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Abstract

Relational learning analyzes the probabilistic
constraints between the attributes of entities
and relationships. We extend the expressive-
ness of relational models by introducing for
each entity (or object) an infinite-state la-
tent variable as part of a Dirichlet process
(DP) mixture model. It can be viewed as
a relational generalization of hidden Markov
random field. The information propagates in
the intern-connected network via latent vari-
ables, reducing the necessary for extensive
structure learning. For inference, we explore
a Gibbs sampling method based on the Chi-
nese restaurant process. The performance of
our model is demonstrated in three applica-
tions: the movie recommendation, the func-
tion prediction of genes and a medical recom-
mendation system.

1. Introduction

Relational learning (Dzeroski & Lavrac, 2001; Raedt &
Kersting, 2003; Wrobel, 2001; Friedman et al., 1999) is
an object oriented approach that clearly distinguishes
between entities (e.g, objects), relationships and their
respective attributes and represents an area of growing
interest in machine learning. Structural model selec-
tion in a relational system is however extensive due
to the exponentially many features an attribute might
depend on. From this point of view it is more ad-
vantageous to introduce for each entity a latent vari-
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able, which is only parent of the other attributes of
the entity, and is the parent of attributes of relation-
ships it participates. We refer it as hidden relational
model, which can be viewed as a direct generalization
of hidden Markov models used in speech or hidden
Markov random fields used in computer vision (see,
e.g. (Yedidia et al., 2005)). The ground network based
on the model forms a relational network of latent vari-
ables, across which information can propagate. For
example, the information of my grandfather can prop-
agate to me via the latent variable of my father. Note,
that there is no constraint to the relationships. That
means a relationship can be binomial or multinomial,
the number of entities involved in a relationship can
be more than two. Since each entity class might have
a different number of states in its latent variables, and
the number varies with available information, it is nat-
ural to allow the model to determine the appropriate
number of latent states in a self-organized way. This
is possible by embedding the model in Dirichlet pro-
cess (DP) mixture models, which can be interpreted as
a mixture models with an infinite number of mixture
components but where the model, based on the data,
automatically reduces the complexity to an appropri-
ate finite number of components. The combination of
the hidden relational model and the DP mixture model
is referred to as the infinite hidden relational model
(IHRM), which can also be viewed as a generaliza-
tion of nonparametric hierarchical Bayesian modeling
to relational models (compare, (Xu et al., 2005)).

After presenting related work we will briefly introduce
our preferred framework for describing relational mod-
els, i.e., the directed acyclic probabilistic entity rela-
tionship (DAPER) model. In Section 4 we describe
the proposed models and in Section 5 we introduce a
modified Chinese restaurant sampling process to ac-



Learning Infinite Hidden Relational Models

commodate for the relational structure. Section 6 ex-
plains the inference. In the subsequent sections we
describe experimental analysis on movie recommenda-
tion, function prediction of genes, and on a medical
example. In Section 10 we will present conclusions.

2. Related Work

Our approach can be related to some existing work.
(Getoor et al., 2000) refined probabilistic relational
models with class hierarchies, which specialized dis-
tinct probabilistic dependency for each subclass.
(Rosen-Zvi et al., 2004) introduced an author-topic
model for documents. The model implicitly explored
the two relationships between documents and authors
and document and words. (Kemp et al., 2004) showed
a relational model with latent classes, which strongly
focuses on the discovery and interpretation of the clus-
tering structure. Our model uses a similar latent
structure but focuses on the improvement of predic-
tive performance in the exploitation of relational in-
formation. In addition, their model only explores the
relation between members in a single class, e.g. friend-
ship between two persons, whereas IHRM represents
and learns several entity classes and relational classes.
Another extension of IHRM is that the relational at-
tribute can be complex whereas in (Kemp et al., 2004),
the relational attribute is restricted to simply model
the existence of a relationship. (Carbonetto et al.,
2005) introduced the nonparametric BLOG model,
which specifies nonparametric probabilistic distribu-
tions over possible worlds defined by first-order logic.
These models demonstrated good performance in cer-
tain applications. However, most are restricted to do-
mains with simple relations. The proposed model goes
beyond that by considering multiple related entities.
In addition, the nonparametric nature allows the com-
plexity of the model to be tuned by the model based
on the available data set.

3. The DAPER Model

Figure 1. An example of DAPER model over university do-
main from (Heckerman et al., 2004).

