
Structure Refinement in First Order Conditional Influence Language

Sriraam Natarajan natarasr@eecs.oregonstate.edu

Weng-Keen Wong wong@eecs.oregonstate.edu

Prasad Tadepalli tadepall@eecs.oregonstate.edu

School of EECS, Oregon State University, USA

Abstract

In this paper, we present preliminary results
from learning the structure of first-order con-
ditional influence statements from data for
the purpose of classification. In order to
reduce the search space over structures, we
formulate and address the structure learning
problem as a problem of refining the struc-
ture of a first-order probabilistic program us-
ing training data. We use variants of the
conditional BIC scoring metric to refine the
program to best fit the data. We use a pre-
viously introduced language called FOCIL
which consists of statements that can be in-
stantiated and composed into a propositional
Bayesian network. The results on a synthetic
dataset and a real-world task show that the
algorithm achieves error rates comparable to
the gold standard program with a reasonable
amount of training data.

1. Introduction

There have been several first-order probabilistic lan-
guages developed in recent years with different
motivations, syntax, and semantics. These in-
clude probabilistic relational models (PRMs) (Getoor
et al., 2001), Bayesian logic programs (BLPs) (Ker-
sting & De Raedt, 2000), relational Bayesian net-
works (RBNs) (Jaeger, 1997), Markov logic networks
(MLNs) (Domingos & Richardson, 2004) and many
others. One principle attraction of these relational lan-
guages is that they are more succinct than their propo-
sitional counterparts, and hence their structure can be
more easily specified by the domain experts. For ex-
ample, in First-Order Conditional Influence Language
(FOCIL) (Natarajan & Altendorf, 2005), one can spec-

Presented at the ICML Workshop on Open Problems
in Statistical Relational Learning, Pittsburgh, PA, 2006.
Copyright 2006 by the author(s)/owner(s).

ify the influents (parents in the Bayes nets jargon) of
an attribute in a rule-like syntax with appropriate con-
ditions. This allows us to naturally translate English
sentences such as “the difficulty of the courses one
takes and the work one puts into them affects one’s
grades” into the corresponding first-order conditional
influence (FOCI) statements. Given a database of fac-
tual relationships between different entities, e.g. stu-
dents, courses, and teachers, these statements can in
turn be “unrolled” into a concrete Bayesian network
where the nodes represent the attributes of specific ob-
jects which are reasoned about. Since the parameters
of this concrete network are shared between all instan-
tiations, the parameterization is much more succinct
and learning is more data-efficient than in a proposi-
tional setting.

This raises the question and possibility of learning
the structure of the FOCI-statements from data in or-
der to predict the class of a target variable. Indeed,
there have been some suggested algorithms for struc-
ture search in the frameworks of PRMs (Getoor et al.,
2001) and MLNs (Kok & Domingos, 2005). However,
structure search over the space of relational models
remains difficult due to the combinatorially explosive
search space of structures that is a result of the expres-
siveness of the first-order languages. Another challeng-
ing aspect of our task is the need to learn a discrimi-
native classifier. We will use techniques from learning
the structure of Bayesian network classifiers. However,
in a Bayesian network setting, learning a discrimina-
tive model requires maximizing a scoring metric de-
rived from the conditional likelihood. Computing the
value of this scoring metric is computationally expen-
sive (Friedman et al., 1997) but several approximations
have been suggested (Grossman & Domingos, 2004;
Guo & Greiner, 2005). The conditional approxima-
tion of the BIC scoring metric was proposed in (Guo
& Greiner, 2005), while that of the MDL scoring met-
ric was used in (Grossman & Domingos, 2004).

In this paper, we report preliminary results from learn-



Structure Refinement in First Order Conditional Influence Language

ing the structure of FOCI-statements from data. In-
stead of an unconstrained structure search, we set our-
selves a less ambitious goal. We formulate the prob-
lem of refining FOCI-statements from a partial spec-
ification. We call the partial specification of a set of
FOCI-statements, a partial FOCI-program. Following
the philosophy of dependency networks (Heckerman
et al., 2000), we formulate one separate FOCI-program
for each query variable of interest and learn them sep-
arately.

