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Abstract 

One of the many benefits of multicast, when compared to 
traditional unicast, is that multicast reduces the overall net- 
work load. While the importance of multicast is beyond dis- 
pute, there have been surprisingly few attempts to quantify 
multicast’s reduction in overall network load. The only sub- 
stantial and quantitative effort we are aware of is that of 
Chuang and Sirbu [3]. They calculate the number of links 
L in a multicast delivery tree connecting a random source 
to m random and distinct network sites; extensive simula- 
tions over a range of networks suggest that L(m) 0: rr~‘.~. In 
this paper we examine the function L(m) in more detail and 
derive the asymptotic form for L(m) in k-ary trees. These 
results suggest one possible explanation for the universality 
of the Chuang-Sirbu scaling behavior. 

1 Introduction 

IP multicast routing was proposed in [4, 5, 61. While there 
have been frustrating delays in its widespread commercial 
deployment, experience with multicast in the MBone [2] 
and other experimental settings has provided convincing ev- 
idence of multicast’s power and elegance. Prom a conceptual 
viewpoint, multicast offers applications a novel logical ren- 
dezvous mechanism whereby senders transmit to a logical 
address, and receivers join a logical group, and there is no 
need for coordination about group membership. Prom an ef- 
ficiency perspective, multicast offers two main advantages. 
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Multicast greatly alleviates the overhead on senders by al- 
lowing them to reach the entire group with the transmission 
of a single packet. In addition, multicast routing ensures 
that no more than one copy of each packet will traverse each 
link, thereby significantly reducing the overall network load. 
This overall network efficiency gain, while probably the least 
important of the three multicast benefits listed above, is the 
most obvious and the most widely cited one in the popular 
(i.e., non-research) literature. 

It is somewhat surprising that, given its centrality in the 
lore of multicast, there have been so few efforts to accurately 
characterize this reduction in overall network load. The only 
substantial effort we arc aware of is by Chuang and Sirbu 
in [3]. They examined the number of links L in the multicast 
tree needed to reach m randomly chosen distinct network 
locations from a given source. The nature of this function 
L(m) embodies the overall network efficiency properties of 
multicast.’ A similarly computed quantity for unicast - the 
total number of link-traversals needed to reach m random 
network locations using unicsst - yields Grn where fi is the 
length of the average unicast path; the efficiency gains of 
multicast are reflected in how far L(m) deviates from this 
linear growth. The simulations presented in [3] suggest that, 
over a wide range of networks, L(m)% behavior is reasonably 
described by the formula L(m) o( m”.8. The power law 
form and its apparent universality are very intriguing and 
somewhat surprising results. We review some of this data 
in Section 2. 

Our goal in this paper is to determine the scaling form 
of L(m) more precisely, and to understand the universal- 
ity of this scaling behavior. To do so, we first calculate, in 
Section 3, the function L(m) for k-ary trees. We find that 
the asymptotic form of L(m) is not exactly a power law. 
Moreover, we find that the asymptotic form of L(m) does 
not depend on the degree k of the tree (although the con- 
stants in the formula do depend on k). We suggest that this 
may be what gives rise to the universality of the Chuang- 

‘Here we are focusing on multicast routing algorithms that are 
source specific, where packets traverse the shortest path between 
source and receiver; we do not address the efficiency of shared tree 
multicast algorit,hrns. See [12] for one such comparison. 
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Table 1: Description of networks used in Figure 1. 

Sirbu scaling law. We then investigate the behavior of L(m) 
on more general networks, including some real networks, in 
Section 4. In Section 5 we consider the effects of affinity 
(i.e., clustering) and disaffinity of receivers. We conclude in 
Section 6 with a short discussion. 

