
Dynamo: A Transparent 
Dynamic Optimization System

Vasanth Bala, Evelyn Duesterwald, Sanjeev Banerjia
Hewlett-Packard Labs

Chadd Williams
SysChat

13 Feb 2002



Outline
• Goals & Motivation
• Overview
• Startup Procedure
• Trace Information
• Fragment Information
• Signal Handling
• Performance Data
• Conclusions



Goals
• Dynamo: a dynamic software optimization 

system
• Complement static compiler optimizations
• Operate on JIT output or statically compiled 

binary
• Focus: statically compiled binary



Motivation
• Static compiler optimizations less effect 

because of new technology
– Object Oriented Languages
– Delayed binding (dll/so)
– Dynamically generated code (JIT/dynamic 

binary translators)

• Dynamo operation is transparent
– Don’t require software vendors to change
– Allow computer system vendors more control



Overview
• Dynamo interprets the application
• Watches for a "hot" trace

– Consecutively executed instructions
– Hopefully will be across static program boundaries

• Optimize the "hot" trace
• Produce an optimized code fragment
• Cache the fragment and jump to it during 

interpretation
• Watches overhead and bails when necessary



Start up
• User-mode shared library
• Application must invoke Dynamo
• Provides modified crt0.o to link with application
• Dynamo creates it own stack

– Does not interfere with the program stack/context

• Dynamo mmaps memory for its own use
– Fragment cache
– counters



Trace
• “A dynamic sequence of consecutively 

executed instructions”
• Start-of-trace

– Target of backward-taken branches (loops)
– Fragment cache exit branches

• End-of-trace
– Backward taken branches
– Taken branch to a fragment entry point



Trace Selection
• Predictability! (not accuracy)
• Most Recently Executed Tail (MRET)

– Renamed Next Executing Tail (NET)

– Associated counter with start-of-trace
– Trace is “hot” after a threshold number of 

executions
• Begin recording instructions
• Stop on end-of-trace

– No profiling needed



Trace Optimization
• Instructions converted to low-level intermediate 

representation
• Transform loops so the fall through is on trace

– Loops are only allowed to target the start-of-trace
– Otherwise a loop is a trace exit

• Conditional branches 
– Predicted target is on trace
– Other target is in a Dynamo-maintained switch table

• To other fragments
• Exit to the interpreter



Trace Optimization
• Unconditional branch at the end to return to 

interpreter
• Single-entry, multi-exit sequence of 

instructions
• Optimizer is non-iterative, two pass
• Optimizations

– Redundant branch elimination
– Redundant load removal
– Redundant assignment elimination



Trace Optimization
• Move all partially redundant instructions to 

off-trace compensation blocks
– Only execute these blocks when necessary



Fragment Generation
• Fragment: optimized version of the trace
• Stored in a fragment cache
• Trace may be split into two fragments
• Emit fragment code
• Emit fragment exit stubs

– Transfer control to Dynamo interpreter
– Each stub is entered by only one exit branch



Fragment Linking
• Patch fragment exit block to jump to another 

fragment entry
• Essential for performance

– Avoid jumping back to the interpreter
– Disabling linking produces a order of magnitude 

slowdown
• Allows for the removal of redundant code in the 

compensation blocks
• Disadvantages:

– Removal of individual fragments expensive
– Relocation of fragments is difficult (?)



Fragment Linking



Fragment Cache
• No complicated management scheme
• Keep the fragments close together --

Locality!
• Need to flush fragments as current working 

set changes
• Hard to remove one fragment
• “Novel pre-emptive flushing”

– Flush the entire cache at once
– Triggered by high fragment creation rate



Signal Handling
• Dynamo intercepts all signals
• Runs the applications signal handler in the 

interpreter
• Asynchronous signals (keyboard) are 

queued until the fragment cache is exited
– To ensure the fragment cache is exited all 

fragments are unlinked upon receiving a signal
– Gradually relinked as executed



Signal Handling
• Synchronous signal handling

– Cannot be postponed
– Expects the process context to be in a certain state

• This may not be the case with code optimization
– Dynamo keeps an optimization log to recreate ‘correct’ 

process context

• Backs off some optimizations if “suspicious” 
instructions are encountered
– Dead code removal
– Code sinking
– Also flush fragment cache



Performance Data
• Integer benchmarks

– SpecInt95
– deltablue (commercial C++ code)

• Incremental constraint solver

• HP C/C++ compiler
• HP PA-8000 
• HP-UX 10.20
• Fixed size 150Kbyte fragment cache



Performance Data



Performance Data
• Compiled with +O2
• Stable working set – good results
• Unstable working set/short runtime -- bail
• Forming a fragment improves speed

– Inlining code!

• Fragment optimization
– 3% of total gains – (why bother?)
– 1/3 of this due to conservative optimizations



Performance Data



Performance Data
• Compiled at higher optimization levels
• Average performance of +O2 binaries 

improved to +O4 levels
• Improves performance of +O4 binaries
• Dynamo does not improve much on profiled 

code



Conclusions
• Data meant to establish worst case behavior

– Binaries meant to be tough to improve
• No late binding
• Highly optimized

– Still works well

• Dynamo gets a huge performance boost for merely 
inlining the code

• Will this work for large programs?
• Why not instrument code to find hot start-of-

trace?