FOCIL is especially conducive for the domain expert
to specify sparse network structures because each rule
groups together potentially related influents. Thus,
the search is more constrained than say, in relational
probability trees, where the learning algorithm has to
consider all the potential influents while picking the
best influent for the current split (Neville et al., 2003).
The structure search can facilitate easy specification
by experts by taking over the responsibility to find
the exact set of influents starting from a larger su-
perset. In the future we will also allow the expert to
specify a set of possible combining rules, e.g., noisy-or,
noisy-max, weighted mean, etc. and allow the struc-
ture search to pick the one that best fits the data.
Our work is also inspired by the work of (Heckerman
et al., 1994) where a Bayesian network structure search
is conducted starting from an initial structure and by
defining a prior which penalizes large deviations from
it. In contrast, our work limits the structure search
to be consistent with the user-defined partial FOCI-
program and allows the specification of a prior over
the consistent FOCI-programs.

The rest of the paper is organized as follows: In the
next section we provide some background on our lan-
guage. In the third section, we formulate the problem
of learning the FOCI statements given a partial FOCI
program. We also derive a conditional BIC score for
our problem and outline the search. Next, we provide
empirical evaluation of the algorithms on two domains:
a folder prediction data set and a synthetic data set.
We then conclude the paper by outlining some areas
for future research.

2. First Order Conditional Influence

Language

In this section, we summarize the main features
of first-order conditional influence language (FOCIL)
which forms the basis of our work (Natarajan & Al-
tendorf, 2005). The core of FOCIL consists of first-
order conditional influence (FOCI) statements, which
are used to specify probabilistic influences among the
attributes of objects in a given domain. The domain

expert is assumed to know the structure of the ER
diagram while he or she writes down the FOCI state-
ments. Each FOCI statement has the form:

If 〈condition〉 then 〈 qualitative influence 〉

where condition is a conjunction of literals, each literal
being a predicate symbol applied to the appropriate
number of variables. The conditions are used to
identify the objects that participate in the qualitative
influence. A 〈qualitative influence〉 is of the form
X1, . . . , Xk Qinf Y , where the Xi and Y are of the
form V.a, where V is a variable in condition and a is
an object attribute. This statement simply expresses
a directional dependence of the resultant Y on the
influents Xi. Associated with each FOCI statement
is a conditional probability function that specifies a
probability distribution of the resultant conditioned
on the influents, e.g. P (Y |X1, . . . , Xk) for the above
statement. Consider for example the FOCI statement,

If {Person(p)} then p.diettype Qinf

p.fitness.

It means that a person’s type of diet influences
their fitness level. There is an entity Person and
diettype and fitness are two attributes of Person.
As can be seen, the influent and the resultants are
of the form Object.attribute. Also, the condition is
used to determine the type of the variable p, which
in this case is a Person. The conditional probability
distribution P (p.fitness | p.diettype) associated with
this statement (partially) captures the quantitative
relationships between these attributes. We refer the
reader to (Natarajan & Altendorf, 2005) for more
details about the language.

Consider an intelligent desktop assistant that must
predict the folder of a document to be saved. Assume
that there are several tasks that a user can work on,
such as proposals, courses, budgets, etc. The follow-
ing FOCI statement says that a task and the role the
document plays in that task influence its folder.

If {task(t), document(d), role(d,r,t)} then
t.id,r.id Qinf d.folder.

Typically a document plays several roles in several
tasks. For example, it may be the main document of
one task but only a reference in some other task. Thus
there are multiple task-role pairs (t1, r1), . . . , (tm, rm),
each yielding a distinct folder distribution P (d .folder |
ti.id, ri.id). We need to combine these distributions
into a single distribution for the folder variable.