The DAPER model (Heckerman et al., 2004) formu-

lates a probabilistic framework for an entity relation-
ship database model. The DAPER model consists
of entity classes, relationship classes, attribute classes
and arc classes, as well as local distribution classes
and constraint classes. Figure 1 shows an example of
a DAPER model for a universe of students, courses
and grades. The entity classes specify classes of ob-
jects in the real world, e.g. Student shown as rect-
angles in Figure 1. The relationship class represents
interaction among entity classes. It is shown as a
diamond-shaped node with dashed lines linked to the
related entity classes, e.g. the relationship Take(s,
c) indicates that a student s takes a class c. At-
tribute classes describe properties of entities or re-
lationships. Attribute classes are connected to the
corresponding entity/relationship class by a dashed
line. For example, associated with courses is the at-
tribute class Course.Difficulty. The attribute class θ
in Figure 1 represents the parameters specifying the
probability of student’s grade in different configura-
tions. The arc classes shown as solid arrows repre-
sent probabilistic dependencies among corresponding
attributes. For example, the solid arrow from Stu-
dent.IQ to Course.Grade specifies the fact that stu-
dent’s grade probabilistically depends on student’s IQ.
For more details please refer to (Heckerman et al.,
2004). A relationship class might have the special at-
tribute Exist with Exist= 0 indicating that the rela-
tionship does not exist (Getoor et al., 2003). Given
particular instantiations of entities and relationships a
ground Bayesian network can be formed which consists
of all attributes in the domain linked by the resulting
arc classes.

4. Infinite Hidden Relational Models

4.1. Hidden Relational Models

Figure 2. Infinite hidden relational model on movie recom-
mendation.

An example of a hidden relational model is shown
in Figure 2. The example shows a movie recom-
mendation system with entity classes User and Movie
and relationship class Like. Furthermore, there are
the attributes UserAttributes, MovieAttributes and R
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(rating) and various parameters and hyperparameters.
The first innovation in our approach is to introduce for
each entity a latent variable, in the example denoted
as Zu and Zm. They can be thought of as unknown at-
tributes of the entities and are the parents of both the
entity attributes and the relationship attributes. The
underlying assumption is that if the latent variable
was known, both entity attributes and relationship at-
tributes can be well predicted. The most important re-
sult from introducing the latent variables is that now
information can propagate through the ground net-
work of interconnected latent variables. Let us con-
sider the prediction of the relationship attribute R. If
both the associated user and movie have strong known
attributes, those will determine the state of the latent
variables and the prediction for R is mostly based on
the entity attributes. In terms of a recommender sys-
tem it is referred to content-based recommendation.
Conversely, if the known attributes are weak, then
the states of the latent variables for the user might
be determined by the relationship attributes in rela-
tions to other movies and the states of those movies’
latent variables. With the same argument, the pre-
diction about movies can be done in the equivalent
way. So by introducing the latent variables, informa-
tion can globally distribute in the ground network de-
fined by the relationship structure. This reduces the
need for extensive structural learning, which is par-
ticularly difficult in relational models due to the huge
number of potential parents. A similar propagation of
information can be observed in hidden Markov mod-
els in speech systems or in the hidden Markov random
fields used in image analysis (Yedidia et al., 2005). In
fact the hidden relational model can be viewed as a
generalization of both for relational structures. Note
that the relational attribute R is not restricted to two
states, e.g. the ratings ranged from 1 to 5. In addi-
tion, it is also possible that the number of entity classes
participating a relationship is more than two.

We now complete the model by introducing the param-
eters. First we consider the user parameters. Assume
that Zu has Ku states and that πu = (πu

1 , . . . , πu
Ku)

are multinomial parameters with P (Zu = k) = πu
k

(πu
k ≥ 0,

∑
k πu

k = 1). πu is drawn from a Dirichlet
prior with πu ∼ Dir(·|αu

0/Ku, . . . , αu
0/Ku). User at-

tributes are assumed to be discrete and independent
given Zu. Thus, a particular user attribute Au with
Su states is a sample from a multinomial distribution
with P (Au = s) = θu

s

(θu
1 , . . . , θu

Su) ∼ Gu
0 = Dir(·|βu∗

1 , . . . , βu∗
Su).

