Dynamically Discovering Likely Program
Invariants to Support Program Evolution

Michael D. Ernst, Jake Cockrell, William G. Griswold, David Notkin
(presented by David Hovemeyer for SysChat, September 13, 2002)

http://pag.lcs.mit.edu/ " mernst/pubs/invariants-tse.pdf
http://pag.lcs.mit.edu/daikon /

http://pag.lcs.mit.edu/~mernst/pubs/invariants-tse.pdf
http://pag.lcs.mit.edu/daikon/

Outline

Introduction

Detecting Invariants Dynamically

> Types of Invariants
> Instrumentation
> Inferring Invariants

Using Daikon
Applications

Links

Introduction

e All programs have invariants

> Preconditions, postconditions, loop invariants
> Establish correctness conditions

> Useful in understanding how program works
> Violation of invariant = Bug

e Programmers generally don't write invariants explicitly

e The paper investigates the possibility of discovering invariants
dynamically, based on observed program states

Outline

Introduction

Detecting Invariants Dynamically

> Types of Invariants
> Instrumentation
> Inferring Invariants

Using Daikon
Applications

Links

Detecting Invariants Dynamically

e Basic idea: instrument program to output values of live variables
at selected program points

e Postprocess trace data to infer likely invariants based on observed
values

e Automatic tool: “Daikon”

e Incomplete, unsound

> In practice, it does find genuine and useful invariants

Types of Invariants

Variables x, vy, z, constants a, b, ¢

e For any variable:

> T =a
> x = uninit
>z € {a,b,c}

e For single numeric variables:
>xr>a,x<ba<zx x # 0
> = (a mod b), x # (a mod b)

Types of Invariants (continued)

e For two numeric variables:

>y =ax+b
>r<y, <Y, T>Y T >Y T=Y TFEY
> y = f(x) (for various functions f)

e For three numeric variables:
>z =ax + by + ¢
> z = g(x,y) (for various functions g)

e For single sequence variables:

> Range (min and max values)
> Ordering (increasing, decreasing, etc.)
> Invariants over all elements

Types of Invariants (continued)

e For two sequence variables:

> Elementwise linear relationship: y = ax + b
> Elementwise comparison

> Subsequence

> Reversal

e For sequence and number variables:

> Membership: 7 € s

Instrumentation

e At program points of interest:

> Function entry points
> Loop heads
> Function exit points

e Output values of all ‘interesting’ variables

> Scalar values (locals, globals, array subscript expressions, etc.)
> Arrays of scalar values

> Object addresses/ids

> More kinds of invariants checked for numeric types

Inferring Invariants

e All invariants can be checked quickly (no theorem proving)

> For example: Values for a,b,c in z = ax + by + ¢ can be found
once 3 linearly independent samples for .y, z have been

encountered

e Potential invariants are discarded when falsified

e Derived Variables

> Synthetic array subscript expressions (not occurring in source)

> Sum of array elements
> Number of function invocations

> Others...

Invariant Confidence

e To make the tool useful, invariants must be supported by
statistically significant number of different values

e Daikon checks likelihood that invariant would occur by chance;
lower number means increased confidence

e Invariants filtered based on a minimum confidence parameter

10

Efficiency

e Efficiency of instrumentation

> Values of tracked variables are output at each instrumentation
point

> Significant program slowdown, large amounts of trace data
produced

e Efficiency of analysis

> Potentially cubic in number of variables at any program point
> Influenced more strongly by size of trace data

11

Outline

Introduction

Detecting Invariants Dynamically

> Types of Invariants
> Instrumentation
> Inferring Invariants

Using Daikon
Applications

Links

12

Using Daikon

e From the paper:

> Found a bug in a previously-studied program with a large test

suite (array bounds exceeded)
> Revealed a condition that the test suite (with thousands of

tests) did not exercise
> Quality of detected invariants dependent on completeness of test

suite

13

Using Daikon (continued)

e On trivial programs, Daikon can produce gigabytes of trace data,

cause slowdowns on the order of 100x, and require hours to infer
invariantsi

e Paper mentions that compute-bound programs typically become
| /O-bound when instrumented by Daikon

e | tried it on a simple merge sort program written in Java

1Chadd Williams, private communication.

14

Using Daikon (continued)

Merge sort results

Elements | Run time | Run time Trace file | Time to
(orig) (instr) size check
1,000 1.461 s 3.208 s 1,269,078 | 17.886 s
10,000 4050s | 12.747 s| 14,951,294 | 102.559 s
100,000 | 12.605 s | 120.394 s | 172,015,722 | 354.514 s

e Slowdown is not too bad for this program, but trace file size is
significant

e Given the ease of producing huge trace files for simple programs,
Daikon is not practical for real systems

Using Daikon (continued)

e \WWhat can be done to detect invariants more efficiently? Paper
suggests:

> Adjust granularity of instrumentation
> Instrument only ‘interesting’ parts of program

e Other ideas:

> On-line compression of trace data
o Gzip reduced trace file for 100,000 element merge sort by
factor of 5.69
> Decrease sampling frequency (as in Arnold, PLDI 2001)
> Dynamically recompile code to remove instrumentation once
enough data has been collected (i.e., in JVM)

16

Outline

Introduction

Detecting Invariants Dynamically

> Types of Invariants
> Instrumentation
> Inferring Invariants

Using Daikon
Applications

Links

17

Applications

e Paper describes use of generated invariants as aid to understanding
of an undocumented program

> A more recent paper by Nimmer and Ernst uses output of
Daikon to feed ESC/Java, a static specification checker based on

theorem-proving

e Recent research uses runtime failures of statically or dynamically
detected invariants to detect probable bugs (anomolous behavior)
[Engler et. al. SOSP 01, Hangal and Lam ICSE 2002]

> The paper suggests this as well (including the original conference
paper at ICSE 1999)

18

Outline

Introduction

Detecting Invariants Dynamically

> Types of Invariants
> Instrumentation
> Inferring Invariants

Using Daikon
Applications

Links

19

Links

e Ernst, et. al., Dynamically Discovering Likely Program Invariants
to Support Program Evolution,
http://pag.lcs.mit.edu/“mernst/pubs/invariants-tse.pdf

e Daikon home page: http://pag.lcs.mit.edu/daikon/

e Engler et. at., Bugs as Deviant Behavior: A General Approach to
Inferring Errors in Systems Code,
http://www.stanford.edu/ engler/deviant-sosp-01.pdf

e Hangal and Lam, Tracking Down Software Bugs Using Automatic
Anomaly Detection, http://suif.stanford.edu/papers/Diduce.pdf

20

http://pag.lcs.mit.edu/~mernst/pubs/invariants-tse.pdf
http://pag.lcs.mit.edu/daikon/
http://www.stanford.edu/~engler/deviant-sosp-01.pdf
http://suif.stanford.edu/papers/Diduce.pdf

