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Abstract only in the past five to seven years, the general problem
of inference for structured output spaces has received at-
tention for a considerably longer period of time from var-
ious research communities such as computer vision, spa-
tial statistics and natural language processing, in particu-
lar. Thus, it is not surprising that one of the earliest princi-
pled approximate inference algorithni®elaxation Label-

ing (RL) (Hummel & Zucker, 1983), was developed by re-
searchers in computer vision. Due to its simplicity and ap-
peal, RL was a topic of active research for some time and
many researchers developed different versions of the basic
algorithm (Li et al., 1994). In this paper, we experiment
with a particularly simple version of RL referred to as the
Mean Field(MF) approach (Yedidia et al., 2005; Li et al.,
1994).

1. Introduction During the last decade, researchers working with an iter-

) . . ative decoding scheme known as "Turbo Codes” (Berrou
Over the past few years, relational classifiers have gainegd; al., 1993) began to report excellent results with an-

considerable attention. Due to the efforts of various re'otherapproximate inference algorithm ternempy Belief

searchers we now have access to numerous approachgg,nagation(LBP) or theSum Producalgorithm (Kschis-
(e.g., Lafferty etal., 2001; Taskar et al., 2002; Lu&Getoor,Chang & Frey, 1998; McEliece et al., 1998; Kschischang

2003; Taskar et al., 2003; Neville & Jensen, 2004 etc.), al., 2001) which corresponds to running Pearl's be-

each with its own set of advantages. However, inferencges oronagation algorithm (Pearl, 1988) on networks with
in networked data is still a challengmg issue. The C(_)nsenroops. It wasn't long before the machine learning commu-
sus seems to be thakact inference is a hard problem  hity 150k notice and reported that LBP can return good re-
th|s domaln_and cannot be.achleved without exploiting SPesits under certain conditions (Murphy et al., 1999). LBP
cial properties of the application or data at hand. In parf,,5 since been justified as a variational method (Yedidia
due to this reason, even the earliest efforts in relational; 5 2000) and the basic algorithm now has numerous ex-
classification have shown a tendencyd@velop approxi-  tansions (Yedidia et al., 2005). LBP is another approximate

mate inference algorithm@.g., Hummel & Zucker, 1983, jyference procedure we include in our suite of experiments.
Chakrabarti et al., 1998). Due to the collective efforts of

the research community we now have a considerably longkecently, various researchers in the machine learning com-
list of approximate inference algorithms to choose from.munity began reporting reasonable results with another ap-
In this paper, we aim to empirically compare three of theProximate inference algorithm that we will refer to ks

most popular approximate inference procedures used in rérative Classification AlgorithniCA) (Neville & Jensen,
lational classification to date. 2000; Lu & Getoor, 2003; Carvalho & Cohen, 2005). Be-

. . ) . sag (1986) originally proposed this greedy approach as a
Even though relational classifiers have gained attentlogimme means of performing inference in Markov random

Presented at the ICML Workshop on Open Problems in StatisticageldS for spatial statl_stlcs a”O_' calledtgrated Conditional
Relational Learning, Pittsburgh, PA, 2006. Copyright 2006 by thdlodes (ICM). ICA, in fact, is more general than ICM
author(s)/owner(s). since one can use different classifiers in conjunction with

Over the past few years, a number of approx-
imate inference algorithms for networked data
have been put forth. We empirically compare the
performance of three of the popular algorithms:
loopy belief propagation, mean field relaxation
labeling and iterative classification. We rate each
algorithm in terms of its robustness to noise, both
in attribute values and correlations across links.
A novel observation from our experiments is that
loopy belief propagation faces difficulty when in-

ferring over data witthomophily a common type

of link correlation observed in relational data.
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it as each of Neville and Jensen (2000); Lu and Getooence algorithms. Weiss (2001) compares the performance
(2003); Carvalho and Cohen (2005) show on various reef MF and LBP on some simple toy undirected graphical
lational datasets. Due to its extreme simplicity, differentmodels. Macskassy and Provost (2005) compare various
researchers tend to rediscover this algorithm. In additioninference procedures on datasets devoid of any attribute
it often returns useful results. ICA is the third inference values; in their experiments they provide evidence by pro-
algorithm we include in our experiments. viding a subset of the nodes with their known labels.