It is also convenient to re-parameterize

βu
0 =

Su∑
s=1

βu∗
s βu

s =
βu∗

s

βu
0

s = 1, . . . , Su

and βu = {βu
1 , . . . , βu

Su}. In the application, we as-
sume a neutral prior with βu

s = 1/Su, which repre-
sents our prior belief in the fact that the multinomial
parameters should be equal. βu

0 is a parameter indicat-
ing how strongly we believe that the prior distribution
should be true. The parameters for the entity class
Movie are defined in an equivalent way. Note, that for
the relationship attribute R, there is a multinomial pa-
rameter φr for each of Ku × Km configurations, and
φr ∼ Gr

0 = Dir(·|βr
0/Sr, . . . , βr

0/Sr), Sr is the number
of states of R.

4.2. Infinite Hidden Relational Models

The latent variables play a key role in our model. In
many applications, we would expect that for the latent
variable of each entity class there is different num-
ber of states being suitable to the complexity of the
data. Consider again the movie recommendation sys-
tem. With little information about past ratings all
users might look the same (movies are globally liked or
disliked), with more information available, one might
discover certain clusters in the users but with an in-
creasing number of past ratings the clusters might
show increasingly detailed structure ultimately indi-
cating that everyone is an individual. It thus makes
sense to permit an arbitrary number of latent states
by embedding the model in a Dirichlet process mix-
ture model. The combination is the infinite hidden
relational model. The advantage is the model can de-
cide itself about the optimal number of states for the
latent variables. In addition, the model can now also
be viewed as a direct generalization of a nonparametric
hierarchical Bayesian approach (see, e.g. (Teh et al.,
2004; Jordan, 2005; Tresp, 2006). For our discussion
is suffices to say that we obtain an infinite hidden re-
lational model by simply letting the number of states
approach infinity, Ku → ∞, Km → ∞. Although a
model with infinite numbers of states and parameters
cannot be represented, it turns out that sampling in
such model is elegant and simple, as shown in the next
section. In the Dirichlet mixture model, α0 determines
the tendency of the model to either use a large num-
ber or a small number of states in the latent variables,
which is also apparent from the sampling procedures
described below.

5. Sampling in the Infinite Hidden
Relational Model

Although a Dirichlet process mixture model contains
an infinite number of parameters and states, the sam-
pling procedure only deals with a growing but finite
representation. This sampling procedure is based on
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the Chinese restaurant process (CRP) where a state
of a latent variable is identified as a component, i.e.,
a table in a restaurant. We will now describe how
the CRP is applied to the infinite hidden relational
model. The procedure differs from the standard CRP
by the sampling of the relational attribute where two
CRP processes are coupled. Let the number of entity
classes be C, and let Gc

0 and αc
0 denote the base distri-

bution and concentration parameter for entity class c,
respectively. Then the sampling for all the entity and
relation attributes is as follows:

1. For the first entity in each entity class c,

Zc
1 = 1; θc

1 ∼ Gc
0; Ac

1 ∼Mult(·|θc
1),

2. For each relationship class r between two entity
classes, draw φr

1,1 ∼ Gr
0 and Rr

1,1 ∼Mult(·|φr
1,1),

3. Assume that for each entity class c, N c entitis
have been generated, and Kc components appear,
and N c

k entities are assigned to the component k.
The new entity i = N c + 1:

(a) Zc
i = k with probability Nc

k

Nc+αc
0

and:

i. Ac
i ∼Mult(·|θc

k),
ii. for each relationship class r between en-

tity classes c and c′, Rr
i,j ∼ Mult(·|φr

k,h),
with j = 1, . . . , N c′

and h = Zc′

j ,

(b) Zc
i = Kc + 1 with probability αc

0
Nc+αu

0
;

i. Draw θc
Kc+1 ∼ Gc

0, Ac
i ∼Mult(·|θc

Kc+1),
ii. For each relationship class r between en-

tity classes c and c′, draw φr
Kc+1,` ∼

Gr
0 i.i.d. with component indices ` =

1, . . . ,Kc′
, and Rr

i,j ∼ Mult(·|φr
k,h), with

j = 1, . . . , N c′
and h = Zc′

j ,
iii. Kc ← Kc + 1.

One can see that the proposed model also draw rela-
tional attributes for the relation classes. In order to
avoid a cluttering of notation, we only consider rela-
tions between two entity classes. The generalization
to relations involving more than two entity classes is
straightforward. The distribution Gr can take differ-
ent forms for different relations.

