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Abstract

Over the past few years, a number of approx-
imate inference algorithms for networked data
have been put forth. We empirically compare the
performance of three of the popular algorithms:
loopy belief propagation, mean field relaxation
labeling and iterative classification. We rate each
algorithm in terms of its robustness to noise, both
in attribute values and correlations across links.
A novel observation from our experiments is that
loopy belief propagation faces difficulty when in-
ferring over data withhomophily, a common type
of link correlation observed in relational data.

1. Introduction

Over the past few years, relational classifiers have gained
considerable attention. Due to the efforts of various re-
searchers we now have access to numerous approaches
(e.g., Lafferty et al., 2001; Taskar et al., 2002; Lu & Getoor,
2003; Taskar et al., 2003; Neville & Jensen, 2004 etc.)
each with its own set of advantages. However, inference
in networked data is still a challenging issue. The consen-
sus seems to be thatexact inference is a hard problemin
this domain and cannot be achieved without exploiting spe-
cial properties of the application or data at hand. In part
due to this reason, even the earliest efforts in relational
classification have shown a tendency todevelop approxi-
mate inference algorithms(e.g., Hummel & Zucker, 1983;
Chakrabarti et al., 1998). Due to the collective efforts of
the research community we now have a considerably long
list of approximate inference algorithms to choose from.
In this paper, we aim to empirically compare three of the
most popular approximate inference procedures used in re-
lational classification to date.

Even though relational classifiers have gained attention
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only in the past five to seven years, the general problem
of inference for structured output spaces has received at-
tention for a considerably longer period of time from var-
ious research communities such as computer vision, spa-
tial statistics and natural language processing, in particu-
lar. Thus, it is not surprising that one of the earliest princi-
pled approximate inference algorithms,Relaxation Label-
ing (RL) (Hummel & Zucker, 1983), was developed by re-
searchers in computer vision. Due to its simplicity and ap-
peal, RL was a topic of active research for some time and
many researchers developed different versions of the basic
algorithm (Li et al., 1994). In this paper, we experiment
with a particularly simple version of RL referred to as the
Mean Field(MF) approach (Yedidia et al., 2005; Li et al.,
1994).

During the last decade, researchers working with an iter-
ative decoding scheme known as ”Turbo Codes” (Berrou
et al., 1993) began to report excellent results with an-
other approximate inference algorithm termedLoopy Belief
Propagation(LBP) or theSum Productalgorithm (Kschis-
chang & Frey, 1998; McEliece et al., 1998; Kschischang
et al., 2001) which corresponds to running Pearl’s be-
lief propagation algorithm (Pearl, 1988) on networks with
loops. It wasn’t long before the machine learning commu-
nity took notice and reported that LBP can return good re-
sults under certain conditions (Murphy et al., 1999). LBP
has since been justified as a variational method (Yedidia
et al., 2000) and the basic algorithm now has numerous ex-
tensions (Yedidia et al., 2005). LBP is another approximate
inference procedure we include in our suite of experiments.

Recently, various researchers in the machine learning com-
munity began reporting reasonable results with another ap-
proximate inference algorithm that we will refer to asIt-
erative Classification Algorithm(ICA) (Neville & Jensen,
2000; Lu & Getoor, 2003; Carvalho & Cohen, 2005). Be-
sag (1986) originally proposed this greedy approach as a
simple means of performing inference in Markov random
fields for spatial statistics and called itIterated Conditional
Modes (ICM). ICA, in fact, is more general than ICM
since one can use different classifiers in conjunction with
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it as each of Neville and Jensen (2000); Lu and Getoor
(2003); Carvalho and Cohen (2005) show on various re-
lational datasets. Due to its extreme simplicity, different
researchers tend to rediscover this algorithm. In addition,
it often returns useful results. ICA is the third inference
algorithm we include in our experiments.

