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Abstract

Bias/variance analysis is a useful tool for
investigating the performance of machine
learning algorithms. Conventional analysis
decomposes loss into errors due to aspects of
the learning process, but in relational and
network applications, the inference process
introduces an additional source of error. Col-
lective inference techniques introduce addi-
tional error both through the use of approxi-
mate inference algorithms and through vari-
ation in the availability of test set informa-
tion. To date, the impact of inference er-
ror on model performance has not been in-
vestigated. In this paper, we propose a
new bias/variance framework that decom-
poses loss into errors due to both the learn-
ing and inference process. We evaluate per-
formance of three relational models on syn-
thetic data and use the framework to un-
derstand the reasons for poor model perfor-
mance. With this understanding, we propose
a number of directions to explore to improve
model performance.

1. Introduction

Bias/variance analysis (Friedman, 1997; Domingos,
2000) has been used for a number of years to investi-
gate the mechanisms behind model performance. This
analysis is based on the fundamental understanding
that prediction error has two components (bias and
variance) and that there is often a tradeoff between
the two when learning statistical models. Searching
over a larger model space, to estimate a more complex
model, can decrease bias but often increases variance.
On the other hand, very simple models can sometimes
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outperform complex models due to decreased variance,
albeit with higher bias (e.g., (Holte, 1993)).

Conventional bias/variance analysis decomposes loss
into errors due to aspects of learning procedures. Loss
is decomposed into three factors: bias, variance and
noise. In the traditional decomposition, bias and vari-
ance measure estimation errors in the learning tech-
nique. For example, the Naive Bayes classifier typi-
cally has high bias due to the assumption of indepen-
dence among features, but low variance due to the use
of a large sample (i.e., entire training set) to estimate
the conditional probability distribution for each fea-
ture (Domingos & Pazzani, 1997).

The assumption underlying the conventional decompo-
sition is that there is no variation in model predictions
due to (1) the inference process, and (2) the avail-
able information in the test set. Classification of rela-
tional data often violates these assumptions when col-
lective inference techniques are used. If there are de-
pendencies among the class labels of related instances,
the inferences about one object can be used to im-
prove the inferences about other related objects. Col-
lective inference techniques exploit these dependen-
cies by simultaneously inferring values over the en-
tire dataset and results in more accurate predictions
than conditional inference for each instance indepen-
dently (Jensen et al., 2004).

Collective inference often requires the use of approxi-
mate inference techniques, which may introduce vari-
ation in model predictions for a single instance. For
example, final predictions for an instance may depend
on the initial (random) start state used during infer-
ence, thus multiple runs of inference may result in dif-
ferent predictions. In addition, relational models are
often applied to classify a partially labeled test set,
where the known class labels serve to seed the collec-
tive inference process. Current methods for evaluating
relational learning techniques typically assume that la-
beling different nodes in the test set have equivalent
impact. However, the heterogeneity of the relational
graph may allow some instances to have more of an im-
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pact on neighbor predictions than others—thus, which
instances are labeled in the test set may cause addi-
tional variation in the predictions. Finally, relational
models are generally learned on a fully labeled training
set (i.e., the class labels of all neighbors are known),
but then applied to an unlabeled, or partially labeled,
test set. This mismatch between training and test set
information may impact the final model predictions.

To date, the impact of inference error on model per-
formance has not been investigated. In this paper,
we propose a new bias/variance framework that de-
composes marginal squared-loss error into components
of both the learning and inference process. We eval-
uate performance of three relational models on syn-
thetic data and use the framework to understand the
reasons for poor model performance. Each of the
models exhibits a different relationship between error
and dataset characteristics—relational Markov net-
works (Taskar et al., 2002) have higher inference bias
in densely connected networks; relational dependency
networks (Neville & Jensen, 2004) have higher infer-
ence variance when there is little information to seed
the inference process; latent group models (Neville &
Jensen, 2005) have higher learning bias when the un-
derlying group structure is difficult to identify from the
network structure. Using this understanding, we pro-
pose a number of algorithmic modifications to improve
the models’ performance.