6. Inference based on Gibbs Sampling

The previous procedure generates samples from the
generative model. Now we consider sampling from a
model given data, i.e. given a set of entity attributes,
relational attributes. The goal is now to generate sam-
ples of the parameters θc, φr, and the latent variables

Zc, which allows us to then make predictions about
unknown attributes. We exploit Gibbs sampling in-
ference based on the CRP. Note, that since the at-
tributes appear as children, unknown attributes can
be marginalized out and thus removed from the model,
greatly reducing the complexity. Although the DP
mixture model contains an infinite number of states,
in the Gibbs sampling procedure only a finite number
of states is ever occupied, providing an estimate of the
true underlying number of components (Tresp, 2006;
Jordan, 2005).

In order to avoid a cluttering of notation, the Gibbs
sampling inference is illustrated in the movie recom-
mendation example. We assume that users are as-
signed to the first Ku states of Zu and movies are
assigned to the first Km states of Zm. We can do this
without loss of generality by exploiting exchangeabil-
ity. Note, that Ku ≤ U and Km ≤ M . If during
sampling a state becomes unoccupied that state is re-
moved from the model and indices are re-assigned. To
simplify the description of sampling we will assume
that this does not occur and that currently no state
is occupied by exactly one item (just to simplify book
keeping).

Gibbs sampling updates the assignment of users and
movies to the states of the latent variable and re-
samples the parameters. In detail:

1. Pick a random user i. Assume that for Nu
k users,

Zu = k without counting user i.

(a) Then, we assign state Zu
i = k with probabil-

ity proportional to

P (Zu
i = k|{Zu

i′}Nu

i′ 6=i, D
u
i , θu, φr, Zm) ∝

Nu
k P (Du

i |θu
k , φr

k,∗, Z
m)

(b) Instead, a new state Ku +1 is generated with
probability proportional to

P (Zu
i = Ku + 1|{Zu

i′}Nu

i′ 6=i, D
u
i , θu, φr, Zm) ∝

αu
0P (Du

i ).

(c) In the first case, the i-th user inherits
the parameters assigned to state k: θu

k ,
φr

k,1, . . . φ
r
k,Km .

(d) In the latter case: new parameters are
generated following P (θu

Ku+1|Du
i ) and

P (φr
Ku+1,`|Du

i , Zm), ` = 1, . . . ,Km.

2. Pick a random movie j. Updates the latent vari-
ables of Zm

j . The sampling is equivalent to the
sampling of Zu, above.
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3. Occasionally (typically less often than the updates
for the latent variables): Update the parameters,
θu, θm, φr from posterior distribution based on all
the data including sampled states for the latent
variables.

In the algorithm, we used the following definitions
(terms involving entity attributes or relationship at-
tributes which are not known drop out of the equa-
tions)

P (Du
i |θu

k , φr, Zm) = P (Au
i |θu

k )

Nm∏
j=1

P (Ri,j |φr
k,Zm

j
)

P (θu|Du
i ) ∝ P (Au

i |θu) Gu
0 (θu)

P (φr|Du
i ) ∝

Nm∏
j=1

P (Ri,j |φr) Gr
0(φ

r)

The algorithm easily generalizes to multiple relations
as described in Section 8 and Section 9. Au

i denotes all
known attributes of user i. Definitions for the movies
are equivalent. The most expensive term in the algo-
rithm is in step 1 (a) which scales proportional to the
number of known entity and relational attributes of
the involved entity and is proportional to the number
of occupied states.

We are currently exploring various sampling schemes
and deterministic approximations. An extensive com-
parison will be available on the web shortly. The re-
sults reported in this paper were obtained by using
the deterministic approximation described in (Tresp
& Yu, 2004). First, we assume the number of com-
ponents to be equal to the corresponding entities in
the corresponding entity class. Then in the training
phase each entity contributes to its own class only.
Based on this simplification the parameters in the at-
tributes and relations can be learned very efficiently.
Note that this approximation can be interpreted as
relational memory-based learning.