2 Evidence for the Chuang-Sirbu Scaling Law 

We first review some experimental evidence for the Chuang- 
Sirbu scaling law. The data presented here is very similar 
in spirit to that shown in [3]. We consider the set of net- 
works described in Table 1. The ARPA network reflects the 
original ARPANET topology (this topology has been used 
in several other studies, such as [13] and [3]); the MBone 
and Internet topologies are based on data collected by the 
SCAN project at USC/ISI; and the AS data refers to the 
routing connectivity between autonomous systems collected 
by the National Laboratory for Applied Network Research 
(NLANR).’ The rest of the networks are generated either 
using the GT-ITM network generator [l] or the TIERS net- 
work generator [7]. The names of the generated graphs re- 
veal their topological style: “ts” refers to transit-stub net- 
works (generated by the GT-ITM network generator), “r” 
refers to random networks (generated by the GT-ITM net- 
work generator), and “ti” refers to networks generated by 
the TIERS network generator. These topologies represent 
a fairly wide variety of networks; the average degrees range 
from 2.7 to 7.5, the number of nodes range from 47 to 56,317, 
the generated networks have three different design styles, 
and the real networks are from different contexts and dif- 
ferent eras. Four of these eight topologies - ARPA, r100, 
ts1000, and ti5000 .- were used in the original Chang-Sirbu 
paper [3]. All topologies were “cleaned” by removing dupli- 
cate edges (most often found in the TIERS topologies) and 
all remaining edges were then assumed to be bi-directional. 

For each network we pick a source at random. For each 
m, we pick Nrcvr random sets of m distinct receiver loca- 
tions chosen uniformly over the network. For each random 
set of receiver locations we compute the size of the delivery 
tree3 L(m); we also compute the sum of the unicast paths 
for each random set of receiver locations, and average those 
to determine the average unicast path length s(m) for this 
sample of receiver locations. For each such sample we com- 
pute the ratio of the size of the delivery tree to the average 

‘http://moat.nlanr.net/Routing/raudata/AS=~~list.990324. 
922272001 

‘We merely count the number of links, we do not weight the links 
by their length or bandwidth. 

unicast path length: $$#. We repeat this for Nsource ran- 
dom choices of the sources. We then average this quantity 
# (for a given m) over all random sets of receivers and 
random choices of source (making a total of NrcvrNsource 
data points to be averaged).4 Typically, we set N,,,, = 100 
and &our~e = 100 where the sources are picked with re- 
placement. 

Figure l(a) shows data from the generated topologies, 
while Figure l(b) shows data from real networks. As we can 
see, the fit to the relation L(m) 0: m”.8 is by no means exact, 
but is remarkably good considering the variety of networks 
considered. 

On the basis of this and similar data, Chuang and Sirbu 
concluded that the scaling law L(m) K m”.’ was a reason- 
able fit to the data for a broad class of networks, and then 
used this expression for L(m) as the basis for a multicast 
pricing policy. No one had previously conjectured that L(m) 
had a universal form, much less this particular universal 
form, and so the existence of such a simple and nonintu- 
itive formula capturing such a wide range of networks is a 
remarkable result. While clearly not a precise fit, as a rough 
empirical rule of thumb the relation L(m) oc m”.s works 
quite well, and the formula is certainly sufficiently accurate 
for the practical purpose - a multicast pricing policy - for 
which it was originally intended. 

The focus of this paper, however, is more abstract and 
esoteric than practical. Our goal is to determine the form 
of L(m) more precisely and to understand why L(m) ap- 
pears to be fairly universal. To this end, we initially narrow 
our focus on the more tractable case of k-ary trees with all 
receivers placed at the leaves. 

3 Calculation for k-ary Trees 

Consider a k-ary tree of depth D, with the source at the 
root of the tree and all receivers placed at the leaves. We 
randomly pick n leaves, not necessarily unique, and compute 
i(n) which is the size of the delivery tree that results; be- 
cause we need not ensure that the receiver sites are distinct, 
the function i(n) is easier to analyze than L(m). However, 
we can relate the number of selected leaves n to the aver- 
age number of distinct sites liz that results. Let A4 = kD 
denote the total number of possible receiver locations; then 
h = hf(l - (1 - &)n). Defining z = + and y = $ and 
taking the limit of large nl and fixed z and y, we have 

4Note that we use a slightly different methodology than in [3]; 
there, for the networks created by network generators, there are also 
N network random creations of each such network. 
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Figure 1: In 9 versus lnm for several network topologies, compared to the line T = m”.8. 

y = 1 - ee2. As M and n become large, with a fixed ratio 
$, the distribution of resulting m values is tightly centered 
around r?r and so we can (in this limit) approximate L(m) 
in terms of L(n) as follows: 