2. Framework

In conventional bias/variance analysis, loss is de-
composed into three factors: bias, variance and
noise (Friedman, 1997; Domingos, 2000). Given an ex-
ample x, a model that produces a prediction f(x) = y,
and a true value for x of t, squared loss is defined as:
L(t, y) = (t− y)2. The expected loss for an example x
can be decomposed into bias, variance, and noise com-
ponents. Here the expectation is over training sets
D—the expected loss is measured with respect to the
variation in predictions for x when the model is learned
on different training sets:

ED,t[L(t, y)] = B(x) + V (x) + N(x)

Bias is defined as the loss incurred by the mean
prediction ym relative to the optimal prediction y∗:
B(x) = L(y∗, ym). Variance is defined as the aver-
age loss incurred by all predictions y, relative to the
mean prediction ym: V (x) = ED[L(ym, y)]. Noise
is defined as the loss that is incurred independent of
the learning algorithm, due to noise in the data set:
N(x) = Et[L(t, y∗)].

Bias and variance estimates are typically calculated for
each test set example x using models learned from a
number of different training sets. This type of analysis
decomposes model error to associate it with aspects of
learning, not aspects of inference. The technique as-
sumes that exact inference is possible and that the
training and test sets have the same available infor-
mation. However, in relational datasets there can be
additional variation due to the use of approximate in-
ference techniques and due to the availability of test set
information. In order to accurately ascribe errors to
learning and inference, we have extended the conven-
tional bias/variance framework to incorporate errors
due to the inference process.

For relational data, we first define the expected total
loss for an instance x as an expectation over training
sets Dtr and test sets Dte. Following the standard
decomposition for loss as described in (Geman et al.,
1992), we can decompose total loss into total bias, vari-
ance, and noise:

EDtr,Dte,t[L(t, y)]
= EDtr,Dte,t[(t − y)2]
= Et[(t − E[t])2] + EDtr,Dte[(y − E[t])2]
= NT (x) + EDtr,Dte[(y − EDtr,Dte[y] +

EDtr,Dte[y] − E[t])2]
= NT (x) + EDtr,Dte[(y − EDtr,Dte[y])2 +

(EDtr,Dte[y] − E[t])2 + 2(y − EDtr,Dte[y]) ·
(EDtr,Dte[y] − E[t])]

= NT (x) + EDtr,Dte[(y − EDtr,Dte[y])2] +
(EDtr,Dte[y] − E[t])2

= NT (x) + VT (x) + BT (x)

In this decomposition the total bias BT (x), and total
variance VT (x) are calculated with respect to varia-
tion in model predictions due to both the learning and
inference algorithms.

Then we define the learning loss as an expectation over
training sets Dtr alone, using a fully labeled test set
for inference. For example, when predicting the class
label for instance xi, the model is allowed to use the
class labels (and attributes) of all other instances in
the dataset (X − {xi}). This enables the application
of exact inference techniques and ensures that the test
set information most closely matches the information
used during learning. Note that this part of the analy-
sis mirrors the conventional approach to bias/variance
decomposition, isolating the errors due to the learning
process. For this reason, we will refer to the compo-
nents as learning bias, variance, and noise:
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Figure 1. Distributions of model predictions.

EDtr,t[L(t, y)]
= EDtr,t[(t − y)2]
= Et[(t − E[t])2] + EDtr[(y − E[t])2]
= NL(x) + EDtr[(y − EDtr[y] + EDtr[y] − E[t])2]
= NL(x) + EDtr[(y − EDtr[y])2 +

(EDtr[y] − E[t])2 + 2(y − EDtr[y]) ·
(EDtr[y] − E[t])]

= NL(x) + EDtr[(y − EDtr[y])2] +
(EDtr[y] − E[t])2

= NL(x) + VL(x) + BL(x)

Once we have measured the total and learning
bias/variance, we can define inference bias/variance
as the difference between the total error and the error
due to the learning process alone:

BI(x) = BT (x) − BL(x)
VI(x) = VT (x) − VL(x)

For example, consider the distributions of model pre-
dictions in figure 1. We measure the variation of model
predictions for an instance x in two ways. First, when
we generate synthetic data we record the data genera-
tion probability as the optimal prediction y∗. Next, we
record marginal predictions for x from models learned
on different training sets, allowing the class labels of re-
lated instances to be used during inference. These pre-
dictions form the learning distribution, with a mean
learning prediction of yLm. Finally, we record predic-
tions for x from models learned on different training
sets, where each learned model is applied a number
of times on a single test set. These predictions form
the total distribution, with a mean total prediction

of yTm. The model’s learning bias is calculated as
the difference between y∗ and yLm; the inference bias
is calculated as the difference between yLm and yTm.
The model’s learning variance is calculated from the
spread of the learning distribution; the inference vari-
ance is calculated as the difference between the total
variance and the learning variance.

