Z0. For these computations, we extract the
1/Z0 term from f0, and use f0 refer to the unnormalized
feature value.

We begin by discussing the simpler, propositional case. We
abbreviate fi(x) as fi for these arguments. The derivative
of the log likelihood with respect to a weight wij consists
of two terms:

∂ log P (x)
∂wij

=
∂ log(1/Z0f0)

∂wij
=

∂ log(f0)
∂wij

− ∂ log(Z0)
∂wij

The first term can be evaluated with the chain rule:

∂ log(f0)
∂wij

=
∂ log(f0)

∂fi

∂fi

∂wij

From the definition of fi (including the normalization Zi):

∂fi

∂wij
= fi

(
fj −

1
Zi

∂Zi

∂wij

)
From repeated applications of the chain rule, the
∂ log(f0)/∂fi term is the sum of all derivatives along all
paths through the network from f0 to fi. Given a path in
the feature graph {f0, fa, . . . , fk, fi}, the derivative along
that path takes the form f0wafawbfb · · ·wkfkwi. We can
efficiently compute the sum of all paths by caching the per-
feature partials, ∂f0/∂fi, analogous to back-propagation.

The second term, ∂ log(Z0)/∂wij , is the expected value of
the first term, evaluated over all possible inputs x′. There-
fore, the complete partial derivative is:

∂ log P (x)
∂wij

=
∂ log(f0(x))

∂wij
− Ex′

[
∂ log(f0(x′))

∂wij

]

where the individual components are evaluated as above.

Since explicitly computing the expectation is typically in-
tractable, we approximate it using Gibbs sampling. For
discriminative learning, an alternate approximation is the
MAP state, as proposed by Collins (2002) and recently ap-
plied to MLNs (Singla & Domingos, 2005). The latter
approach is likely to work better when more evidence is
present.

In practice, we find that a small number of iterations of
Gibbs sampling (< 100) per step of gradient descent is suf-
ficient. In each iteration, we resample all of the random
variables. While this will not sample all modes, it is usually
enough to determine the rough direction of the gradient, a
method Hinton (2002) refers to as “contrastive divergence.”
Since convergence can take hundreds or thousands of iter-
ations, making each step as efficient as possible is quite
important.

To learn a relational RRF, we use the domain to instanti-
ate a propositional RRF with tied weights. The number of
features as well as the number of children per feature will
depend on the number of objects in the domain. Instead
of a weight being attached to a single feature, it is now at-
tached to a set of groundings of a parfeature. The partial
derivative with respect to a weight is therefore the sum of
the partial derivatives with respect to each instantiation of
the shared weight.

6. RRFs vs. MLNs
Both RRFs and MLNs subsume probabilistic models and
first-order logic in finite domains. Both can be trained gen-
eratively or discriminatively using gradient descent, either
to optimize log likelihood or pseudo-likelihood. For both,
when optimizing log likelihood, the normalization constant
Z0 is approximated using the most-likely explanation or
Gibbs sampling.

Any MLN can be converted into a relational RRF by trans-
lating each clause into an equivalent parfeature. With suf-
ficiently large weights, a parfeature approximates a hard
conjunction or disjunction over its children. However,

Recursive Random Fields

MLNs RRFs
Non-relational MRF Yes Yes

Deterministic KB Yes Yes
Soft conjunction Yes Yes

Soft universal quant. Yes Yes
Soft disjunction No Yes

Soft existential quant. No Yes
Soft nested formulas No Yes

Table 1. Concepts that each type of model can efficiently repre-
sent.

when its weights are sufficiently distinct, a parfeature can
take on a different value for each configuration of its chil-
dren. This allows RRFs to compactly represent distribu-
tions that would require an exponential number of clauses
in an MLN. Any RRF can be converted to an MLN by flat-
tening the model, but this will typically require an exponen-
tial number of clauses. Such an MLN would be intractable
for learning or inference.

A brief comparison of the representational power of MLNs
and relational RRFs is provided in Table 1.

In addition to being “softer” than an MLN clause, an RRF
parfeature can represent many different MLN clauses sim-
ply by adjusting its weights. This makes RRF weight learn-
ing more powerful than MLN structure learning: an RRF
with n + 1 recursive parfeatures (one for the root) can rep-
resent any MLN structure with up to n clauses, as well as
many distributions that an n-clause MLN cannot represent.