Structure Refinement in First Order Conditional Influence Language

In FOCIL, a combining rule is applied to combine the
distributions due to different influent instances of a
single FOCI statement. In addition, combining rules
can be employed to combine distributions arising from
multiple FOCI statements with the same resultant.
The following example captures such a case (see Fig-
ure 2 for the unrolled network):

WeightedMean{
If {task(t), doc(d), role(d,r,t)} then

t.id, r.id Qinf (Mean) d.folder.
If {doc(s), doc(d), source(s,d)} then

s.folder Qinf (Mean) d.folder.}

Figure 1. Example of specifying combining rules in FOCIL.

The expression in Figure 1 includes two FOCI state-
ments. One statement is the task-role influence state-
ment discussed above. The other says that the folder
of the source document of d influences d’s folder. The
source of a document is a document that was edited to
create the current document. There can be multiple
sources for a document. There are two distributions
P (d .folder | ti.id, ri.id) and P (d .folder | si.folder).
The distributions corresponding to different instances
of the influents in the same statement are combined
via the mean combining rule (indicated by the key-
word “Mean”). The two resulting distributions are
then combined with a weighted mean combining rule.
Equation 5 shows the computation of the probability
of a resultant given the set of instantiations of its in-
fluents. In our earlier work(Natarajan et al., 2005),
we have implemented algorithms based on Gradient-
descent and EM to learn the parameters of the con-
ditional probability distributions and also the weights
of the weighted mean. In this work, we consider the
problem of refining the structure of FOCI statements
from data.

t1

d1.folder d1.folder

d1.folder

Weighted Mean

d1.folder d1.folder

f2

d1.folder d1.folder

Mean Mean

r1 t2 r2
f1

Figure 2. Use of Combining rules to combine the influences
of task and role on the one hand and the source folder on
the other on the folder of the current document.

3. Partial FOCI-programs and

Structure Learning

In this section, we present an algorithm for learning
the structure of the FOCI statements, starting from
a partial FOCI-program. A partial FOCI-program
consists of a set of partial FOCI-statements, each of
which specifies some constraints on the target FOCI-
statements. In this paper, we only consider refine-
ments obtained by dropping the influents of the rules
in the partial program. Other constraints which we
have not implemented, might include a min or max
constraint on the number of parents, a collection of
possible combining rules only one of which is to be
chosen, and constraints on the rule conditions. The
refinement problem of partial FOCI-programs is tak-
ing as input a partial FOCI program and some train-
ing data and producing a FOCI-program and a set
of parameters that most correctly classify the target
variable given the inputs.

We will approach the refinement problem of partial
FOCI-programs in a manner similar to learning the
structure of Bayesian networks. In Bayesian network
structure search, the number of possible structures to
be considered is superexponential in the number of
variables (Robinson, 1973). (Chickering, 1996) shows
that Bayesian network structure learning is NP-hard.
Therefore, the majority of structure learning algo-
rithms typically use local search techniques. These
local search techniques use operators such as adding,
deleting, or reversing edges to search over the space of
possible DAGs. The candidate structures are scored
using a scoring metric and the search returns with a
best-scoring Bayesian network structure.

Since we are dealing with relational models, the com-
plexity of structure learning is even greater than that
of learning Bayesian networks. We will employ an ex-
haustive search and a hill climbing procedure to search
over the space of possible FOCI statements. However,
we will only consider a highly restricted search space,
namely the FOCI-programs obtained by dropping the
influents from the FOCI-statements in the input par-
tial program.