Besides the above mentioned inference algorithms, there
are many other algorithms that we did not consider for
empirical testing such as Yuille (2002), Wainwright et al.
(2005) and Minka (2001) or exact inference algorithms like
Belief Propagation(Pearl, 1988).

The aim of our experiments was to determine how the al-
gorithms perform in the most commonly occurring settings.
All our experiments are on synthetically generated random
graph data. We used a power-law graph generating algo-
rithm (Bollobas et al., 2003) to create the graphs. Each
node in our synthetic datasets is described by a set of at-
tributes which functions as observed evidence. Correla-
tions across links are varied over a range of settings.

The main assumption in relational classification is that the
labels of linked nodes are correlated, a phenomenon also
referred to asautocorrelation(Jensen & Neville, 2002),
and that these correlations can be utilized during the clas-
sification process. One of our contributions is to show that
different types of correlations across links can affect the
performance of various inference algorithms. One example
of a specific type of correlation ishomophily(Lazarsfeld &
Merton, 1954; McPherson et al., 2001) also referred to as
perfect assortative mixing(PAM) (Newman, 2003) where
nodes with the same label exclusively link with each other.
Another type of correlation occurs when nodes prefer to
link with nodes of the opposite label, Newman refers to
this phenomenon asperfect disassortative mixing(PDM).
In our experiments, we test the inference algorithms on
datasets ranging from PDM to PAM.

We rate each approximate inference algorithm according
to its resilience to noise, both in attribute values and cor-
relations across links. Our experiments also tested the al-
gorithms’ performance across varying link densities. We
found that MF is particularly prone to local minima while
LBP was sensitive to PAM. We also found that LBP’s con-
vergence does not necessarily indicate good results. ICA
seemed to be the most consistent of all the three algorithms
returning reasonable accuracies across all settings albeit
LBP has the ability to produce slightly better results than
ICA under certain settings such as low link density.

Ours is not the only empirical comparison of approximate
inference algorithms. Murphy et al. (1999) empirically
tested the performance of LBP on some well known di-
rected probabilistic graphical models, e.g., QMR-DT etc.,
but does not compare LBP with other approximate infer-

ence algorithms. Weiss (2001) compares the performance
of MF and LBP on some simple toy undirected graphical
models. Macskassy and Provost (2005) compare various
inference procedures on datasets devoid of any attribute
values; in their experiments they provide evidence by pro-
viding a subset of the nodes with their known labels.

Undirected graphical modelsor Markov networks(Cow-
ell et al., 1999) have been shown to be an effective way
to represent relational classification problems and correla-
tions due to the link structure. All our experiments were
performed on Markov networks and we next describe the
preliminary notation required to describe the various ap-
proximate inference algorithms.

2. Preliminaries

Let V be a set of discrete random variables, and letv be an
assignment of values to the random variables. A Markov
network is described by a graphG = (V,E) and a set of
parametersΨ. Let C(G) denote a set of (not necessarily
maximal) cliques inG. For eachc ∈ C(G), let Vc denote
the nodes in the clique. Each cliquec has a clique potential
ψc(Vc) which is a non-negative function on the joint do-
main ofVc and letΨ = {ψc(Vc)}c∈C(G). For classification
problems we are often interested in conditional models. Let
X be the set of observed random variables we condition on
and letx denote the observed values ofX. Let Xc denote
the observed random variables in cliquec∈C(G) and letxc

denote the observed values ofXc. Let Y be the set of target
random variables to which we want to assign labels and let
y denote an assignment toY. Let Yc denote the set of tar-
get random variables in cliquec∈C(G) and letyc denote
an assignment to it. Aconditional Markov networkor con-
ditional random fieldis a Markov network(G,Ψ) which
defines the distributionP(y | x) = 1

Z(x) ∏c∈C(G) ψc(xc,yc)
whereZ(x) = ∑y′∏c ψc(xc,y′c).

Pairwise Markov networksare Markov networks whose set
of cliquesC(G) consist of the set of nodes in the network
and the set of edges. For simplicity, in this paper, all our ex-
periments were performed on pairwise Markov networks.