7. Experiment on MovieLens

We first evaluate our model on the MovieLens data
(Sarwar et al., 2000). The task is to predict the pref-
erence of users. There are two entity classes (User and
Movie) and one relationship class (Like). The User
class has attribute classes such as Age, Gender, Oc-
cupation. The Movie class has attribute classes such
as Published-year, Genres and so on. The relation-
ship has an additional attribute R with two states:
R = 1 indicates that the user likes the movie and
R = 0 indicates otherwise. The model is shown as Fig-
ure 2. In the data set, there are totally 943 users and
1680 movies. We randomly select 765 users for train-
ing and 178 users for testing. In addition, user rat-

Table 1. The prediction accuracy of user preference

Method Accuracy(%)
E1: Collaborative filtering 1 64.22
E2: Collaborative filtering 2 64.66
E3: Infinite hidden relational model
without attributes

69.97

E4: Infinite hidden relational model 70.3
E5: Content based SVM 54.85

ings on movies are originally recorded on a five-point
scale. We transfer to be binary, yes if a rating higher
than the average rating of the user, and vice versa.
Model performance is evaluated using prediction ac-
curacy. The base line system is content-based SVM
where each training sample consists of a rating as a la-
bel and attributes of the corresponding user and movie
as features. Prediction is then performed based on
the learned SVM model. The experimental results are
shown in Table 1. First we did experiments ignoring
the attributes of the users and the items. We achieved
an accuracy of 69.97% (E3). This is significantly bet-
ter in comparison to approaches using one-sided col-
laborative filtering by generalizing across users (E1)
leading to an accuracy of 64.22% or by generalizing
across items (E2) leading to an accuracy of 64.66%.
When we added information about the attributes of
the users and the model, the prediction accuracy only
improved insignificantly to 70.3% (E4): the reason is
that the attributes are weak predictors of preferences
as indicated by the bad performance of the baseline
system (54.85% accuracy, E5) which is solely based on
the attributes of the users and the items.

8. Experiment on Medical Data

The second experiment is concerned with a medi-
cal domain. The proposed model is shown in Fig-
ure 3(a). The domain includes three entity classes (Pa-
tient, Diagnosis and Procedure) and two relationship
classes (Make: physician is making a diagnosis and
Take:patient taking a procedure). A patient typically
has both multiple procedures and multiple diagnoses.
The Patient class has several attribute classes includ-
ing Age, Gender, PrimaryComplaint. The Diagno-
sisAttributes contain the class of the diagnosis as spec-
ified in the ICD-9 code and the ProcedureAttributes
contain the class of the procedure as specified in the
CPT4 code. The relationship class Make (resp. Take)
is modeled as existence uncertainty, thus has addi-
tional attribute with two states, Rpa,pr = 1 means that
the patient received the procedure and Rpa,pr = 0 in-
dicates otherwise. In the data, there are totally 14062
patients, 703 diagnoses and 367 procedures. We ran-
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Figure 3. Infinite hidden relational model for (a) a medical database and (b) a gene database.

domly select 9979 patients as training and the others
as testing. The infinite hidden relational model con-
tains three DPs, one for each entity class. The DPs
are coupled via the two relations. We compare our ap-
proach with two models. The first one is a relational
model using reference uncertainty (Getoor et al., 2003)
without a latent variable structure. The second com-
parison model is a content based Bayesian network. In
this model, only the attributes of patients and proce-
dures is considered. We test model performances by
predicting the application of procedures. ROC curve
is used as evaluation criteria. In the experiment we
selected the top N procedures recommended by the
various models. Sensitivity indicates how many per-
cent of the actually being performed procedures were
correctly proposed by the model. (1-specificity) in-
dicates how many of the procedures that were not
actually performed were recommended by the model.
Along the curves, the N was varied from left to right
as N = 5, 10, . . . , 50.

In the experiment we predict a relation between a pa-
tient and a procedure given her first procedure. The
corresponding ROC curves (averaged over all patients)
for the experiments are shown in Figure 4. The infinite
hidden relational model (E3) exploiting all relational
information and all attributes gave best performance.
When we remove the attributes of the entities, the
performance degrades (E2). If, in addition, we only
consider the one-sided collaborative effect, the perfor-
mance is even worse (E1). (E5) is the pure content-
based approach using the Bayesian network. The re-
sults show that entity attributes are a reasonable pre-
dictor but that the performance of the full model can-
not be achieved. (E4) shows the results of relational

model using reference uncertainty, which gave good
results but did not achieve the performance of the in-
finite hidden relational model. Figures 5 shows the
corresponding plots for a selected class of patients; pa-
tients with prime complaint respiratory problem. The
results exhibit similar trends.

Figure 4. ROC curves for predicting procedures.

9. Experiment on Gene Data

The third evaluation is performed on the yeast genome
data set of KDD Cup 2001 (Cheng et al., 2002). The
task is to predict gene function based on information
at the gene level and at the protein level. The data set
consists of two relational tables that are produced from
the original seven relational tables. One table speci-
fies a variety of properties of genes or proteins. These
properties include chromosome, essential, phenotype,
motif, class, complex and function. Chromosome ex-
presses the chromosome on which the gene appears.