3.1. Scoring Metric

We need a scoring metric to guide the search for the
best structure. We use a variant of the Bayesian In-
formation Criterion (BIC) (Schwarz, 1978). Suppose
we have a set of candidate models Mi, i = 1, ..., m

for the given data set and the corresponding model
parameters θi and we are interested in choosing the
model that best fits the data D. Then the posterior



Structure Refinement in First Order Conditional Influence Language

probability of the model given the data is

P (M | D) ∝ P (M) · P (D | M) (1)

Applying a Taylor series expansion to the posterior
probability followed by the use of Laplace method for
integrals yields the BIC score (Raftery, 1995). The
BIC score for a given model is

BICScore = −2 ∗ log(P (D | θ̂, M)) + dmlogN (2)

= −2 ∗ loglikelihood + dmlogN

where log(P (D | θ̂, M)) is the likelihood of the data
given the model M and the maximum likelihood es-
timate θ̂. The second term can be considered as a
penalty term that penalizes complex structures, i.e.,
structures with nodes having a large number of par-
ents and a large number of parameters. Since we are
interested in learning the FOCI programs for a single
“target” attribute, our problem belongs to the discrim-
inative setting rather than the generative setting which
aims to model the entire set of objects and their at-
tributes. Hence it is more appropriate to optimize the
conditional likelihood instead of the joint likelihood
over all the variables. Several others have advocated
using conditional likelihood as the scoring metric (Guo
& Greiner, 2005; Stanford & Raftery, 2002; Bouchard
& Celeux, 2006). We define the problem of learning
the FOCI program for a target resultant Y as that of
finding a set of r rules, each with a set of influents
Xi. The conditional BIC (CBIC) scoring metric for
our problem is thus defined as

CBICScore = −2 ∗ log(P (Y | X1...Xr, θ̂, M))

+dmlogN (3)

= −2 ∗ CLL + dmlogN

where CLL is the conditional log-likelihood of the tar-
get variable given the set of influents. We now show
how to compute the log-likelihood and the number of
free parameters in our setting.

First, let us look at the number of free parameters in
our setting. Consider the network shown in Figure
3. It should be noted that since we are using com-
bining rules to combine the distributions, the nodes
1, 2, ..., m1 on the left side of the Figure all share
the CPTs, i.e., they all have the same distribution
P (Y | X

j
i,1, ...X

j
i,k). Hence the number of free pa-

rameters in the left part of the network is the number
of free parameters in this CPT. If Y takes l values,
the number of free parameters is NX1 × (l− 1), where
NX1 refers to the number of parent configurations of
the first rule. The same argument is true for the sec-
ond rule. Hence the total number of free parameters

X1
1,1 X1

1,k
…

1

X1
2,1 X1

2,k
…

2

…

X1
m1,k X1

m1,k

…

m1

Mean

X2
1,1 X2

1,k
…

1

X2
2,1 X2

2,k
…

2

…

X2
m2,k X2

m2,k
…

m2

Mean

Weighted mean

w1 w2

Y

Figure 3. An example of “unrolled” network

is the sum of the free parameters in the CPTs of all
the rules which is given by

dm = (l − 1) ×
∑

i

NXi (4)

It has been noted that the above CBIC score underfits
data by penalizing large networks too heavily (Guo
& Greiner, 2005). We also empirically observed that
the penalty is too large when the domain size l of the
resultant Y is high. To compensate for this, we scaled
the penalty by dividing it by l−1, i.e, we use dm

l−1
log N

as the penalty.

The conditional likelihood of the target resultant given
the set of influents is given by,

P (Y | X1

1,1...X
r
mr,k) =

∑r

i=1
wi

1

mi

∑mi

j=1
Pi(y|X

i
j)∑r

i=1
wi

(5)

We then sum over the log-values of the conditional
likelihoods for all the data cases and use it in the CBIC
scoring metric.

CBICScore = −2 ∗
∑

d

[log(P (Y | X1

1,1...X
r
mr ,k))]

+
∑

i

NXi logN (6)

Note that r = 2 for the network in Figure 3.