Conditional Markov networks, as presented above, are not
suited for relational classification tasks since they involve
clique specific potentialsψc(Vc). Taskar et al. (2002) sug-
gest that instead of providing clique specific potentials we
can employ a small set of feature functions (usually indica-
tor functions for class labels etc.) and define the potentials
in log-space logψc(yc,xc) = ∑i wi fi(xc,yc) where fi is the
ith feature function andwi is a parameter which needs to be
estimated.

To perform inference one needs to compute the complete
labeling argmaxy P(y|x) for the given Markov network.
Unless the underlying Markov network has special prop-
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erties (e.g., it is a tree, a sequence or a network with a low
treewidth) exact inference may be infeasible. For most re-
lational classification problems, the Markov network might
consist not only of thousands of nodes but may also be
densely connected. Hence the need for approximate infer-
ence algorithms. In the next section we describe the three
inference algorithms we will be comparing in this paper.

Estimating the parametersΨ of the Markov network is pos-
sible from fully labeled training data. Taskar et al. (2002)
show that Markov networks can be trained using first-order
optimization methods like conjugate gradient descent that
require the computation of a gradient. Taskar et al. also
show that the gradient can be estimated by performing in-
ference on the underlying Markov network of the training
data. We used the approximate inference algorithms de-
scribed in the next section to train the Markov networks.

3. Approximate Inference Algorithms

We compared the performance of three approximate infer-
ence algorithms and here we describe each algorithm. For
simplicity, we describe each algorithm in terms of pairwise
Markov networks. In each of the algorithms, we useα to
denote a proportionality constant andφi(y) to denote the
exponentiated sum of the feature counts weighted by the
parameters of the attribute values of nodeYi ∈ Y.

3.1. Iterative Classification Algorithm (ICA)

The basic idea behind ICA, as the name suggests, is to per-
form inference in an iterative fashion, in each iteration vis-
iting eachY ∈ Y re-estimating its class conditional prob-
abilities given the labels on its neighbors and its attribute
values. Algorithm 1 describes the algorithm we used for
our experiments.

Algorithm 1 Iterative Classification Algorithm

1: for eachYi ∈ Y do {Bootstrapping}
2: bi(y)← αφi(y) such that∑ybi(y) = 1
3: yi ← argmaxy bi(y)
4: end for
5: repeat{perform message passing}
6: for eachYi ∈ Y do
7: bi(y)←αφi(y)exp{∑(Yi ,Yj )∈E ∑y′ wy,y′δy j (y

′)} such that

∑ybi(y) = 1
8: yi ← argmaxy bi(y)
9: end for

10: until all yi stop changing

In Algorithm 1, the inference is initialized by labeling all
the nodes by their attribute-only labels. Then we proceed
with the iterations of ICA.

In ICA, one has the freedom of choosing the order in which
to visit eachY ∈ Y. We refer the reader to Getoor (2005)

where numerous orderings are compared and shown not to
have a significant impact on the final result.

3.2. Mean Field Relaxation Labeling (MF)

As we mentioned in Section 1, there are many versions of
Relaxation Labeling (RL). Here, we chose to experiment
with the Mean Field version (MF). The basic structure of
MF is almost identical to ICA performing the inference in
an iterative fashion, where, in each iteration we visit each
node, relabeling it depending on the neighborhood. The
main difference lies in the way the class conditional prob-
abilities are updated. Instead of using the neighborhood
class labels (like ICA), MF uses the class conditional prob-
abilities of the neighborhood to update the current node’s
probabilities. Algorithm 2 describes the MF algorithm we
used for our experiments.

Algorithm 2 Mean Field

1: for eachYi ∈ Y do {initialize message}
2: bi(y)← 1
3: end for
4: repeat{perform message passing}
5: for eachYi ∈ Y do
6: bi(y)← αφi(y)exp{∑(Yi ,Yj )∈E ∑y′ wy,y′b j (y′)} such that

∑ybi(y) = 1
7: end for
8: until all bi(y) stop changing

Notice that MF is simply the ”soft” version of ICA. We
refer the reader to Weiss (2001) for details about the justi-
fication of MF as a variational method.