Besides the above mentioned inference algorithms, thergndirected graphical modelsr Markov networkgCow-

are many other algorithms that we did not consider forell et al., 1999) have been shown to be an effective way
empirical testing such as Yuille (2002), Wainwright et al. to represent relational classification problems and correla-
(2005) and Minka (2001) or exact inference algorithms liketions due to the link structure. All our experiments were
Belief Propagatiorn{Pearl, 1988). performed on Markov networks and we next describe the

The aim of our experiments was to determine how the aI_preliminary notation required to describe the various ap-

gorithms perform in the most commonly occurring settings.me'm"Jlte inference algorithms.
All our experiments are on synthetically generated random o
graph data. We used a power-law graph generating alga2. Preliminaries

rithm (Bollobas et al.,, 2003) to create the graphs. Eacr[__etv be a set of discrete random variables, and/ le¢ an

node in our synthetic datasets is described by a set of al=_ . :
X . : . assignment of values to the random variables. A Markov
tributes which functions as observed evidence. Correla-

tions across links are varied over a range of settings network is described by a gragih = (V,E) and a set of
9 gs. parametersl. Let C(G) denote a set of (not necessarily

The main assumption in relational classification is that themaximal) cliques inG. For eachc € C(G), letV; denote
labels of linked nodes are correlated, a phenomenon alsine nodes in the clique. Each cliqaéas a clique potential
referred to asautocorrelation(Jensen & Neville, 2002), w(Vc) which is a non-negative function on the joint do-
and that these correlations can be utilized during the clasmain of\; and letW = {yc(Vc) }cec(q)- FoOr classification
sification process. One of our contributions is to show thaproblems we are often interested in conditional models. Let
different types of correlations across links can affect theX be the set of observed random variables we condition on
performance of various inference algorithms. One exampland letx denote the observed valuesXf Let X. denote

of a specific type of correlation fomophily(Lazarsfeld &  the observed random variables in clique C(G) and letx;
Merton, 1954; McPherson et al., 2001) also referred to aslenote the observed valuesXf LetY be the set of target
perfect assortative mixinfPAM) (Newman, 2003) where random variables to which we want to assign labels and let
nodes with the same label exclusively link with each othery denote an assignment ¥ Let Y. denote the set of tar-
Another type of correlation occurs when nodes prefer toget random variables in cliguee C(G) and lety. denote
link with nodes of the opposite label, Newman refers toan assignment to it. Aonditional Markov networlor con-

this phenomenon gserfect disassortative mixind®PDM).  ditional random fieldis a Markov network(G, W) which

In our experiments, we test the inference algorithms ordefines the distributiofP(y | X) = ﬁ Meec(e) We(Xe; Ye)

datasets ranging from PDM to PAM. whereZ(x) = 3y e Ve(¥e, Yo)-

We rate each approximate inference algorithm accordingpajrwise Markov networkare Markov networks whose set
to its resilience to noise, both in attribute values and COrof C|iquesC(G) consist of the set of nodes in the network
relations across links. Our experiments also tested the alnd the set of edges. For simplicity, in this paper, all our ex-

gorithms’ performance across varying link densities. Weperiments were performed on pairwise Markov networks.
found that MF is particularly prone to local minima while N
LBP was sensitive to PAM. We also found that LBP's Con_Condmonal Markov networks, as presented above, are not

vergence does not necessarily indicate good results. IC Ruited for relational classification tasks since they involve
seemed to be the most consistent of all the three algorithm@ique specific potentialg(Vc). Taskar et al. (2002) sug-
returning reasonable accuracies across all settings albffSt that instead of providing clique specific potentials we

