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Introduction

• All programs have invariants

. Preconditions, postconditions, loop invariants

. Establish correctness conditions

. Useful in understanding how program works

. Violation of invariant ≡ Bug

• Programmers generally don’t write invariants explicitly

• The paper investigates the possibility of discovering invariants

dynamically, based on observed program states
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Detecting Invariants Dynamically

• Basic idea: instrument program to output values of live variables

at selected program points

• Postprocess trace data to infer likely invariants based on observed

values

• Automatic tool: “Daikon”

• Incomplete, unsound

. In practice, it does find genuine and useful invariants
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Types of Invariants

Variables x, y, z, constants a, b, c

• For any variable:

. x = a

. x = uninit

. x ∈ {a, b, c}

• For single numeric variables:

. x ≥ a, x ≤ b, a ≤ x ≤ b

. x 6= 0

. x ≡ (a mod b), x 6≡ (a mod b)
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Types of Invariants (continued)

• For two numeric variables:

. y = ax+ b

. x < y, x ≤ y, x > y, x ≥ y, x = y, x 6= y

. y = f(x) (for various functions f)

• For three numeric variables:

. z = ax+ by + c

. z = g(x, y) (for various functions g)

• For single sequence variables:

. Range (min and max values)

. Ordering (increasing, decreasing, etc.)

. Invariants over all elements
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Types of Invariants (continued)

• For two sequence variables:

. Elementwise linear relationship: y = ax+ b

. Elementwise comparison

. Subsequence

. Reversal

• For sequence and number variables:

. Membership: i ∈ s
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Instrumentation

• At program points of interest:

. Function entry points

. Loop heads

. Function exit points

• Output values of all ‘interesting’ variables

. Scalar values (locals, globals, array subscript expressions, etc.)

. Arrays of scalar values

. Object addresses/ids

. More kinds of invariants checked for numeric types
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Inferring Invariants

• All invariants can be checked quickly (no theorem proving)

. For example: Values for a, b, c in z = ax+ by + c can be found

once 3 linearly independent samples for x, y, z have been

encountered

• Potential invariants are discarded when falsified

• Derived Variables

. Synthetic array subscript expressions (not occurring in source)

. Sum of array elements

. Number of function invocations

. Others...

9



Invariant Confidence

• To make the tool useful, invariants must be supported by

statistically significant number of different values

• Daikon checks likelihood that invariant would occur by chance;

lower number means increased confidence

• Invariants filtered based on a minimum confidence parameter
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Efficiency

• Efficiency of instrumentation

. Values of tracked variables are output at each instrumentation

point

. Significant program slowdown, large amounts of trace data

produced

• Efficiency of analysis

. Potentially cubic in number of variables at any program point

. Influenced more strongly by size of trace data
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Using Daikon

• From the paper:

. Found a bug in a previously-studied program with a large test

suite (array bounds exceeded)

. Revealed a condition that the test suite (with thousands of

tests) did not exercise

. Quality of detected invariants dependent on completeness of test

suite
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Using Daikon (continued)

• On trivial programs, Daikon can produce gigabytes of trace data,

cause slowdowns on the order of 100x, and require hours to infer

invariants1

• Paper mentions that compute-bound programs typically become

I/O-bound when instrumented by Daikon

• I tried it on a simple merge sort program written in Java

1Chadd Williams, private communication.
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Using Daikon (continued)

Merge sort results

Elements Run time Run time Trace file Time to

(orig) (instr) size check

1,000 1.461 s 3.208 s 1,269,078 17.886 s

10,000 4.050 s 12.747 s 14,951,294 102.559 s

100,000 12.605 s 120.394 s 172,015,722 354.514 s

• Slowdown is not too bad for this program, but trace file size is

significant

• Given the ease of producing huge trace files for simple programs,

Daikon is not practical for real systems
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Using Daikon (continued)

• What can be done to detect invariants more efficiently? Paper

suggests:

. Adjust granularity of instrumentation

. Instrument only ‘interesting’ parts of program

• Other ideas:

. On-line compression of trace data

◦ Gzip reduced trace file for 100,000 element merge sort by

factor of 5.69

. Decrease sampling frequency (as in Arnold, PLDI 2001)

. Dynamically recompile code to remove instrumentation once

enough data has been collected (i.e., in JVM)
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Applications

• Paper describes use of generated invariants as aid to understanding

of an undocumented program

. A more recent paper by Nimmer and Ernst uses output of

Daikon to feed ESC/Java, a static specification checker based on

theorem-proving

• Recent research uses runtime failures of statically or dynamically

detected invariants to detect probable bugs (anomolous behavior)

[Engler et. al. SOSP 01, Hangal and Lam ICSE 2002]

. The paper suggests this as well (including the original conference

paper at ICSE 1999)
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Links

• Ernst, et. al., Dynamically Discovering Likely Program Invariants

to Support Program Evolution,

http://pag.lcs.mit.edu/˜mernst/pubs/invariants-tse.pdf

• Daikon home page: http://pag.lcs.mit.edu/daikon/

• Engler et. at., Bugs as Deviant Behavior: A General Approach to

Inferring Errors in Systems Code,

http://www.stanford.edu/ engler/deviant-sosp-01.pdf

• Hangal and Lam, Tracking Down Software Bugs Using Automatic

Anomaly Detection, http://suif.stanford.edu/papers/Diduce.pdf
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