3.3. Loopy Belief Propagation (LBP)

Yedidia et al. (2000) show that LBP can be justified as a
variational method. To see the connection between LBP
and MF one needs to dig a little deeper. Since perform-
ing inference using the correct distribution imposed by the
Markov network is too hard, variational methods use a
much simpler trial distribution to approximate the Markov
network distribution. Usually, the trial distribution is such
that once it is estimated then we can simply read off the
node specific class conditional probabilities. Yedidia et al.
(2005) show that the difference between MF and LBP lie
in their choice of trial distributions. LBP has more vari-
ables in its trial distribution and can thus provide a better
approximation to the Markov network distribution. We re-
view the LBP algorithm in Algorithm 3 and refer the reader
to Yedidia et al. for more details. In Algorithm 3,N (Y)
denotes the neighborhood ofY.

4. Synthetic Data Generation

Commonly available real-world networks exhibit proper-
ties like preferential attachment with degrees following
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Algorithm 3 Loopy Belief Propagation

1: for eachYi ∈ Y do {initialize messages}
2: for eachYj ∈ Y such that(Yi ,Yj ) ∈ E do
3: mi→ j (y)← 1
4: end for
5: end for
6: repeat{perform message passing}
7: for eachYi ∈ Y do
8: for eachYj ∈ Y such that(Yi ,Yj ) ∈ E do
9: mi→ j (y)←α ∑y′ φi(y′)exp(wy,y′)∏Yk∈N (Yi)\Yj

mk→i(y′)
such that∑ymi→ j (y) = 1

10: end for
11: end for
12: until all mi→ j (y) stop showing any change
13: for eachYi ∈ Y do {compute beliefs}
14: bi(y)← αφi(y)∏(Yi ,Yj )∈E mj→i(y) such that∑ybi(y) = 1
15: end for

power-law distributions and correlations amongst the labels
across links. Since our aim is to find out how approximate
inference algorithms perform on such networks, we chose
to model our synthetic data generation algorithm (Algo-
rithm 4) along the lines of the evolutionary network model
described in Bollobas et al. (2003).

4.1. Growing the Data Graph

The synthetic data generator (Algorithm 4) “grows” a
graph from an empty set of nodes. The number of nodes
in the final graph is controlled by the parametern. α is a
parameter which controls the number of links in the graph.
Roughly, the final graph should containn1−α

links. For all
our experiments, we setn = 300. For our experiments,α

is an important parameter and we were interested in find-
ing out how the various inference algorithms perform with
varying link density.

4.2. Introducing Correlations in the Link Structure

For simplicity, we generate binary class data (label∈
{0,1}) using our synthetic data generator. Algorithm 4 pro-
ceeds through iterations and in each iteration it either con-
nects a newly created node to the graph or connects two
existing nodes in the graph. Each time Algorithm 4 creates
an edge, it makes a call to Algorithm 5. Algorithm 5 imple-
ments a rudimentary form ofpreferential attachmentwhere
a node can choose which nodes to link based on their la-
bels. This introduces correlations amongst the labels across
links. The strength of these correlations is controlled by
the parameterρ. Each node can link to nodes of its own
class with probabilityρ. With probability 1− ρ, a node
can choose to link to a node of the other class. In addi-
tion, nodes with higher out-degree have a higher chance of
getting linked to. This introduces the power-law degree dis-
tribution commonly observed in most real-world networks.
We refer the interested reader to Bollobas et al. (2003) for
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Figure 1. Degree distribution of a graph consisting of 40000
nodes and 53313 edges created by our synthetic data generator
plotted in log-scale.

more details regarding this aspect of our synthetic data gen-
eration algorithm. In Figure 1, we plot the degree distribu-
tion of a graph consisting of 40000 nodes and 53313 edges
created by our synthetic data generator. In our experiments,
we varyρ to study the effects of varying correlations across
links on the various inference algorithms.

