
Dynamically Discovering Likely Program
Invariants to Support Program Evolution

Michael D. Ernst, Jake Cockrell, William G. Griswold, David Notkin

(presented by David Hovemeyer for SysChat, September 13, 2002)

http://pag.lcs.mit.edu/˜mernst/pubs/invariants-tse.pdf

http://pag.lcs.mit.edu/daikon/

http://pag.lcs.mit.edu/~mernst/pubs/invariants-tse.pdf
http://pag.lcs.mit.edu/daikon/


Outline

• Introduction

• Detecting Invariants Dynamically

. Types of Invariants

. Instrumentation

. Inferring Invariants

• Using Daikon

• Applications

• Links

1



Introduction

• All programs have invariants

. Preconditions, postconditions, loop invariants

. Establish correctness conditions

. Useful in understanding how program works

. Violation of invariant ≡ Bug

• Programmers generally don’t write invariants explicitly

• The paper investigates the possibility of discovering invariants

dynamically, based on observed program states

2



Outline

• Introduction

• Detecting Invariants Dynamically

. Types of Invariants

. Instrumentation

. Inferring Invariants

• Using Daikon

• Applications

• Links

3



Detecting Invariants Dynamically

• Basic idea: instrument program to output values of live variables

at selected program points

• Postprocess trace data to infer likely invariants based on observed

values

• Automatic tool: “Daikon”

• Incomplete, unsound

. In practice, it does find genuine and useful invariants

4



Types of Invariants

Variables x, y, z, constants a, b, c

• For any variable:

. x = a

. x = uninit

. x ∈ {a, b, c}

• For single numeric variables:

. x ≥ a, x ≤ b, a ≤ x ≤ b

. x 6= 0

. x ≡ (a mod b), x 6≡ (a mod b)

5



Types of Invariants (continued)

• For two numeric variables:

. y = ax+ b

. x < y, x ≤ y, x > y, x ≥ y, x = y, x 6= y

. y = f(x) (for various functions f)

• For three numeric variables:

. z = ax+ by + c

. z = g(x, y) (for various functions g)

• For single sequence variables:

. Range (min and max values)

. Ordering (increasing, decreasing, etc.)

. Invariants over all elements

6



Types of Invariants (continued)

• For two sequence variables:

. Elementwise linear relationship: y = ax+ b

. Elementwise comparison

. Subsequence

. Reversal

• For sequence and number variables:

. Membership: i ∈ s

7



Instrumentation

• At program points of interest:

. Function entry points

. Loop heads

. Function exit points

• Output values of all ‘interesting’ variables

. Scalar values (locals, globals, array subscript expressions, etc.)

. Arrays of scalar values

. Object addresses/ids

. More kinds of invariants checked for numeric types

8



Inferring Invariants

• All invariants can be checked quickly (no theorem proving)

. For example: Values for a, b, c in z = ax+ by + c can be found

once 3 linearly independent samples for x, y, z have been

encountered

• Potential invariants are discarded when falsified

• Derived Variables

. Synthetic array subscript expressions (not occurring in source)

. Sum of array elements

. Number of function invocations

. Others...

9



Invariant Confidence

• To make the tool useful, invariants must be supported by

statistically significant number of different values

• Daikon checks likelihood that invariant would occur by chance;

lower number means increased confidence

• Invariants filtered based on a minimum confidence parameter

10



Efficiency

• Efficiency of instrumentation

. Values of tracked variables are output at each instrumentation

point

. Significant program slowdown, large amounts of trace data

produced

• Efficiency of analysis

. Potentially cubic in number of variables at any program point

. Influenced more strongly by size of trace data

11



Outline

• Introduction

• Detecting Invariants Dynamically

. Types of Invariants

. Instrumentation

. Inferring Invariants

• Using Daikon

• Applications

• Links

12



Using Daikon

• From the paper:

. Found a bug in a previously-studied program with a large test

suite (array bounds exceeded)

. Revealed a condition that the test suite (with thousands of

tests) did not exercise

. Quality of detected invariants dependent on completeness of test

suite

13



Using Daikon (continued)

• On trivial programs, Daikon can produce gigabytes of trace data,

cause slowdowns on the order of 100x, and require hours to infer

invariants1

• Paper mentions that compute-bound programs typically become

I/O-bound when instrumented by Daikon

• I tried it on a simple merge sort program written in Java

1Chadd Williams, private communication.

14



Using Daikon (continued)

Merge sort results

Elements Run time Run time Trace file Time to

(orig) (instr) size check

1,000 1.461 s 3.208 s 1,269,078 17.886 s

10,000 4.050 s 12.747 s 14,951,294 102.559 s

100,000 12.605 s 120.394 s 172,015,722 354.514 s

• Slowdown is not too bad for this program, but trace file size is

significant

• Given the ease of producing huge trace files for simple programs,

Daikon is not practical for real systems

15



Using Daikon (continued)

• What can be done to detect invariants more efficiently? Paper

suggests:

. Adjust granularity of instrumentation

. Instrument only ‘interesting’ parts of program

• Other ideas:

. On-line compression of trace data

◦ Gzip reduced trace file for 100,000 element merge sort by

factor of 5.69

. Decrease sampling frequency (as in Arnold, PLDI 2001)

. Dynamically recompile code to remove instrumentation once

enough data has been collected (i.e., in JVM)

16



Outline

• Introduction

• Detecting Invariants Dynamically

. Types of Invariants

. Instrumentation

. Inferring Invariants

• Using Daikon

• Applications

• Links

17



Applications

• Paper describes use of generated invariants as aid to understanding

of an undocumented program

. A more recent paper by Nimmer and Ernst uses output of

Daikon to feed ESC/Java, a static specification checker based on

theorem-proving

• Recent research uses runtime failures of statically or dynamically

detected invariants to detect probable bugs (anomolous behavior)

[Engler et. al. SOSP 01, Hangal and Lam ICSE 2002]

. The paper suggests this as well (including the original conference

paper at ICSE 1999)

18



Outline

• Introduction

• Detecting Invariants Dynamically

. Types of Invariants

. Instrumentation

. Inferring Invariants

• Using Daikon

• Applications

• Links

19



Links

• Ernst, et. al., Dynamically Discovering Likely Program Invariants

to Support Program Evolution,

http://pag.lcs.mit.edu/˜mernst/pubs/invariants-tse.pdf

• Daikon home page: http://pag.lcs.mit.edu/daikon/

• Engler et. at., Bugs as Deviant Behavior: A General Approach to

Inferring Errors in Systems Code,

http://www.stanford.edu/ engler/deviant-sosp-01.pdf

• Hangal and Lam, Tracking Down Software Bugs Using Automatic

Anomaly Detection, http://suif.stanford.edu/papers/Diduce.pdf

20

http://pag.lcs.mit.edu/~mernst/pubs/invariants-tse.pdf
http://pag.lcs.mit.edu/daikon/
http://www.stanford.edu/~engler/deviant-sosp-01.pdf
http://suif.stanford.edu/papers/Diduce.pdf