Learning Infinite Hidden Relational Models

Figure 5. ROC curves for predicting procedures on a subset
of patients with prime complaint respiratory problem.

Essential specifies whether organisms with a muta-
tion in this gene can survive. Phenotype represents
the observed characteristics of organisms with differ-
ences in this gene. Class means the structural cate-
gory of the protein for which this gene codes. Motif
expresses the information about the amino acid se-
quence of the protein. The value of property complex
specifies how the expression of the gene can complex
with others to form a larger protein. The other table
contains the information about interactions between
genes. A gene typically has multiple complexes, phe-
notypes, classes, motifs and functions, respectively but
only one property essential and one property chromo-
some. An example gene is shown in Table 2. To keep
the multi-relational nature of the data, we restore the
original data structure. There are six entity classes
(Gene, Complex, Phenotype, Class, Motif and Func-
tion) and six relationship classes (Interact: genes in-
teract with each other, Have: genes have functions,
Observe: phenotype are observed for the genes, Form:
which kinds of complex is formed for the genes, Belong:
genes belong to structural classes, Contain: genes con-
tain characteristic motifs). Gene class has attribute
classes such as Essential, Chromosome, etc. The at-
tributes of other entity classes are not available in the
data set. A hidden attribute is added into each entity
class. All relationships are modeled as existence un-
certainty. Thus each relationship class has additional
attribute R with two states. The state of R indicates
whether the relationship exists or not. The task of
function prediction of genes is therefore transformed
to the relationship prediction between genes and func-
tions. The data set totally contains 1243 genes. A
subset (381 genes) is withheld for testing in the KDD
Cup 2001. The remaining 862 genes are provided to
participants. In the data, there are 56 complexes, 11

Table 2. An example gene

Attribute Value
Gene ID G234070
Essential Non-Essential
Class 1, ATPases 2, Motorproteins
Complex Cytoskeleton
Phenotype Mating and sporulation defects
Motif PS00017
Chromosome 1
Function 1, Cell growth, cell division and DNA

synthesis 2, Cellular organization 3, Cel-
lular transport and transprotmechanisms

Localization Cytoskeleton

phenotypes, 351 motifs, 24 classes and 14 functions.
There are two main challenges in the gene data set.
First, there are many types of relationships. Second,
there are large numbers of objects, but only a small
number of known relationships.

The proposed model applied to the gene data is shown
in Figure 3(b). The existence of any relationship de-
pends on the hidden states of the corresponding enti-
ties. The information about a variety of relationships
of Gene is propagated via the hidden attribute of Gene.
The model is optimized using 862 genes, and is applied
on the testing data. The experiment results are shown
in Table 3. There were 41 groups that participated in
the KDD Cup 2001 contest. The algorithms include
naive Bayes, k-nearest neighbor, decision tree, neu-
ral network, SVM, and Bayesian networks, etc. and
technologies such as feature selection, boosting, cross
validation, etc., were employed. The performance of
our model is comparable to the best results. The win-
ning algorithm is a relational model based on inductive
logic programming (Krogel & Wrobel, 2001). As far as
we know, that is best result so far. The infinite hidden
relational model is only slightly worse (probably not
significantly) if compared to the winning algorithm.

Table 3. Prediction of gene functions (%)

Model Accuracy True Positive Rate
Infinite model 93.18 72.8
Kdd cup winer 93.63 71.0

In the second set of experiments, we investigated the
influence of a variety of relationships on the predic-
tion of functions. We perform the experiments by
ignoring a specific kind of known relationships. The
result is shown in Table 4. The value of importance
is proportional to the difference on the prediction ac-
curacy. When a specific type of known relationship
is ignored, the lower accuracy indicates higher impor-
tance of this type of relationship. One observation
is that the most important relationship is Complex,
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specifying how genes complex with another genes to
form larger proteins. The second one is the interac-
tion relationships between genes. This coincide with
the lesson learned from KDD Cup 2001 that protein
interaction information is less important in function
prediction. This lesson is somewhat surprising since
there is a general belief in biology that the knowledge
about regulatory pathways is helpful to determine the
functions of genes.