The CPTs and the weights of the mean combining rule
are computed using the EM algorithm presented in
our earlier paper(Natarajan et al., 2005). In the ex-

pectation step, we compute the responsibility of each
instantiation of each rule. The responsibilities reflect
the relative density of the training points under each
rule (Hastie et al., 2001). We consider the weight of



Structure Refinement in First Order Conditional Influence Language

the current rule and the number of instantiations while
computing the responsibility of an instantiation of the
current rule. In the maximization step, we use these re-
sponsibilities to update the CPTs. Note that EM finds
the parameters that maximize joint loglikelihood esti-
mate rather than the conditional loglikelihood, which
is the more correct thing to maximize. However, in
previous work it has been found to give good results
with less computational effort (Grossman & Domin-
gos, 2004). One possible future direction is to use the
gradient descent to optimize the conditional loglikeli-
hood as in (Natarajan et al., 2005). We use the re-
sponsibilities of the instantiations of an example to
compute the weights if at least two rules are instanti-
ated in the example. If an example matches less than
two rules, the weights do not affect the distribution.
Consider the update of P (y1 | xi). This is the fraction
of the sum of all the responsibilities when Y = y1 over
all Y given xi. Likewise, the weight of the current rule
is the fraction of the sum of the responsibilities of all
instantiations of the rule over the number of examples
with two or more rules instantiated.

3.2. Structure Search

In general, a structure learning algorithm has to spec-
ify the search operators in the structure space and the
search strategy. In our case, the only operators in the
search space are to add or drop an influent (or a rule)
from the given set of influents. Figures 4 and 5 pro-
vide an example of the prior set of FOCI statements
that are specified by the domain expert and the set
of FOCI statements that are learned by the learning
algorithm.

WeightedMean{
If {task(t), doc(d), role(d,r,t)} then

t.id, r.id, t.creationDate, t.LastAccessed
Qinf (Mean) d.folder.

If {doc(s), doc(d), source(s,d)} then
s.folder, s.creationDate
Qinf (Mean) d.folder.}

Figure 4. Example of a prior set of FOCI statements

WeightedMean{
If {task(t), doc(d), role(d,r,t)} then

t.id, r.id Qinf (Mean) d.folder.
If {doc(s), doc(d), source(s,d)} then

s.folder Qinf (Mean) d.folder.}

Figure 5. An example of the set of rules that could be
learned by the algorithm

Given the possible influents, we use a greedy search
with random restarts to search over the space of FOCI

statements and select the set of FOCI statements that
has the minimum CBIC score. We start with an empty
FOCI program and then search through the space of
structures by adding influents and the corresponding
rules. We continue the search through the space un-
til we reach a local maxima. Once we reach a local
maxima, we restart the search from a random configu-
ration in the structure space. As an example, consider
the partial program presented in Figure 4. There are 4
influents in the first rule and 2 influents in the second.
Hence the total number of possible structures is 2422

corresponding to whether each influent is present or
not. Note that when all the 4 influents of the first rule
are absent, the second rule alone fires and vice-versa.
The exhaustive search would start from an empty pro-
gram and searches through all the 26 structures. In
the greedy hillclimbing with random restarts, we start
with the empty network and search through the space
of structures until we reach a local maxima. Once a
local maxima is reached, we randomly start with some
structure and continue the search. The CBIC score
that we derived is used to compare different structures.
It must be noted that to compute the CBIC score, in
the inner loop we use EM to compute the parameters
of the CPTs and the weights that best fit the data
given the current model. In this work, we assume that
the appropriate combining rules are given.

4. Experiments and Results

In this section, we describe results on the two data
sets that we employed to test the learning algorithms.
The first is based on the folder prediction task, where
we applied two rules to predict the folder of a docu-
ment from other information. The second data set is
a synthetic one where there are two rules as well.