LBP has the ability to produce slightly better results thancan €mploy a small set of feature functions (usually indica-
ICA under certain settings such as low link density. tor functions for class labels etc.) and define the potentials

in log-space logc(Ye, %) = 3 Wi fi(Xc,Yc) wheref; is the
Ours is not the only empirical comparison of approximate;th feature function andy is a parameter which needs to be
inference algorithms. Murphy et al. (1999) empirically estimated.
tested the performance of LBP on some well known di- _
rected probabilistic graphical models, e.g., QMR-DT etc.,TO perform inference one needs to compute the complete

but does not compare LBP with other approximate infer-/2beling argmax P(y|x) for the given Markov network.
Unless the underlying Markov network has special prop-
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erties (e.g., itis a tree, a sequence or a network with a loowhere numerous orderings are compared and shown not to
treewidth) exact inference may be infeasible. For most rehave a significant impact on the final result.

lational classification problems, the Markov network might

consist not only of thousands of nodes but may also b&.2. Mean Field Relaxation Labeling (MF)

densely connected. Hence the need for approximate infer-

ence algorithms. In the next section we describe the thre§S We mentioned in Section 1, there are many versions of
inference algorithms we will be comparing in this paper. R€laxation Labeling (RL). Here, we chose to experiment
with the Mean Field version (MF). The basic structure of

Estimating the parameteti$of the Markov network is pos-  MF is almost identical to ICA performing the inference in

sible from fully labeled training data. Taskar et al. (2002) an iterative fashion, where, in each iteration we visit each
show that Markov networks can be trained using first-ordenode, relabeling it depending on the neighborhood. The
optimization methods like conjugate gradient descent thagnain difference lies in the way the class conditional prob-
require the computation of a gradient. Taskar et al. als@pilities are updated. Instead of using the neighborhood
show that the gradient can be estimated by performing inclass labels (like ICA), MF uses the class conditional prob-
ference on the underlying Markov network of the training abilities of the neighborhood to update the current node’s

data. We used the approximate inference algorithms deprobabilities. Algorithm 2 describes the MF algorithm we
scribed in the next section to train the Markov networks. ysed for our experiments.

3. Approximate Inference Algorithms Algorithm 2 Mean Field
1: for eachy; € Y do {initialize message

We compared the performance of three approximate infer-2:  bi(y) 1
ence algorithms and here we describe each algorithm. For3f end for
simplicity, we describe each algorithm in terms of pairwise 4 "ePeat {perform message passing

. 5: for eachY; € Y do
Markov networks. In each of the algorithms, we us¢o 6: bi(y) — adi (Y) eXP{3 v, cE Ty Wyy'bj (¥)} such that

denote a proportionality constant andy) to denote the b (V) —
. . Sybi(y) =1
exponentiated sum of the feature counts weighted by the7:  endfor
parameters of the attribute values of nofle Y. 8: until all b;(y) stop changing
3.1. Iterative Classification Algorithm (ICA) Notice that MF is simply the "soft” version of ICA. We

The basic idea behind ICA, as the name suggests, is to pe]r{i%]:[ri;:eo;ﬁgg;g :’/\;?;zzo(ﬁgloé)eizggeta”s about the just-

form inference in an iterative fashion, in each iteration vis-
iting eachY € Y re-estimating its class conditional prob-
abilities given the labels on its neighbors and its attribute™

values. Algorithm 1 describes the algorithm we used forvedidia et al. (2000) show that LBP can be justified as a

3. Loopy Belief Propagation (LBP)

our experiments. variational method. To see the connection between LBP

and MF one needs to dig a little deeper. Since perform-

Algorithm 1 Iterative Classification Algorithm ing inference using the correct distribution imposed by the
1: for eachY; € Y do {Bootstrapping Markov network is too hard, variational methods use a
2: bi(y) — a¢i(y) such thaty bi(y) = 1 much simpler trial distribution to approximate the Markov
3y < argmay bi(y) network distribution. Usually, the trial distribution is such