3. Experiments

To explore the effects of relational graph and attribute
structure on model performance, we generated syn-
thetic datasets with varying levels of autocorrelation,
linkage, and group structure. Group structure is used
to control the inherent clustering of the data. Our
experiments evaluate model performance in a classifi-
cation context, where only a single attribute is unob-
served in the test set. We generated data in the man-
ner described below, and learned models to predict X1

using the intrinsic attributes of the object (X2, X3, X4)
as well as the class label and the attributes of directly
related objects (X1, X2, X3, X4). We evaluated three
relational models, measuring squared loss and decom-
posing it into bias and variance components for each
model.

3.1. Synthetic data

Our synthetic datasets are homogeneous data graphs
with autocorrelation due to an underlying (hidden)
group structure. Each object has a group G and four
boolean attributes: X1, X2, X3 and X4. Each group
has an associated type T . We used the generative pro-
cess described in Table 1 to generate a dataset with
NO objects and GS average group size, using the set-
tings specified below. The procedure uses a simple
model where X1 has an autocorrelation level of 0.51,
X2 depends on X1, and the other two attributes have
no dependencies.

NO = 250
p(T ) = {p(T =1) = 0.50; p(T =0) = 0.50}

p(X1|TG) = p(X1 =1|TG =1)=0.90;
p(X1 =0|TG =0)=0.90.

p(X2|X1) = p(X2 =1|X1 =1)=0.75;
p(X2 =0|X1 =0)=0.75.

p(X3 =1) = 0.50
p(X4 =1) = 0.50

1We only report results for autocorrelation=0.5 because
varying autocorrelation does not alter the relative per-
formance of the models—lower levels of autocorrelation
weaken the effects, higher levels strength the effects re-
ported herein.
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Figure 2. Sample synthetic dataset.

We generated data with two different groups sizes and
levels of linkage:

GS : small = 5; large = 25
Llow|GS = small : p(E =1|Gj =Gk) = 0.50;

p(E =1|Gj 6=Gk) = 0.0008.

Lhigh|GS = small : p(E =1|Gj =Gk) = 0.80;
p(E =1|Gj 6=Gk) = 0.004.

Llow|GS = large : p(E =1|Gj =Gk) = 0.20;
p(E =1|Gj 6=Gk) = 0.0008.

Lhigh|GS = large : p(E =1|Gj =Gk) = 0.30;
p(E =1|Gj 6=Gk) = 0.004.

Figure 2 graphs a sample synthetic dataset with small
group size and high linkage. The final datasets are
homogeneous—there is only one object type and one
link type, and each object has four attributes. After
the groups are used to generate the data, we delete
them from the data—the groups are not available for
model learning or inference.

3.2. Models

We compare the performance of three differ-
ent relational models: relational Markov networks
(RMNs) (Taskar et al., 2002), relational dependency
networks (RDNs) (Neville & Jensen, 2004), and latent
group models (LGMs) (Neville & Jensen, 2005).

RMNs extend Markov networks to a relational set-
ting, representing a joint distribution over the values
of the attributes in a network dataset. RMNs repre-
sent the joint distribution using a undirected graphical
model, with a set of relational clique templates and
corresponding potential functions. We defined clique
templates for each pairwise combination of class la-
bel value and attribute value, where the available at-

Table 1. Synthetic data generation

For each group g, 1 ≤ g ≤ (NG = NO/GS):
Choose a value for group type tg from p(T ).

For each object i, 1 ≤ i ≤ NO:
Choose a group gi uniformly in [1, NG].
Choose a class value X1i from p(X1|TGi

).
Choose a value for X2i from p(X2|X1).
Choose a value for X3i from p(X3).
Choose a value for X4i from p(X4).

For each object j, 1 ≤ j ≤ NO:
For each object k, j < k ≤ NO:

Choose whether the two objects are linked
from p(E|Gj = Gk).

tributes consisted of the intrinsic attributes of objects,
and both the class label and attributes of directly re-
lated objects. We used maximum a posterior param-
eter estimation to estimate the feature weights, us-
ing conjugate gradient with zero-mean Gaussian pri-
ors, and a uniform prior variance of 5. For inference,
we used loopy belief propagation.