4.1. Folder Prediction

As part of the Task Tracer project (Dragunov et al.,
2005), we collected data for 500 documents and 6
tasks. The documents were stored in 11 different fold-
ers. Each document was manually assigned to a role
with respect to each task with which it was associ-
ated. A document was assigned the main role if it was
modified as part of the task. Otherwise, the document
was assigned the reference role, since it was opened
but not edited. A document is a source document
if it was opened, edited, and then saved to create a
new document or if large parts of it were copied and
pasted into the new document. Since the documents
could play several roles in several tasks, the number



Structure Refinement in First Order Conditional Influence Language

of 〈t, r〉 pairs vary1. Hence, the data set consisted of
the following, the document’s folder the set of source
documents’ folder, and the set of tasks and the roles
the document played in those tasks.

Rank Exhaustive -R HC+RR - R Exhaustive - I HC+RR - I

1

2

3

4

5

6

7

8

9

10

11

Score 0.8299 0.8325 .7926 0.7841

312 311354349

107

22

15

6

0

1

0

0

128 130

0

98

26

12

4

0

4

2

0

0

26 26

20 23

3 4

1 1

2 0

1 2

0 0

0 0

0 2 30

Figure 6. Results of the Exhaustive and the hill-climbing
algorithms on the folder prediction task. The results are
averaged over 20 runs. Exhaustive-R and HC+RR-R refers
to the algorithms when provided with only the relevant in-
fluents and Exhaustive-I and HC+RR-I refer to the algo-
rithms with irrelevant attributes.

We performed two kinds of experiments: One to test
if the learning algorithm when provided with just the
relevant influents was able to retain all the relevant
influents and the second to test if provided with irrel-
evant attributes, the algorithm learns to ignore these
irrelevant attributes. We used the data set described
above for the first experiment, and in the second we
used the FOCI program in Figure 5 where we ran-
domized the values of creationDate and lastAccessed

attributes. We used two forms of the structure learn-
ing algorithm. One that searches exhaustively through
the space of structures and the other that uses hill
climbing with random restarts for search. The results
were averaged over 20 runs of the algorithms.

We employed 10-fold cross-validation to evaluate the
results. Within each fold, the learned network was ap-
plied to rank the folders of the current document and
the position of the correct folder in this ranking was
computed (counting from 1). The results are shown
in Figure 6, where the counts report the total num-
ber of times (out of 500) that the correct folder was
ranked first, second, and so on. The final row of the
table reports the mean reciprocal rank of the correct
folder (the average of the reciprocals of the ranks).
The mean reciprocal rank would be 1 if the correct

1On average, each document participated in 2 〈t, r〉
pairs, although a few documents participated in 5 to 6
〈t, r〉 pairs.

folder is ranked at the top in all tests. We compare
the exhaustive search with the hill climbing with ran-
dom restarts. The results are averaged over 20 runs.
In the first experiment where the algorithms are pro-
vided with only the relevant attributes, it can be ob-
served from the second and third columns of Figure
6 that the greedy hill-climbing with random restarts
achieves a comparable mean reciprocal rank to that of
the exhaustive search.The exhaustive search retrieved
the “true” network in all the runs in the first experi-
ment. On the other hand, hill climbing with random
restarts retrieved the true network in 17 of the 20 runs.
In the other 3 runs, the hill climbing algorithm learned
a network with only the second rule.

In the second experiment the algorithm ignored the
irrelevant attributes in the first rule and retrieved the
true influents. In the second rule, however, it included
the randomized creationDate as the influent, instead of
the folder of the source. This is because the penalty for
including the source folder is higher than the penalty
for including the creationDate as the CPT is much
larger in the former case. Hence the CBIC score of
the learned FOCI program was lower than the program
that had the best mean reciprocal rank. Despite not
using the best influent in the second rule, the mean
reciprocal rank of the learned network was comparable
to the mean reciprocal rank of the best network, as
can be seen in the 4th column of Figure 6. This is
because only a few documents had other documents
as sources and hence the rule did not fire in many of
the training examples. The hill-climbing search with
irrelevant attributes (column 5 in the Figure 6) had a
reasonably good mean reciprocal rank on all the runs
except one and hence has a comparable score to that
of the exhaustive search.