Algorithm 4 Synthetic data generator

SynthGraph(n, α, ρ, ω)
1: i← 0
2: G← /0
3: while i < n do
4: sampler ∈ [0,1] uniformly at random
5: if r <= α then
6: v← select any node uniformly at random fromG
7: connectNode(v, G, ρ)
8: else
9: add a new nodev to G

10: choosev.label from {0,1} uniformly at random
11: connectNode(v, G, ρ)
12: i← i +1
13: end if
14: end while
15: for i = 1 to ndo
16: v← ith node inG
17: genAttributes(v, ω)
18: end for
19: returnG

4.3. Attribute Generation

After generating the graph, we generate attributes for each
node (genAttributes). The total number of attributes is
controlled by the parametervocabSizeand each node can
have a maximum ofnumObsattributes. In order to gen-
erate a simple skewed attribute distribution, we use the
following simple model. For each node, we sample at-
tributes from noisy class-specific binomial distributions.
The noise in the attributes is controlled by the parameter
ω. With probabilityω, we sample an attribute uniformly
from the set{0, . . . ,vocabSize−1}. With probability 1−ω,
we sample an attribute from the distributionBinomial(p =
1/3,vocabSize− 1) if the node belongs to class 0 and
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Figure 2. Effects of varying correlations across links: In all of these experiments we variedρ and setω = 0.3. In the top row, we provide
the results of varyingρ from 0.5 (no link correlations) to 1 (PAM). In the bottom row, we provide the results of varyingρ from 0.5 (no
link correlations) to 0 (PDM).

Binomial(p = 2/3,vocabSize− 1) if the node belongs to
class 1. For each node, we performnumObssuch sam-
plings. For all our experiments we setvocabSize= 5 and
numObs= 4. These parameter settings were chosen to
bring out the differences amongst the various approximate
inference algorithms and changing the settings produces
expected changes in the results, e.g., increasing the value
of vocabSizewill introduce more discriminative power in
the attribute values, causing all three inference algorithms
to produce the same results.ω is another parameter that we
vary to study the effects of varying attribute noise.

Algorithm 5 Generating an edge in the synthetic data graph

connectNode(v, G, ρ)
1: sampler ∈ [0,1] uniformly at random
2: if r ≤ ρ then
3: cn← v.label
4: else
5: cn← (v.label+1) mod 2
6: end if
7: w← select a node fromG with w.label = cn and probability

of selection proportional to its out-degree
8: introduce an edge fromv to w

5. Experiments

Our experiments were aimed to find out how the various
inference algorithms perform in the presence of different
underlying structure and different sources of noise.

5.1. Experimental Setup

For each experiment, we generated three datasets using our
data generator and performed three-fold cross validation.

We report average accuracies (with errorbars).

For each classifier, we assumed a ”shrinkage” prior and
compute the MAP estimate of the parameters. More pre-
cisely, we assumed that different parameters are a priori
independent and definep(wi) = λw2

i . We tried a range of
regularization constants for each classifier and found that
λ = 10 returned the best results. Taskar et al. (2002) re-
port using a regularization constant of the same magnitude
λ ≈ 5.5.

5.2. Effects of varying Correlations across Links

In our first set of experiments, we study the effects of vary-
ing correlations across links. Recall thatρ controls how
nodes choose neighbors during the synthetic data genera-
tion. More specifically, atρ = 0.5 nodes link to neighbours
randomly, atρ = 1 nodes link to neighbours with simil-
iar class labels (perfect assortative mixing or PAM) and at
ρ = 0 nodes link to neighbours with the opposite class label
(perfect disassortative mixing or PDM). In all these exper-
iments we keptω constant at 0.3.

