Dynamo: A Transparent
Dynamic Optimization System

Vasanth Bala, Evelyn Duesterwald, Sanjeev Banerjia
Hewlett-Packard Labs
Chadd Williams

SysChat
13 Feb 2002

Outline

Goals & Motivation
Overview

Startup Procedure
Trace Information
Fragment Information
Signal Handling
Performance Data
Conclusions

Goals

Dynamo: a dynamic software optimization
system

Complement static compiler optimizations
Operate on JI T output or statically compiled
binary

Focus. statically compiled binary

Motivation

o Static compiler optimizations less effect
because of new technology

— Object Oriented Languages
— Delayed binding (dll/so)

— Dynamically generated code (JI' T/dynamic
pinary translators)

« Dynamo operation is transparent
— Don’'t require software vendors to change
— Allow computer system vendors more control

Overview

Dynamo inter prets the application

Watches for a"hot" trace
— Consecutively executed instructions
— Hopefully will be across static program boundaries

Optimize the "hot" trace
Produce an optimized code fragment

Cache the fragment and jump to it during
Interpretation

Watches overhead and bails when necessary

Start up

User-mode shared library
Application must invoke Dynamo
Provides modified crt0.o to link with application

Dynamo creates it own stack
— Does not interfere with the program stack/context

Dynamo mmaps memory for its own use
— Fragment cache
— counters

Trace

e “A dynamic sequence of consecutively
executed Instructions’

o Start-of-trace
— Target of backward-taken branches (Ioops)
— Fragment cache exit branches

e End-of-trace
— Backward taken branches
— Taken branch to a fragment entry point

Trace Salection
* Predictability! (not accuracy)

 Most Recently Executed Tall (MRET)

— Renamed Next Executing Taill (NET)
— Assoclated counter with start-of-trace

— Traceis“hot” after athreshold number of

executions
 Begin recording instructions : \’ﬂ
* Stop on end-of-trace ol
g ﬁ
— No profiling needed 3

ratum

Trace Optimization

e |nstructions converted to low-level intermediate
representation
« Transform loops so the fall through is on trace
— Loops are only allowed to target the start-of-trace
— Otherwise aloop is atrace exit

e Conditiona branches

— Predicted target is on trace
— Other target isin a Dynamo-maintained switch table

* To other fragments
 EXit to the interpreter

Trace Optimization

Unconditional branch at the end to return to
Interpreter

Single-entry, multi-exit sequence of
INstructions

Optimizer I1s non-iterative, two pass
Optimizations
— Redundant branch elimination

— Redundant load removal
— Redundant assignment elimination

Trace Optimization

 Move all partially redundant instructions to
off-trace compensation blocks

— Only execute these blocks when necessary
;

A A A
B c
B c c D fragment
/ 0 G body
——™
D E H
call ; " call J
G E .
return
E ’/ G io B it
H o fubs
return i trap to
| Dynamao
J J
(a) (b {c)

Figure 3. Control flow snippet in the application binary, (b) Layout of this snippet in the application program's memory, and (¢)
Layout of a trace through this snippet in Dynamo's fragment cache.

Fragment Generation

Fragment: optimized version of the trace
Stored in afragment cache

Trace may be split into two fragments
Emit fragment code

Emit fragment exit stubs
— Transfer control to Dynamo interpreter
— Each stub is entered by only one exit branch

Fragment Linking

Patch fragment exit block to jump to another
fragment entry

Essential for performance
— Avoid jJumping back to the interpreter

— Disabling linking produces a order of magnitude
slowdown

Allows for the removal of redundant code in the
compensation blocks

Disadvantages:
— Removal of individual fragments expensive
— Relocation of fragments is difficult (?)

Fragment Linking

A
c Fragmant A
0 ¥
G B
H D
Fragment B
J G s = +
E |
o B F 5= ..
rf=.
fo | E
o H
to &

Figure 4. Example of fragment linking Fignre 5. Example of link-time optimization

Fragment Cache

No complicated management scheme

Keep the fragments close together --
Locality!

Need to flush fragments as current working
set changes

Hard to remove one fragment

“Novel pre-emptive flushing”

— Flush the entire cache at once
— Triggered by high fragment creation rate

Signal Handling

* Dynamo intercepts all signals

* Runsthe applications signal handler in the
Interpreter

e Asynchronous signals (keyboard) are
gueued until the fragment cache is exited

— To ensure the fragment cache is exited all
fragments are unlinked upon receiving a signal

— Gradually relinked as executed

Signal Handling

e Synchronous signal handling
— Cannot be postponed

— EXxpects the process context to be in a certain state
« This may not be the case with code optimization
— Dynamo keeps an optimization log to recreate ‘ correct’
process context

» Backs off some optimizations if “suspicious’
Instructions are encountered

— Dead code removal
— Code sinking
— Also flush fragment cache

Performance Data

Integer benchmarks
— SpeclInt95

— deltablue (commercial C++ code)
e Incremental constraint solver

HP C/C++ compiler

HP PA-8000

HP-UX 10.20

-Ixed size 150K byte fragment cache

Performance Data

25%
M aggressive optimization
5 2% O conservative optimization []
2 ini - O trace selection
|]
¢
e, |
-E 10%: 1T
5 []
E 5%
z A . :]
g =]
-E? l}:_;'h]] T 1 T T I_I] T
:E- E | =3 | o 1= E E_ E E m
Lﬁ-'._ =)
=% = F =
5% % = ¥

Figure 7. Speedup of +#02 optimized PA-8000 binaries running on Dyvnamo, relative to the identical binaries running
standalone. The contributions from dynamic inlining due to trace selection, conservative trace optimization and aggressive trace
optimization are shown, Dyvnama bails out to direet native execution on g0 and vartex,

Performance Data

Compiled with +O2

Stable working set — good results
Unstable working set/short runtime -- bail
Forming a fragment improves speed

— Inlining code!

Fragment optimization

— 3% of total gains— (why bother?)

— 1/3 of this due to conservative optimizations

Performance Data

500
450 B Native +02
B Native +04
400 ONafive +0& +F
450 B Mvname +02
= B Dynamo +04
,_

i 300 U Dynamo +04 +P B

E 250 ; _

3 200 = L — —
150 — [,
100 |

50 - -
{0 - T T T T T T T
g # g 5 R £ = &
4 2 2 S
= o0 o
= E =

Figure 8. Dynamo performance on native binaries compiled at higher optimization levels (the first 3 bars for each program
correspond to the native runs without Dynamo, and the next 3 bars correspond to the runs on Dynamao)

Performance Data

Compiled at higher optimization levels

Average performance of +O2 binaries
Improved to +O4 levels

|mproves performance of +O4 binaries
Dynamo does not improve much on profiled

code

Conclusions

Data meant to establish worst case behavior

— Binaries meant to be tough to improve
e No late binding

e Highly optimized
— Still works well
Dynamo gets a huge performance boost for merely
Inlining the code

Will thiswork for large programs?

Why not instrument code to find hot start-of -
trace?