(1) 

which becomes, in the limit of large M and fixed x and y 

L(m) M i(-Mln(1 - E)) (2) 

3.1 Basic Expression 

We first derive the basic expression for i(n). Consider some 
link at level 1 at the tree; there are k’ such links in total. 
Now select n not necessarily distinct leaf sites. Each such se- 
lection will require a path through one of the k’ links at level 
1, and so picking one of the leaf sites at random is equivalent 
to picking one of the Ic’ links at level 1 at random. Thus, the 
probability that this particular link is in the delivery tree 
after n sites have been selected is given by: 

1 - (1 - k-1)” (3) 

We can treat all such probabilities as independent since 
the sum of the averages is independent of correlations, and 
so the average number of links in the delivery tree at level I 
is just k’ (1 - (1 - k-r),). The average number of links in 
the entire delivery tree is thus given by: 

D 

i(n) = c k’ (1 - (1 - k-l),) (4) 
1=1 

We now seek to evaluate this expression by looking at its 
(discrete) derivatives. Define Ai E &n + 1) - i(n) so: 

D 

AZ(n) = x(1 - k-l), (5) 

Furthermore, define A’L(n) E Ai(n + 1) - AL(n) = i(n+ 
2) + L(n) - 2L(n + 1) and so we have: 

A”E(n) = - 5 k-‘(1 - k-l)” (6) 
I=1 

3.2 Asymptotic Behavior of A”x(n) 

We now derive the asymptotic form of A”L(n) in the limit of 
large n and M but fixed x = 5. We start by approximating 
the sum by an integral as follows: 

AaL M - 
I 

D++ 

dZ k-y1 - k-y (7) 
t 

Setting z = k-’ we can rewrite this as: 

= (n+;)lnk ((l-k-1’2)n+‘-(1-k-D-1/2)n+1)(8) 

In the limit of large n and M but fixed 2 = $, we can 
simplify this as: 

-2LtL 

A”L(n) zz (ie+y;;Ik M 
-e-xb-1/2 

(zM + 1) Ink 
(9) 

Note that D is exactly the average unicast path length C. 
To best compare i(n) to unicast we should normalize by the 
number of links in the average unicast path: 

A’z(xkD) ~ -e-lk-“2 1 

c X MlnM (10) 

Define 

h(x) E -In -z(A4 In M) 
A2~(x~4) 

ti > 
(11) 

l=I 
Note that h(z) is dcfincd only in terms of A22, the size of 
the network M, and the average unicast path length C; the 
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Figure 2: h(z) versus x for k-ary trees for k = 2 and k = 4 with receivers at leaves, compared to the line h(x) = xk-li2 

definition does not contain any terms that refer to the degree 
of the tree explicitly. When we combine the two preceding 
equations we find: 

h(x) M xk-‘/2 (12) 

Thus, the effect of the degree of the tree is to merely change 
the multiplicative constant in h(x). Therefore, the degree of 
the network does not change the basic form of the asymp- 
totic expression for A2L(n), it merely rescales it. This is 
perhaps a sign that indeed the asymptotic form of i(n) may 
be independent of the particular network topology. 

Note that this approximate expression for h(t) clearly 
fails for very small z, since A2z(n) reaches a finite limit 
for small n (based on Equation 6) and so h(x) as defined 
diverges in the limit of small x. However, we are not par- 
ticularly interested in the extremely small x regime (zc < $ 
means there is less than one receiver!). We now verify the 
accuracy of the above approximations outside the regime of 
very small z. We calculate h(z) as defined in Equation 11 us- 
ing the exact expressions in Equation 6 to compute A’L(n). 
Figure 2 shows the results for k = 2 and k = 4 (both for 
three values of D), along with the curve h(x) = xk-li2. The 
k = 2 data fits the approximation h(z) z zkm112 quite well 
(as long as z > &). The k = 4 data obeys the long-term 
linear trend, but oscillates at the beginning before converg- 
ing toward linear behavior. Calculations for higher k show 
an increasing oscillatory trend. These oscillations are due 
to the discrete nature of the sum in Equation 6; the term 
~(1 - z)” is a single-peaked function of z, and so the sum 
depends on how close km1 for some 1 comes to the peak. 
These oscillations are washed out by the continuum approx- 
imation. However, these oscillations won’t matter when we 
integrate A2L(n) to derive i(n), since the integral will av- 
erage them out. 