4.2. Synthetic dataset

To estimate the accuracy of the learned probabilistic
model, we used the a synthetic data set for our exper-
iments that was also used in (Natarajan et al., 2005).
The data are generated using a synthetic target as de-
fined by two FOCI statements, each of which has two
influents and the same target attribute. The two in-
fluents in each rule have a range of 10 and 3 values
respectively. The target attribute can take 3 values.
The probability values in the distribution of the syn-
thetic target are randomly generated to be either be-
tween 0.9 and 1.0 or between 0.0 and 0.1. This is to
make sure that the probabilistic predictions on exam-
ples are not too uncertain. The rule weights are fixed
to be 0.1 and 0.9 to make them far from the default,
0.5. Each example matches a rule with probability
0.5, and when it does match, it generates a number



Structure Refinement in First Order Conditional Influence Language

of instances randomly chosen between 3 and 10. This
makes it imperative that the learning algorithm does
a good job of inferring the hidden distributions both
at the instance level and at the rule level.

Again, we use this dataset to perform two kinds of
experiments: the first one to determine whether the
learning algorithm when given the true set of influents
learns to retrieve the true structure, and the second
one to determine whether the learning algorithm can
ignore irrelevant attributes. We present the results of
both the experiments here.

0 500 1000 1500 2000 2500
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

# of Tranining Examples

Av
g 

er
ro

r

Gold Standard
HC + RR

Figure 7. Learning curves in the synthetic domain with
only the relevant influents on 30 data sets

We trained the learning algorithms on 30 sets of 2000
training examples and tested them on a set of 1000
test examples. The hill climbing with random restarts
learned the gold-standard structure for 18 of the 30
data sets2. The performance of the hill-climbing de-
pends on the number of restarts that are allowed. In
our experiments, we allowed three restarts. The aver-
age absolute difference between corresponding entries
in the true distribution and the predicted distribution
was averaged over all the test examples. The results
are presented in Figure 7. The Figure has two curves:
one for the gold standard network and the other for
the hill climbing with random restarts. It can be ob-
served that though the hill climbing search did not
find true structure in 12 of the 30 datasets, there is
no statistically significant difference in the average er-
rors when compared to the true network. Also, with
smaller number of examples, the hill climbing is not
able to obtain the true network while with larger sam-
ples it retrieved the true network more often.

In the second experiment, we added 2 irrelevant influ-

2We also ran an exhaustive algorithm to determine if
the CBIC score was useful to retrieve the correct structure
and the exhaustive algorithm learned the true network on
all the datasets.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of training examples

A
vg

 E
rr

or

HC+ RR

True Network

Figure 8. Learning curves in the synthetic domain with ir-
relevant influents on 8 datasets

ents of domain size 10 to both the rules such that their
values are chosen at random. The results are presented
in Figure 8. The results were averaged over 14 data
sets and the learning curves are presented. As can be
seen from the Figure, there is no significant difference
between the error rates of the true network and the
network learned by the hill-climbing algorithm for the
larger samples.

5. Conclusion and Future work

In this paper, we considered the problem of learning
the structure of the FOCI statements given a partial
FOCIL program. The assumption here is that the
data is very expensive in many domains and hence
cannot be used for searching through the entire space
of structures. Also, since learning the entire network
is hard, we propose to learn a set of FOCI statements
for every query variable. The motivation behind this
is the work of dependency networks which was later
extended to the relational setting (Neville & Jensen,
2004). We derived the CBIC scoring metric for our
setting and also outlined a greedy search through the
space of structures. We also empirically showed that
our learning algorithm with the CBIC scoring metric
was able to retrieve the “true” structure in two do-
mains: a real-world dataset and a synthetic dataset.
In the folder data set, the CBIC score of the true net-
work was higher than the one that was learned. We are
currently looking at other scoring metrics that could
be better suited for the relational setting e.g., Bias-
Variance metric that was used in (Guo & Greiner,
2005).