Table 4. The importance of a variety of relationships in
function prediction of genes

Ignored relationships Accuracy(%) Importance
Complex 91.13 197
Interaction 92.14 100
Class 92.61 55
Phenotype 92.71 45
Attributes of gene 93.08 10
Motif 93.12 6

10. Conclusions and Extensions

We have introduced the infinite hidden relational
model. The model showed encouraging results on a
number of data sets. We hope that infinite hidden re-
lational model will be a useful addition to relational
modeling by allowing for flexible inference in a rela-
tional network reducing the need for extensive struc-
tural model search. Implicitly, we have assumed a
particular sampling scheme, i.e., that entities are in-
dependently sampled out of unspecified populations.
In this context our model permits generalization but
it might fail if this assumption is not reasonable or if
the sampling procedure changes in the test set. We
have focussed on an explicit modeling of the relation
between pairs of entities but our model can easily be
generalized if more than two entities are involved in a
relation. As part of our future work we will explore and
compare different approximate inference algorithms.

References

Carbonetto, P., Kisynski, J., de Freitas, N., & Poole, D.
(2005). Nonparametric bayesian logic. Proc. 21st UAI.

Cheng, J., Hatzis, C., Hayashi, H., Krogel, M., Morishita,
S., Page, D., & Sese, J. (2002). KDD Cup 2001 report.
SIGKDD Explorations, 3, 47–64.

Dzeroski, S., & Lavrac, N. (Eds.). (2001). Relational data
mining. Berlin: Springer.

Friedman, N., Getoor, L. Koller, D., & Pfeffer, A. (1999).
Learning probabilistic relational models. Proc. 16th IJ-
CAI (pp. 1300–1309). Morgan Kaufmann.

Getoor, L., Friedman, N., Koller, D., & Taskar, B. (2003).
Learning probabilistic models of link structure. Journal
of Machine Learning Research, 3, 679–707.

Getoor, L., Koller, D., & Friedman, N. (2000). From
instances to classes in probabilistic relational models.
Proc. ICML 2000 Workshop on Attribute-Value and Re-
lational Learning: Crossing the Boundarie.

Heckerman, D., Meek, C., & Koller, D. (2004). Probabilistic
models for relational data (Technical Report MSR-TR-
2004-30). Microsoft.

Jordan, M. I. (2005). Dirichlet processes, chinese restau-
rant processes and all that. Tutorial at NIPS 2005.

Kemp, C., Griffiths, T., & Tenenbaum, J. R. (2004). Dis-
covering latent classes in relational data (Technical Re-
port AI Memo 2004-019).

Krogel, M.-A., & Wrobel, S. (2001). Transformation-based
learning using multirelational aggregation. Proc. 11th
ILP (pp. 142–155). Springer.

Raedt, L. D., & Kersting, K. (2003). Probabilistic logic
learning. SIGKDD Explor. Newsl., 5, 31–48.

Rosen-Zvi, M., Griffiths, T., Steyvers, M., & Smyth, P.
(2004). The author-topic model for authors and docu-
ments. Proc. 20th UAI (pp. 487–494). AUAI Press.

Sarwar, B. M., Karypis, G., Konstan, J. A., & Riedl,
J. (2000). Analysis of recommender algorithms for e-
commerce. Proc. ACM E-Commerce Conference (pp.
158–167). ACM.

Teh, Y. W., Jordan, M. I., Beal, M. J., & Blei, D. M.
(2004). Hierarchical dirichlet processes (Technical Re-
port 653). UC Berkeley Statistics.

Tresp, V. (2006). Dirichlet processes and nonparametric
bayesian modelling. Online tutorial.

Tresp, V., & Yu, K. (2004). An introduction to nonpara-
metric hierarchical bayesian modelling. In Proc. hamil-
ton summer school on switching and learning in feedback
systems, 290–312. Springer.

Wrobel, S. (2001). Inductive logic programming for
knowledge discovery in databases. In S. Dzeroski
and N. Lavrac (Eds.), Relational data mining, 74–101.
Springer.

Xu, Z., Tresp, V., Yu, K., Yu, S., & Kriegel, H.-P. (2005).
Dirichlet enhanced relational learning. Proc. 22nd Inter-
national Conference on Machine Learning (ICML 2005)
(pp. 1004–1011). ACM.

Yedidia, J., Freeman, W., & Weiss, Y. (2005). Construct-
ing free-energy approximations and generalized belief
propagation algorithms. IEEE Transactions on Infor-
mation Theory, 51, 2282–2312.