4: end for that once it is estimated then we can simply read off the
gf re?gfg‘gﬁf‘goem;ggssage passing node specific class conditional probabilities. Yedidia et al.
7 bi(y) H'(wi (Y) XD .y, <& Sy Wyy &y, ()} such that _(2005_) shov_v that th_e differ_enc_e between MF and LBP _Iie
sybiy) =1 in the|.r c.h0|c.e of.trle_ll d|§tr|but|ons. LBP has more vari-

8: yi < argmay bi(y) ables in its trial distribution and can thus provide a better
9: end for approximation to the Markov network distribution. We re-
10: until all'y; stop changing view the LBP algorithm in Algorithm 3 and refer the reader

to Yedidia et al. for more details. In Algorithm 347(Y)

In Algorithm 1, the inference is initialized by labeling all denotes the neighborhood6f

the nodes by their attribute-only labels. Then we proceed ) )
with the iterations of ICA. 4. Synthetic Data Generation

In ICA, one has the freedom of choosing the order in whichCommonly available real-world networks exhibit proper-
to visit eachY € Y. We refer the reader to Getoor (2005) ties like preferential attachment with degrees following
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Algorithm 3 Loopy Belief Propagation 100000 Dogres disbuton+

exp(12-3*log(x))

. for eachy; € Y do {initialize messagégs 10000
for eachY;j € Y such tha(y;,Yj) € E do
m_j(y) —1
end for
end for
: repeat {perform message passing
for eachY; € Y do
for eachYj € Y such thaiy,Y;) € E do :
M—j(y) < aZy oY) expWyy ) Myer vy Me—i(Y) 1 Deares *
such thatyymi_,j(y) =1
10: end for Figure 1. Degree distribution of a graph consisting of 40000

1L e_nd for ) nodes and 53313 edges created by our synthetic data generator
12: until all m_j(y) stop showing any change plotted in log-scale
13: for eachY; € Y do {compute beliefs '

14 bi(y) — adi(y) [vv;)ee Mj—i(y) such thatyy bi(y) =1

15: end for more details regarding this aspect of our synthetic data gen-
eration algorithm. In Figure 1, we plot the degree distribu-
tion of a graph consisting of 40000 nodes and 53313 edges

power-law distributions and correlations amongst the labelgreated by our synthetic data generator. In our experiments,

across links. Since our aim is to find out how approximatewe varyp to study the effects of varying correlations across

inference algorithms perform on such networks, we choséinks on the various inference algorithms.

to model our synthetic data generation algorithm (Algo-

rithm 4) along the lines of the evolutionary network model Algorithm 4 Synthetic data generator

1000

Frequency

100

CcoNoahhwNR

described in Bollobas et al. (2003). SynthGrapht, o, p, ©)
1:.i<0
4.1. Growing the Data Graph 2:.G—0

3: whilei <ndo
The synthetic data generator (Algorithm 4) “grows” a 4: sampler € [0,1] uniformly at random
graph from an empty set of nodes. The number of nodes> if r <= a then _
in the final graph is controlled by the parameterc is a v select any node uniformly at random fragn

! S : connectNode, G,
parameter which controls the number of links in the graph. g.  g|ge %G.p)

Roughly, the final graph should contaj# links. For all 9: add a new nodeto G
our experiments, we set= 300. For our experimentsy 10: choosev.label from {0, 1} uniformly at random
is an important parameter and we were interested in findtl: ~ connectNode( G, p)
. . . . o 12: i—i+1
ing out how the various inference algorithms perform with 13- endif
varying link density. 14: end while
15: for i = lto ndo_
4.2. Introducing Correlations in the Link Structure 16: v i'" node inG