Another possible direction is to investigate the use of
a scoring metric like the BDeu scoring metric (Heck-
erman et al., 1994) which naturally provides a way to
specify priors over structures that are consistent with



Structure Refinement in First Order Conditional Influence Language

the partial FOCI program. Also it would be useful
to have the learning program choose a most accurate
combining rule from a given set of candidate rules. An
important direction to pursue next is the use of this
structure refinement methodology in larger real world
domains.

References

Bouchard, G., & Celeux, G. (2006). Selection of gener-
ative models in classification. IEEE Trans. Pattern

Anal. Mach. Intell., 28.

Chickering, D. M. (1996). Learning equivalence classes
of Bayesian network structures. UAI (pp. 150–157).

Domingos, P., & Richardson, M. (2004). Markov logic:
A unifying framework for statistical relational learn-
ing. Proceedings of the SRL Workshop in ICML.

Dragunov, A. N., Dietterich, T. G., Johnsrude, K.,
McLaughlin, M., Li, L., & Herlocker, J. L. (2005).
Tasktracer: A desktop environment to support
multi-tasking knowledge workers. Proceedings of

IUI.

Friedman, N., Geiger, D., & Goldszmidt, M. (1997).
Bayesian network classifiers. Machine Learning, 29,
131–163.

Getoor, L., Friedman, N., Koller, D., & Pfeffer, A.
(2001). Learning probabilistic relational models. In-

vited contribution to the book Relational Data Min-

ing, S. Dzeroski and N. Lavrac, Eds.

Grossman, D., & Domingos, P. (2004). Learning
bayesian network classifiers by maximizing condi-
tional likelihood. Proceedings of ICML ’04.

Guo, Y., & Greiner, R. (2005). Discriminative model
selection for belief net structures. AAAI (pp. 770–
776).

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The

Elements of Statistical learning. Springer.

Heckerman, D., Chickering, D. M., Meek, C., Roun-
thwaite, R., & Kadie, C. M. (2000). Dependency
networks for inference, collaborative filtering, and
data visualization. Journal of Machine Learning Re-

search, 1, 49–75.

Heckerman, D., Geiger, D., & Chickering, D. M.
(1994). Learning bayesian networks: The combina-
tion of knowledge and statistical data. KDD Work-

shop (pp. 85–96).

Jaeger, M. (1997). Relational Bayesian networks. Pro-

ceedings of UAI-97.

Kersting, K., & De Raedt, L. (2000). Bayesian
logic programs. Proceedings of the Work-in-Progress

Track at ILP.

Kok, S., & Domingos, P. (2005). Learning the struc-
ture of markov logic networks. Proceedings of ICML

(pp. 441–448). New York, NY, USA: ACM Press.

Natarajan, S., & Altendorf, E. E. (2005). First or-

der conditional influence language (Technical Re-
port CS05-30-01). Oregon State University School
of Electrical Engineering and Computer Science.

Natarajan, S., Tadepalli, P., Altendorf, E., Dietterich,
T. G., Fern, A., & Restificar, A. (2005). Learn-
ing first-order probabilistic models with combining
rules. Proceedings of ICML-05.

Neville, J., & Jensen, D. (2004). Dependency networks
for relational data. Proceedings of ICDM’04 (pp.
170–177).

Neville, J., Jensen, D., Friedland, L., & Hay, M.
(2003). Learning relational probability trees. Pro-

ceedings of KDD ’03 (pp. 625–630).

Raftery, A. (1995). Bayesian model selection in social
research. Sociological Methodology.

Robinson, R. (1973). Counting labeled acyclic di-
graphs. New Directions in the Theory of Graphs,
239–273.

Schwarz, G. (1978). Estimating the dimension of a
model. The Annals of Statistics, 6, 461–464.

Stanford, D. C., & Raftery, A. E. (2002). Approximate
bayes factors for image segmentation: The pseudo-
likelihood information criterion (plic). IEEE Trans.

Pattern Anal. Mach. Intell., 24.