This leads to new alternatives for structure learning and the-
ory revision. In a domain where little background knowl-
edge is available, an RRF could be initialized with small
random weights and still converge to a good statistical
model. This is potentially much better than MLN struc-
ture learning, which constructs clauses one predicate at a
time, and must adjust weights to evaluate every candidate
clause.

When background knowledge is available, we can revise
the existing theories as well as add new ones. We begin
by initializing the RRF to the background theory, just as in
MLNs. However, in addition to the known dependencies,
we can add dependencies on other parfeatures or predicates
with very small weights. If other dependencies are rele-
vant, they can gain larger weights through learning. If any
dependencies are irrelevant, their weights can be reduced
to negligible values through learning. In this way, RRFs
can do theory revision analagous to what the KBANN sys-
tem does using neural networks (Towell & Shavlik, 1994).
In contrast, MLNs can only do theory revision through dis-
crete search.

7. Experiments
We now present a preliminary empirical demonstration of
how RRFs can be learned.

The datasets we used consisted of five unary attributes and
one binary relation, grounded over 100 objects. Each ob-
ject was randomly assigned to one of two clusters. The
probability of each attribute depends only on the object’s
cluster. The relation is true with probability 0.5 for two
objects within the same cluster and 0.05 for two objects
in different clusters. The relation is always symmetric:
R(A,B) ⇐⇒ R(B,A).

We generated 5 datasets in this manner, each time with dif-
ferent attribute probabilities. We fixed one attribute, A0, to
be always true in the first cluster and always false in the
second cluster, and used this as our test predicate.

A clustering model can be naturally represented as a noisy
DNF, where each clause in the disjunction represents a
cluster. The clauses, being noisy, do not exactly specify
the attribute values, but rather a distribution over them. We
initialized our RRFs with the following model:

f0(x) = exp

−1
∑
g,h

f1,g,h(x)

f1,g,h(x) = exp(−f2,g,h(x)− f3,g,h(x) + R(g, h))
f2,g,h(x) = exp(0.01A0(g) + 0.01A0(h) + . . .)
f3,g,h(x) = exp(0.0A0(g) + 0.0A0(h) + . . .)

Each equality defines a parfeature as a function of other
parfeatures or predicates. The top-level negation creates a
disjunction over three cases: g and h are are not related via
R(g, h); g and h are in the first cluster; or g and h are in
the second cluster. Within the clusters, the weights give a
slight bias towards objects having similar values.

For the per-parfeature normalization constants Zi, we tried
normalizing over all values, so that each feature remains a
valid probability distribution. However, this causes the fea-
ture to take values in an overly narrow range, leading to po-
tential numeric problems. Instead, we normalized based on
the maximum possible value of the feature, so that the ef-
fective range of each fi remains approximately [0, 1]. Since
the derivative of the max function is discontinuous, we used
a continuous variant:

Zi = exp

∑
j

wijσ(wij)

where σ(wij) = 1/(1+exp(−wij)), the sigmoid function.

We trained RRF models for 1000 iterations of gradient de-
scent, each step taking 1-3 seconds. We used a Gaussian

Recursive Random Fields

Trial NB RRF (train) RRF (PLL) RRF (LL)
1 -0.2043 -0.0625 -0.0133 -0.0131
2 -0.3578 -0.0001 -0.0017 -0.0020
3 -0.2431 -0.0006 -0.2628 -0.3648
4 -0.2136 -0.0002 -0.5575 -0.5748
5 -0.4914 -0.0001 -0.0018 -5.6088

Table 2. Results for a simple two-cluster relational model. NB is
the true model, ignoring relational information. The next three
columns are the performance of a trained RRF on the training
data, on the test data, and on the test data with all query predicates
hidden. The last case is what the learning procedure attempts to
optimize.

prior with mean zero and σ2 = 100 on each weight. In
Table 7, we present the results on each dataset. The first
column lists the per-predicate log likelihood of A0 using a
non-relational naive Bayes model. The parameters for the
model are the same as those used to generate the data, ex-
cept that it ignores the relation. This represents the best
possible model that disregards all relational information.
The second column shows per-predicate RRF pseudo-log-
likelihood (i.e., conditional log-likelihood of each predi-
cate given its Markov blanket in the data). This is the eas-
iest case for RRFs, since the training and test data are the
same, and all but one grounding of A0 were known at infer-
ence time. The next column shows pseudo-log-likelihood
performance on a test set, independently generated from
the same distribution as the training set. RRFs convinc-
ingly outperform naive Bayes in trials 1 and 2. Trials 3 and
4 show evidence of overfitting.

