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1. Introduction

We are developing dynamic relational knowledge dis-
covery methods for use on mesoscale weather data.
Severe weather phenomena such as tornados, thun-
derstorms, hail, and floods, annually cause significant
loss of life, property destruction, and disruption of the
transportation systems. The annual economic impact
of these mesoscale storms is estimated to be greater
than $13B (Pielke and Carbone, 2002). Any mitiga-
tion of the effects of these storms would be benefi-
cial. However, current techniques for predicting severe
weather are tied to specific characteristics of the radar
systems. Each new sensing system requires the devel-
opment of new radar detection algorithms for detect-
ing hazardous events. Our research focuses on devel-
oping new dynamic relational models that will enable
meteorologists to improve their understanding of the
formation of tornados and other severe weather events.

Current weather radar detection and prediction sys-
tems primarily rely on numerical models. We propose
to enhance our understanding of the formation of se-
vere weather events, specifically focusing on tornados,
through knowledge discovery. The process of knowl-
edge discovery is about making sense of data. Gener-
ally, the data are too complex for humans to quickly
understand and identify the important patterns. In-
stead, knowledge discovery techniques can be used to
highlight salient patterns.

Instead of viewing the data through physical equa-
tions, we will view the data at a higher level. Weather
forecasters identify high-level features in the radar
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readings and use the relationships among these fea-
tures to determine whether or not a severe storm is
building. For example, seeing a hook echo inside a su-
percell thunderstorm is a sign that a tornado is likely
to occur in the near future. Many machine learning
methods focus on a propositional representation. How-
ever, allowing algorithms to reason about high-level
entities and relationships facilitates the discovery of
more complicated patterns. A relational representa-
tion provides a richer language and it aligns closely
with the representation already used by the human
weather forecasters.

2. Meteorological data

Figure 1 (left panels) shows a sample of the four di-
mensional gridded data that will be made available via
ensemble Kalman filter (EnKF) assimilation of real ob-
servations (Tong and Xue, 2005). The leftmost panels
show the radar retrieved wind velocities and reflectiv-
ity observed during the May 29, 2004 tornado in Ok-
lahoma City. The remaining panels show assimilated
radar reflectivity, temperature deviation, pressure de-
viation, and vertical vorticity.

The data available for a knowledge discovery system
are comprised of three-dimensional cubes, or voxels,
each of which has a set of meteorological variables as-
sociated with it. The fourth dimension of the gridded
data is time. Fundamental variables include the x, y,
z coordinates, wind readings in each direction, precip-
itation content of a cube, temperature, and pressure.
Examples of the derived variables include divergence
(spreading out of winds), temperature gradient, and
the pressure gradient force.

Each voxel has a set of readings for each of the mete-
orological variables. These readings change over time,
giving us a large and dynamic data set. For example, a
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Figure 1. An example of real data (left panels) being used to create gridded data (center and right panels). This data
is from the May 29, 2004 tornado in Oklahoma City and is courtesy of Fritchie and Droegemeier at the University of

Oklahoma.

reasonable storm simulation may be 100km by 100km
in area by 18km in height. Although the grid spacing
is generally not equal throughout the region, it can be
as small as 100m. This spacing can be reduced at the
expense of computation time. Recorded every 30 to
60 seconds, data for a single storm quickly becomes
overwhelming.

This four-dimensional gridded data will be available
from both assimilated weather observations and sim-
ulation. Droegemeier et al. (2005) is developing a
web-based computing infrastructure that will support
a more general approach to severe weather detection
and prediction. The technology to assimilate the data
into gridded form in real time is under active devel-
opment. We can also use simulated storm data pro-
duced from the Advanced Regional Prediction System,
which is one of the top weather forecasting systems for
mesoscale data (Xue et al., 2003).

Figure 1 (right panel) gives an overview of how we will
use the gridded data. For the purposes of knowledge
discovery, the gridded data will be observed through
its attributes. Observing the attributes enables us to
identify the high-level features. The set of features
in this figure represent our current set for predicting
tornados.

3. Key challenges and benefits

Mesoscale meteorological data provide a number of
challenges for knowledge discovery techniques. Given
the anticipated difficulty of working with this data, the
key reason to study it is the potential for significant
and tangible benefits.

The primary challenge comes from the temporal na-
ture of the data. There are data mining techniques for
dynamic data but these approaches use a propositional
representation (for example, see Zaki, 2001; Zaki et al.,
2005; Oates and Cohen, 1996). Although we are cur-
rently using a propositional approach, we believe that
a relational approach will enable us to better under-
stand the formation of tornados. In addition to dy-
namic, the data are continuous and multi-dimensional.
Even with a propositional representation, identifying
patterns in continuous data is difficult. We are cur-
rently using Lin et al’s (2003) approach to creat-
ing discrete data from continuous data. The multi-
dimensional aspect to the problem only makes it more
challenging. There is recent work addressing this issue
(for example, see Tanaka and Uehara, 2003) but how
to best mine multi-dimensional time series is still an
open problem.

Although weather forecasters make use of high-level
features such as those presented in Figure 1, it is dif-
ficult to automatically extract this data. For exam-
ple, defining the exact boundaries of a storm is not
straightforward. Does a storm end where the rain ends
completely or where it is only drizzling? Are the wind
speeds important? Perhaps the most difficult aspect of
answering these questions is defining an answer that a
majority of meteorologists will agree upon. Related to
this aspect, if we had the ability to identify all of the
high-level features, a relational approach would then
need to identify the relationships among these features.
Since the features are four dimensional, an exhaustive
search for possible relationships is not feasible.

We are not aware of any statistical relational models
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that can handle the volume of dynamic relational data
presented here. Applying statistical relational knowl-
edge discovery tools to this data requires the develop-
ment of both a new dynamic relational data represen-
tation and new dynamic relational models. Although
relational representations have been proven success-
ful in many real-world data mining examples with dy-
namic data (e.g., Kubica et al. (2003); McGovern et al.
(2004); Neville et al. (2005)), these representations ig-
nore the temporal aspect of the data. A first order
logical representation such as Dzeroski (1995) or Bloc-
keel and DeRaedt (1998) cannot express stochastic or
dynamic data. This cripples it for use on the weather
data. Although Richardson and Domingos’s (2005) ap-
proach can handle stochastic data, it cannot deal with
temporal data. Sanghai et al. (2003) is the only ex-
ample of a principled approach to dynamic relational
modeling that we are aware of. Their work combines
a dynamic bayes net (DBN) approach with the PRM
approach, where the PRM is used to represent data at
a single moment in time and the DBN specifies how
the relations may change over time.

The biggest potential for benefit will come from an
increased understanding of how tornados form, thus
improving their predictability. Our specific long-term
goals include reducing the number of false positives
(currently about 75%) and increasing the lead time
for warnings (currently about 12 minutes). Simmons
and Sutter (2005) recently demonstrated that Doppler
radars save an average of 80 lives per year when the
warning lead time is increased by only a few minutes.

A key benefit of developing new prediction techniques
based on assimilated data is that the creation of new
radar or other sensing systems does not necessitate
the development of new detection and prediction tech-
niques. Instead of changing the form of the data that is
available, new sensing systems improve the quality of
the gridded analysis, leading to improved prediction.
From a computer science perspective, any new models
or data representations developed for use on this data
will have to work on actual assimilated weather data.
Acknowledgments This material is based upon work
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