We divide this set of experiments into two parts, in the first
part we varyρ from 0.5 to 1.0 and in the second part, we
vary ρ from 0.5 to 0. Since we are also interested in the
effects of varying the link density (α), for each experiment,
we produce three plots, each with a different setting forα.
Recall that the number of links is governed approximately
as n

1−α
, thus the number of links increase as we increaseα.

The top row of plots in Figure 2 shows the results of varying
ρ from 0.5 (no correlations) to 1 (PAM) for three different
settings ofα. At α = 0.1, we have sparse data graphs and
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Figure 3. Effects of varying attribute noise: In all of these experiments we variedω. In the top row, we provide the results of varyingω

from 0 (no attribute noise) to 1 (random attribute values) atρ = 1 (PAM). In the bottom row, we provide the results of varyingω from 0
to 1 atρ = 0 (PDM).

as we increaseρ, we introduce more and more correlations
across links, thus allowing all three inference algorithms
to improve performance. Atα = 0.3 (the second plot in
the top row in Figure 2), a similar trend is also observed.
It may not be clear from the plots, but for ICA and LBP,
performance atα = 0.3 is better thanα = 0.1. This is ex-
pected since more links should provide more correlations
to exploit. For example, atα = 0.1 andρ = 1, ICA re-
turns an average accuracy of 91% and LBP returns 93.2%,
whereas the corresponding numbers atα = 0.3 are 93.5%
and 95.4% respectively.

At α = 0.1 andα = 0.3, MF returns respectable perfor-
mance closely matching ICA’s results (and sometimes even
improving on them) on all settings ofρ except forρ = 1.
This is contrary to what one would expect sinceρ = 1
corresponds to PAM and there are significant correlations
across links to exploit. This is even more surprising given
the fact that ICA, the ”hard” labeling version of MF, does
well at this setting ofρ almost matching LBP’s results. We
attribute this result to MF’s tendency of getting stuck at
local minima (Weiss, 2001). Our experiments seem to sug-
gest that very high correlations across links may actually
increase MF’s tendency to getting stuck at local minima.
We discuss this issue more closely in Section 5.4.

At α = 0.5 (the last plot in the top row of Figure 2), both
MF and LBP return erratic and poor results whereas ICA
still returns reasonable results. Variational methods like
LBP and MF are known to suffer from the problem of short,
closed ”loops” (Yedidia et al., 2005). Whenever there are a
number of tightly clustered nodes that repeatedly exchange
messages with each other, LBP and MF tend to provide

poor approximations and thus fail to provide good results.
At α = 0.5, the large number of links provides a number of
closed loops thus causing problems for LBP and MF. Note
that contrary to what Murphy et al. (1999) suggest, conver-
gence of LBP isnot a good indication of LBP’s accuracy.
In almost all cases in Figure 2, LBP converged in a few iter-
ations (≤ 20) but none of its results atα = 0.5 (third plot in
the top row in Figure 2) are very good in terms of accuracy.

In the bottom row in Figure 2, we varyρ from 0 (PDM)
to 0.5 (nodes linking randomly). The results are similar
to the previous case. Atα = 0.1 andα = 0.3, both ICA
and LBP improve results as more correlations across links
are introduced with results being better atα = 0.3 than at
α = 0.1 due to the larger number of links. MF, just as be-
fore, returns poor results atρ = 0.0 andα = 0.3 when there
are significant PDM correlations across links. Atα = 0.5,
once again, both LBP and MF face problems with the high
link density whereas ICA returns good results showing re-
silience to link density.

5.3. Effects of varying Noise in Attribute Values

In our second set of experiments, we study the effects of
varying attribute noise on the different approximate infer-
ence algorithms. Recall thatω controls the attribute noise
in the generated datasets. More specifically, atω = 0 the at-
tribute values are selected from class-specific distributions
devoid of noise and as we increaseω, we introduce some
randomness in the attribute generation procedure.