RDNs extend dependency networks (Heckerman
et al., 2000) to work with relational data in much
the same way that RMNs extend Markov net-
works. RDNs approximate the joint distribution with
pseudolikelihood—modeling the joint with a set of con-
ditional probability distributions that are each learned
independently. We used relational probability trees
(RPTs) (Neville et al., 2003) as the component CPD
to model X1. Note that the RPT is a selective model
(i.e., the learning algorithm select which features are
relevant to the task), so it may not use all the avail-
able attributes. For inference, we used Gibbs sampling
with fixed-length chains of 2000 samples and a burn-in
length of 100.

LGMs specify a generative probabilistic model for the
attributes and link structure of a relational dataset.
LGMs are a form of probabilistic relational model that
combine a relational Bayesian network (Getoor et al.,
2001), link existence uncertainty, and hierarchical la-
tent variables. The model posits groups of objects in
the data of various type. Membership in these groups
influences the observed attributes of objects, as well as
the existence of relations (links) among objects. LGMs
use a sequential learning approach—spectral cluster-
ing is used first to determine group membership based
on the observed link structure alone, then EM is used
to learn the remainder of the model (i.e., infer group
types and estimate parameters). The resulting clusters
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are disjoint, and within each group the class labels are
conditionally independent given the group type, thus
we can use standard belief propagation for inference in
the test set.

3.3. Results

During inference we varied the number of known class
labels in the test set, measuring performance on the re-
maining unlabeled instances. This serves to illustrate
model performance as the amount of information seed-
ing the inference process increases. We expect similar
performance when other information seeds the infer-
ence process—for example, when some labels can be
inferred from intrinsic attributes, or when weak pre-
dictions about related instances serve to constrain the
system.

To measure the expected loss over training and test
sets, we used the following procedure:

1. For each outer trial i = [1, 5]:

(a) Generate test set.
(b) For each learning trial j = [1, 5]:

i. Generate training set, record optimal pre-
dictions.

ii. Learn model of X1 on the training set.
iii. Infer marginal probabilities for test set

with fully labeled test data (i.e., X −
{Xi}), record learning predictions.

iv. For each inference trial k = [1, 5] and pro-
portion labeled p= [0.0, 0.3, 0.6]:

A. Randomly label p% of test set.
B. Infer marginal probabilities for unla-

beled test instances, record total pre-
dictions.

C. Measure squared loss.
(c) Calculate learning bias and variance from

distributions of learning predictions.
(d) Calculate total bias and variance from distri-

butions of total predictions.

2. Calculate average model loss.

3. Calculate average learning bias and variance.

4. Calculate average total bias and variance.

Figure 3 graphs performance on four different types of
data. The first set of data have small group size and
low linkage, thus we expect it will be difficult for the
models to exploit the autocorrelation in the data due
to low connectivity. The second set of data have small
group size but high linkage, thus we expect the mod-
els will be able to exploit neighbor information more

effectively. The third set of data have large group size
and low linkage. We expect the LGM models to be
more accurate on data with large group sizes because
they can incorporate information from a wider neigh-
borhood than RDNs and RMNs, which use only lo-
cal neighbor information. The fourth set of data have
large group size and high linkage—we expect the mod-
els will be able to exploit autocorrelation dependencies
most effectively in these data, due to high connectivity
and clustering.

Figure 3 graphs the squared loss decomposition for
each model as the level of test-set labeling is varied.
When group size is small and linkage is high (row b),
LGMs are outperformed by the RDNs when the test
data are at least partially labeled. The bias/variance
decomposition shows that poor LGM performance is
due to high learning bias. This is likely due to the
LGM algorithm’s inability to identify the latent group
structure when group size is small and linkage is high.
The LGM learning procedure uses a sequential ap-
proach where the data are clustered into groups us-
ing the link structure alone and the remainder of the
model is learned given the identified group structure.
When density of linkage between groups is relatively
high compared to group size it will be difficult for
the clustering algorithm to correctly identify the fine
grained underlying group structure, and this in turn
will bias the learned model. When LGMs are given the
true underlying group structure, this bias disappears.

When group size is large and linkage is low (row c),
LGMs significantly outperform RDNs when there is
0% test set labeling. The bias/variance decomposition
shows that poor RDN performance is due to high in-
ference variance. (Note the difference between RDN
total variance and learning variance.) The RDN in-
ference algorithm uses Gibbs sampling, seeded with a
randomly labeled test set. When there are few labeled
instances in the test set, the inference process may be
unduly influenced by the initial random labeling of the
test set if the RDN model has selected the class label in
lieu of other known attributes in the data. When such
RDN models are applied to an unlabeled test set, the
initial random Gibbs labeling may bias the inference
process to converge to widely varying labelings. Thus,
the initial random labeling can increase the variance of
predictions over multiple runs of inference, particularly
when there is little information to seed the inference
process.