17:  genAttributesy, o)
For simplicity, we generate binary class data (lagel 18: end for
{0,1}) using our synthetic data generator. Algorithm 4 pro-19: rewumG
ceeds through iterations and in each iteration it either con-
ne_ct§ a newly _created node to the_ graph or connects tw2.3. Attribute Generation
existing nodes in the graph. Each time Algorithm 4 creates
an edge, it makes a call to Algorithm 5. Algorithm 5 imple- After generating the graph, we generate attributes for each
ments a rudimentary form gireferential attachmemhere  node genAttributes). The total number of attributes is
a node can choose which nodes to link based on their lacontrolled by the parameteocabSizeand each node can
bels. This introduces correlations amongst the labels acrodsve a maximum ohumObsattributes. In order to gen-
links. The strength of these correlations is controlled byerate a simple skewed attribute distribution, we use the
the parametep. Each node can link to nodes of its own following simple model. For each node, we sample at-
class with probabilityp. With probability 1— p, a node tributes from noisy class-specific binomial distributions.
can choose to link to a node of the other class. In addiThe noise in the attributes is controlled by the parameter
tion, nodes with higher out-degree have a higher chance ab. With probability o, we sample an attribute uniformly
getting linked to. This introduces the power-law degree disfrom the sef0,...,vocabSize 1}. With probability 1 o,
tribution commonly observed in most real-world networks. we sample an attribute from the distributiBmomial(p =
We refer the interested reader to Bollobas et al. (2003) fofl/3,vocabSize- 1) if the node belongs to class 0 and
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Figure 2. Effects of varying correlations across links: In all of these experiments we vaded setw = 0.3. In the top row, we provide
the results of varying from 0.5 (no link correlations) to 1 (PAM). In the bottom row, we provide the results of vagyifigm 0.5 (no
link correlations) to 0 (PDM).

Binomial(p = 2/3,vocabSize- 1) if the node belongs to We report average accuracies (with errorbars).

class 1. For each node, we performramObssuch sam- o s .
For each classifier, we assumed a "shrinkage” prior and

plings. For all our experiments we . cabSize=5 and compute the MAP estimate of the parameters. More pre-
numObs= 4. These parameter settings were chosen tg. : L
: . . . cisely, we assumed that different parameters are a priori
bring out the differences amongst the various approximate . .
: . . . independent and defingw;) = Aw?. We tried a range of
inference algorithms and changing the settings produces o o
regularization constants for each classifier and found that

expected changes in the results, e.g., increasing the vaILie: 10 returned the best results. Taskar et al. (2002) re-

of vocabSizewill introduce more discriminative power in . o X
. . . . ort using a regularization constant of the same magnitude
the attribute values, causing all three inference algorlthmg ~55

to produce the same results.is another parameter that we

vary to study the effects of varying attribute noise. . . .
5.2. Effects of varying Correlations across Links

Algorithm 5 Generating an edge in the synthetic data graph
connectNode G, p)
1: sampler € [0, 1] uniformly at random

In our first set of experiments, we study the effects of vary-
ing correlations across links. Recall thatcontrols how
nodes choose neighbors during the synthetic data genera-

% i rcngi) \t/.hlggel tion. More specifically, ab = 0.5 nodes link to neighbours

4: else randomly, atp = 1 nodes link to neighbours with simil-
5. cp« (vlabel+1) mod 2 iar class labels (perfect assortative mixing or PAM) and at
6: end if p = 0 nodes link to neighbours with the opposite class label
7. w « select a node frors with w.label = ¢, and probability

(perfect disassortative mixing or PDM). In all these exper-

of selection proportional to its out-degree iments we kepto constant at 0.3.