Once again, we divide the set of experiments into two parts.
In the first part, we setρ = 1 thus studying the effect of
varying attribute noise in the presence of PAM. In the sec-
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Figure 4. Synthetic data generated by settingρ = 1 (PAM) con-
sisting of 300 nodes and 418 edges. Colors denote labels.

ond part, we setρ = 0 studying the effects of varyingω
in the presence of PDM. For each setting we produce three
plots, one for each setting ofα thus showing the effects of
attribute noise at different link densities.

In the first row in Figure 3, we show the results of vary-
ing ω from 0 to 1 with ρ set to 1. Atα = 0.1, when
the data is sparse, all three inference algorithms exploit the
correlations across links when the attribute values are de-
void of noise (ω = 0). As ω increases, more and more
noise gets introduced into the attribute values and the per-
formance of all three inference algorithms decrease. Simi-
larly, atα = 0.3, due to the increase in the number of links,
the inference algorithms perform better than atα = 0.1 but
only whenω is close to 0. As the plots show, atω ≥ 0.8, all
three algorithms perform poorly. This means that if the at-
tribute values are too noisy then no amount of correlations
across links is going to help since we do not have any evi-
dence to bootstrap the inference procedure. Atα = 0.5, the
increased link density causes LBP and MF to return poor,
erratic results whereas ICA performs well.

In all three plots in the top row of Figure 3, MF tends to
perform poorly even at the slightest of noise in the attribute
values. In all three plots MF’s decreasing performance is
the sharpest amongst all three inference procedures.

In the bottom row of Figure 3, we setρ to 0 (PDM) and
variedω from 0 to 1. In these plots, except forα = 0.1,
all runs of MF produced very poor results showing its ten-
dency to get caught in local minima. In contrast, ICA and
LBP produced good results except when the noise in the at-
tribute values was high (ω = 1). LBP even performed well
at α = 0.5. ICA produced results close to LBP’s but LBP
performed slightly better than ICA in most cases.

5.4. PAM vs. PDM: the Effect of different Correlations
across Links on Inference Algorithms

In both Figure 2 and Figure 3, LBP seems to perform bet-
ter in the presence of PDM than in the presence of PAM.

Figure 5. Synthetic data generated by settingρ = 0 (PDM) con-
sisting of 300 nodes and 421 edges. Colors denote labels.

For example, compare the two plots in the last column in
Figure 2. In the top plot (PAM with noise), LBP shows
extremely erratic results while in the right plot (PDM with
noise), LBP almost matches ICA’s results (even improv-
ing slightly at times). There is a similar story in Figure 3.
These results seem to suggest that LBP is better at exploit-
ing PDM correlations than exploiting PAM correlations. To
find out why, we plotted two of our synthetically generated
datasets in Figure 4 and Figure 5.

The two data graphs seem to suggest that, in the case of
PAM (Figure 4), the data generator forms clusters where
each cluster contains nodes of the same class label and
within these clusters we have densely connected loops
while in the case of PDM (Figure 5) the links are more
spread out. Thus, for LBP, it is easier to infer over datasets
with PDM. Note that both data graphs contain roughly the
same number of edges. Also, this observation suggests that
as we introduce more correlations across links we get more
and more closed loops. This may be the reason for the poor
performace of MF atρ = 1 andα = 0.1,0.3 in Figure 2.

6. Conclusion

We empirically compared the performance of three popu-
lar approximate inference algorithms: loopy belief propa-
gation, mean field relaxation labeling and iterative classifi-
cation algorithm. ICA is simply the hard labeling version
of MF while LBP is a more sophisticated cousin of MF.
Our experiments confirm that LBP has a problem dealing
with closed ”loops” and that MF has severe issues with
local minima. ICA tends to perform quite well on ran-
dom graph data, closely matching LBP’s best performances
which is surprising. One thing that we observed was, quite
often, LBP may converge but to incorrect values. A com-
pletely unexpected observation in our experiments was that
the type of link correlation (PAM or PDM) may affect the
performance of LBP. This will need further corroboration.
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