When group size is large and linkage is high (row d),
LGMs outperform RMNs regardless of the level of test
set labeling. The bias/variance decomposition shows
that poor RMN performance is due to high inference
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bias. (Note the difference between RMN total bias and
RMN learning bias.) This indicates that the RMN in-
ference procedure is likely to bias the marginal proba-
bility estimates when run in a densely connected net-
work with little seed information. This may be due
to the algorithm learning skewed clique weights on a
fully labeled training set. When these weights are ap-
plied to collectively infer the labels throughout the test
set, the inference process may converge to extreme la-
belings (e.g., all positive labels in some regions of the
graph, all negative labels in other regions) when the
graph is very “loopy” (i.e., densely connected). We ex-
perimented with a wide range of priors to limit to the
impact of weight overfitting but the effect remained
consistent.

4. Discussion

The synthetic data experiments measure model perfor-
mance over a range of data characteristics, illustrating
the situations in which we can expect each model to
perform well. In particular, both the LGM and RDN
models perform close to optimal2 when group size is
large and linkage is high (row d). This indicates that as
clustering and connectivity increase, the performance
of relational models may improve (given moderate lev-
els of autocorrelation).

These experiments also help us understand model lim-
itations and suggest a number of ways to improve
the design of relational learning/inference algorithms.
To improve LGM performance, we need to improve
the identification of clusters when inter-group linkage
drowns out a weak intra-group signal. This may be
achieved by the use of alternative clustering techniques
in the LGM learning approach, or through the devel-
opment of a joint learning procedure that clusters for
groups while simultaneously estimating the attribute
dependencies in the model.

To improve RDN performance, we need to improve
inference when there are few labeled instances in the
test set. This may be achieved through the use of non-
random initial labeling to seed the Gibbs sampling pro-
cedure. We have started exploring the use relational
probability trees (Neville et al., 2003), learned on the
known attributes in the data, to predict class labels for
use in the initial Gibbs labeling. Preliminary results
indicate that this modification to the inference pro-
cedure reduces RDN loss by 10 − 15% when there is
0% test set labeling. Alternatively, we could improve
the RDN learning algorithm by using meta-knowledge

2For these datasets, NT = 0.09 so the models cannot
achieve a squared loss lower than 0.09.

about the test set to bias the feature selection process.
For example, if we know that the model will be applied
to an unlabeled test set, then we can bias the selec-
tive learning procedure to prefer attributes that will
be known with certainty during the inference process.

Finally, to improve RMN performance, we need to im-
prove inference when connectivity is high, either when
there are large clusters or when overall linkage is dense.
This may be achieved through the use of approximate
inference techniques other than loopy belief propaga-
tion, or through the use of aggregate features in clique
templates (that summarize cluster information) rather
than using redundant pairwise features. Alternatively,
when using pairwise clique templates in a densely con-
nected dataset, it may be helpful to downsample the
links in the graph to reduce inference bias.

5. Conclusion

This paper presents a new bias/variance framework
that decomposes squared-loss error into aspects of
both the learning and inference processes. To date,
work on relational models has focused primarily on
the development of models and algorithms rather than
the analysis of mechanisms behind model performance.
In particular, the impact of collective inference tech-
niques applied to graphs of various structure has not
been explored. This work has demonstrated the ef-
fects of graph characteristics on relational model per-
formance and suggested a number of directions for im-
provement.

There are two ways to improve on our initial work
with this framework. First, we intend to broaden our
analysis to real data sets and evaluate algorithm mod-
ifications in these domains. This will lead towards a
full characterization of the situations in which we can
expect relational models to achieve superior perfor-
mance. Next, we plan to extend the framework to an-
alyze additional aspects of model performance. In par-
ticular, the analysis of alternative loss functions (e.g.,
zero-one) and analysis of errors when estimating the
full joint (rather than marginals), will increase our un-
derstanding of model performance over a wider range
of conditions. Also, examining interaction effects be-
tween learning and inference errors may help to inform
the design of joint learning and inference procedures,
which could significantly extend the performance gains
of relational models.
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Figure 3. Bias/variance analysis on synthetic data.
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