. introduce an edge fromto w

(o]

We divide this set of experiments into two parts, in the first

] part we varyp from 0.5 to 1.0 and in the second part, we

5. Experiments vary p from 0.5 to 0. Since we are also interested in the
effects of varying the link density), for each experiment,

Our experiments were aimed to find out how the various produce three plots, each with a different settingfor

mgree;ln?ﬁ asl?r%rétttf]esa?}zrg?;frgrg:] ttr;iue;zssegfcﬁo?;ed'ﬁeremRecaII that the number of links is governed approximately
ying : asy n_ thus the number of links increase as we increase

11—’
5.1. Experimental Setup The top row of plots in Figure 2 shows the results of varying

p from 0.5 (no correlations) to 1 (PAM) for three different

For each experiment, we generated three datasets using QUtitings ofa. At o = 0.1, we have sparse data graphs and
data generator and performed three-fold cross validation.
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Figure 3. Effects of varying attribute noise: In all of these experiments we vavieth the top row, we provide the results of varying
from O (no attribute noise) to 1 (random attribute valueg) at1 (PAM). In the bottom row, we provide the results of varymdgrom 0
to 1 atp = 0 (PDM).

as we increasp, we introduce more and more correlations poor approximations and thus fail to provide good results.
across links, thus allowing all three inference algorithmsAt a = 0.5, the large number of links provides a number of
to improve performance. At = 0.3 (the second plot in closed loops thus causing problems for LBP and MF. Note
the top row in Figure 2), a similar trend is also observedthat contrary to what Murphy et al. (1999) suggest, conver-
It may not be clear from the plots, but for ICA and LBP, gence of LBP isot a good indication of LBP’s accuracy.
performance atx = 0.3 is better tharx = 0.1. Thisis ex- Inalmost all cases in Figure 2, LBP converged in a few iter-
pected since more links should provide more correlationstions € 20) but none of its results at= 0.5 (third plot in

to exploit. For example, at = 0.1 andp =1, ICA re-  the top row in Figure 2) are very good in terms of accuracy.
turns an average accuracy of 91% and LBP returns 93.29

O A
whereas the corresponding numberscat 0.3 are 93.5% fh the bottom row in Figure 2, we vary from 0 (PDM) .
. to 0.5 (nodes linking randomly). The results are similar
and 95.4% respectively.

to the previous case. At = 0.1 anda = 0.3, both ICA

At a = 0.1 anda = 0.3, MF returns respectable perfor- and LBP improve results as more correlations across links
mance closely matching ICA's results (and sometimes eveare introduced with results being betteroat= 0.3 than at
improving on them) on all settings @f except foro =1. o = 0.1 due to the larger number of links. MF, just as be-
This is contrary to what one would expect singe=1  fore, returns poor results at= 0.0 anda = 0.3 when there
corresponds to PAM and there are significant correlationgre significant PDM correlations across links. dit= 0.5,
across links to exploit. This is even more surprising givenonce again, both LBP and MF face problems with the high
the fact that ICA, the "hard” labeling version of MF, does link density whereas ICA returns good results showing re-
well at this setting op almost matching LBP’s results. We silience to link density.

attribute this result to MF’s tendency of getting stuck at

local minima (Weiss, 2001). Our experiments seem to sugs.3. Effects of varying Noise in Attribute Values

gest that very high correlations across links may actually ,
increase MF's tendency to getting stuck at local minima./n Our second set of experiments, we study the effects of

We discuss this issue more closely in Section 5.4. varying attribute noise on the different approximate infer-
ence algorithms. Recall that controls the attribute noise

At a = 0.5 (the last plot in the top row of Figure 2), both in the generated datasets. More specifically at 0 the at-

MF and LBP return erratic and poor results whereas ICAtribute values are selected from class-specific distributions
still returns reasonable results. Variational methods likegevoid of noise and as we increase we introduce some
LBP and MF are known to suffer from the problem of short, randomness in the attribute generation procedure_

closed "loops” (Yedidia et al., 2005). Whenever there are a ) . . )

number of tightly clustered nodes that repeatedly exchang@nce 2gain, we divide the set of experiments into two parts.