The final column shows the average log likelihood of the
test predicates. 100 variables were unknown at inference
time. We approximated the likelihood using 1000 samples
of each variable from each of 10 chains of Gibbs sampling.
In total, each query atom was sampled 10,000 times. One
problem with Gibbs sampling over cluster models is the
tendency to become trapped in local minima. This seems
to be the case with Trial 5. A more sophisticated MCMC
technique (like simulated tempering or slice sampling) may
overcome this.

We also experimented with MLNs on this dataset. How-
ever, we were unable to obtain good results: the models we
learned consistently fell into poor modes and mispredicted
most groundings. We are currently investigating this.

Our experiments cannot yet prove that RRFs are practical,
but they do show potential and highlight areas of future
work.

8. Conclusion
Recursive random fields overcome some salient limita-
tions of Markov logic. While MLNs only model uncer-

tainty over conjunctions and universal quantifiers, RRFs
also model uncertainty over disjunctions and existentials,
and thus achieve a deeper integration of logic and probabil-
ity. Inference in RRFs can be carried out using Gibbs sam-
pling and iterated conditional modes, and weights can be
learned using a variant of the back-propagation algorithm.

The main disadvantage of RRFs relative to MLNs is re-
duced understandability. One possibility is to extract
MLNs from RRFs with techniques similar to those used to
extract propositional theories from KBANN models. An-
other important problem for future work is scalability. Here
we plan to adapt many of the MLN optimizations to RRFs.
These include using subsampling to compute sufficient
statistics (Kok & Domingos, 2005), adapting MaxWalk-
SAT (Singla & Domingos, 2005), and adapting slice sam-
pling (Poon & Domingos, 2006).

Most importantly, we intend to apply RRFs to real datasets
to better understand how they work in practice, and to de-
termine if their greater representational power results in
better models.

Acknowledgments
The authors thank Stanley Kok for help with the experi-
ments. This work was supported by a National Science
Foundation Graduate Research Fellowship awarded to the
first author, DARPA grant FA8750-05-2-0283 (managed by
AFRL), DARPA contract NBCH-D030010, NSF grant IIS-
0534881, and ONR grant N00014-05-1-0313. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies, either expressed or implied, of
DARPA, NSF, ONR, or the United States Government.

References
Besag, J. (1986). On the statistical analysis of dirty pic-

tures. Journal of the Royal Statistical Society, Series B,
48, 259–302.

Collins, M. (2002). Discriminative training methods for
hidden Markov models: Theory and experiments with
perceptron algorithms. Proceedings of the 2002 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing. Philadelphia, PA.

Hinton, G. E. (2002). Training products of experts by min-
imizing contrastive divergence. Neural Computation,
14(8), 1771–1800.

Kautz, H., Selman, B., & Jiang, Y. (1996). A general
stochastic approach to solving problems with hard and
soft constraints. In D. Du, J. Gu and P. M. Pardalos
(Eds.), The satisfiability problem: Theory and applica-

Recursive Random Fields

tions, 573–586. New York, NY: American Mathematical
Society.

Kok, S., & Domingos, P. (2005). Learning the structure
of markov logic networks. Proceedings of the Twenty-
Second International Conference on Machine Learning
(pp. 441–448). Bonn, Germany: ACM Press.

Poon, H., & Domingos, P. (2006). Sound and efficient in-
ference with probabilistic and deterministic dependen-
cies. Proceedings of the Twenty-First National Confer-
ence on Artificial Intelligence. Boston,MA: AAAI Press.

Richardson, M., & Domingos, P. (2006). Markov logic
networks. Machine Learning, 62, 107–136.

Singla, P., & Domingos, P. (2005). Discriminative training
of Markov logic networks. Proceedings of the Twentieth
National Conference on Artificial Intelligence (pp. 868–
873). Pittsburgh, PA: AAAI Press.

Towell, G. G., & Shavlik, J. W. (1994). Knowledge-based
artificial neural networks. Artificial Intelligence, 70,
119–165.