messages with each other, LBP and MF tend to providd" the first part, we sep = 1 thus studying the effect of
varying attribute noise in the presence of PAM. In the sec-
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Figure 4. Synthetic data generated by settipg= 1 (PAM) con- ) . )
sisting of 300 nodes and 418 edges. Colors denote labels. Figure 5. Synthetic data generated by setting= 0 (PDM) con-
sisting of 300 nodes and 421 edges. Colors denote labels.

ond part, we sep = 0 studying the effects of varying
in the presence of PDM. For each setting we produce three

plots, one for each setting of thus showing the effects of F_Or example, compare the two plqts in fche last column in
attribute noise at different link densities. Figure 2. In the top plot (PAM with noise), LBP shows

extremely erratic results while in the right plot (PDM with
In the first row in Figure 3, we show the results of vary- noise), LBP almost matches ICAs results (even improv-
ing ® from O to 1 withp set to 1. Ata = 0.1, when ing slightly at times). There is a similar story in Figure 3.
the data is sparse, all three inference algorithms exploit thghese results seem to suggest that LBP is better at exploit-
correlations across links when the attribute values are deéng PDM correlations than exploiting PAM correlations. To

void of noise (» = 0). As w increases, more and more find out why, we plotted two of our synthetically generated
noise gets introduced into the attribute values and the pegatasets in Figure 4 and Figure 5.

formance of all three inference algorithms decrease. Simi- _
larly, ata = 0.3, due to the increase in the number of links, 1€ WO data graphs seem to suggest that, in the case of

the inference algorithms perform better thamat 0.1 but PAM (Figure 4), the data generator forms clusters where
only whena is close to 0. As the plots show, @t> 0.8, all each cluster contains nodes of the same class label and

three algorithms perform poorly. This means that if the at-Within these clusters we have densely connected loops
tribute values are too noisy then no amount of correlationdVhile in the case of PDM (Figure 5) the links are more

across links is going to help since we do not have any eviSPread out. Thus, for LBP, it is easier to infer over datasets

dence to bootstrap the inference procedurexAt 0.5, the with PDM. Note that both data graphs contain roughly the

increased link density causes LBP and MF to return pOor’same number of edges. Also, this observation suggests that
erratic results whereas ICA performs well. as we introduce more correlations across links we get more

and more closed loops. This may be the reason for the poor

In all three plots in the top row of Figure 3, MF tends to performace of MF ap = 1 ando = 0.1,0.3 in Figure 2.
perform poorly even at the slightest of noise in the attribute

values. In all three plots MF's decreasing performance i .
the sharpest amongst all three inference procedures. 56 Conclusion

In the bottom row of Figure 3, we sgtto 0 (PDM) and We empiripally c_ompared the p(_arformance of th_ree popu-
varied® from 0 to 1. In these plots, except for= 0.1, lar approximate inference algorithms: loopy belief propa-
all runs of MF produced very poor results showing its ten-gation, mean field relaxation labeling and iterative classifi-
dency to get caught in local minima. In contrast, ICA andC@tion algorithm. ICA is simply the hard labeling version
LBP produced good results except when the noise in the a@f MF while LBP is a more sophisticated cousin of MF.
tribute values was highuf = 1). LBP even performed well Our experiments confirm that LBP has a problem dealing
ato = 0.5. ICA produced results close to LBP's but LBP with closed "loops™ and that MF has severe issues with
performed slightly better than ICA in most cases. local minima. ICA tends to perform quite well on ran-
dom graph data, closely matching LBP’s best performances
5.4. PAM vs. PDM: the Effect of different Correlations which is surprising. One thing that we observed was, quite
across Links on Inference Algorithms often, LBP may converge but to incorrect values. A com-
pletely unexpected observation in our experiments was that
In both Figure 2 and Figure 3, LBP seems to perform betthe type of link correlation (PAM or PDM) may affect the
ter in the presence of PDM than in the presence of PAMperformance of LBP. This will need further corroboration.
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