3.3 Asymptotic Behavior of L(n) 

We now convert the approximate expression for A”,!(n) into 
an approximate one for i(n). We first make the following 

approximation to simplify the analysis: 

-+ -e Mk 
(n + 1) ln k M 

--1 if n+l 5 Mk”’ 
cn+y 

otherwise (13) 

Although this approximation is crude, we are interested 
mainly in the asymptotic behavior and it appears (as shown 
below) that this approximation does not alte_r the asymp- 
totics. Using the boundary conditions that L(0) = 0 and 
i(l) = D, WC then have AL(n) M D - w and so 

i(n) M nD - & ((n + 1) ln(n + 1) - (n + 1)) (14) 

In the limit of large n and hri with fixed x = -&, we find: 

Lgz(D+-!-)-& 

In terms of 2 = + we get: 

(15) 

(16) 

We now verify the accuracy of this expression by com- 
paring it with numerical calculations using the exact expres- 
sion in Equation 4. Figures 3(a) and 3(b) show the quantity 

q plotted versus In + for k = 2 and k = 4 (for three 

values of D); also shown is the curve L!L+!!-a 

We observe three clear trends in these igures. First,lnt\e 
curves are reasonably linear for intermediate values of z; for 
very small values of s-, roughly $ > 5, the curves have 
a pronounced concavity, and for + M 1 the curves have a 
very slight convexity (more visible in the k = 2 data, but 
it becomes increasingly apparent for smaller values of k).5 
Second, the slopes of the linear portions of the curves are 
quite close to the predicted values of A. Third, the in- 
tcrcept of the linear portions of the curves deviate slightly 
from the predicted values of &. Thus, in the linear regime 
5 < n < IV, Equation 16 captures the behavior to within 

5Note that k is merely a parameter in this calculation and so we 
can vary it continuously towards the limit of k = 1. 
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Figure 3: F versus In + for k-ary trees and receivers at leaves, compared to the line i(n) _ 1 _ 3 n 
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an additive constant; the additive error is not surprising 
given the many approximations embedded in Equation 16. 
In general, then, it appears that in the regime of interest 

for some constant c. However, this approximation is clearly 
not valid in the limit of large 6; when In + > c In k - 1, the 
approximation is decreasing in n. Our calculations suggest 
that the approximation is reasonably accurate for 5 < n < 
M and so, in this regime, the function L(n) is roughly linear 
with a logarithmic correction. 

We now have an asymptotic form for L(n); what about 
our original target of focus, L(m)? We can easily re-express 
Equation 17 in terms of m using Equation 1: 

ln(1 - E) 
In w-f+; 

L(m) zz 
‘- 

( Mln(l-~) > 

ln(l- &) Ink (18) 

This function is most decidedly not of the form L(m) 0: 
rn’.‘. Somewhat surprisingly, though, it produces results 
quite similar to the Chuang-Sirbu formula. Using Equations 
4 and 1, we can approximate L(m) for k-ary trees. Figure 4 
depicts In F plotted versus In m for k = 2 and k = 4; 
even though the form of the function L(m) is rather different 
than rn’.‘, the agreement with the Chuang-Sirbu scaling law 
is remarkably good. Thus, if our results about L(n) apply 
to more general networks, as we address in Section 4, then 
the Chuang-Sirbu scaling law will also remain reasonably 
accurate for those general networks. 

3.4 Putting Receivers at Non-Leaf Sites 

Above, to make the calculation of L(n) simpler, we assumed 
that receivers were located only at leaf sites. We now relax 
that assumption and allow receivers to be spread uniformly 
over the entire tree (excepting the root, where the source is 
located). In this case, the probability that a particular link 
at level 2 is in the delivery tree becomes: 

The form of this expression is due to the fact that for a choice 
of receiver to use a particular link at level 1, the receiver has 

to be located at or below level 1 (probability ~~~i~~) and 
the receiver has to be located below that particular link 
(conditional probability k-l). 

In the limit of large D, for a fixed 1, this probability 
becomes 

1 - (1 - k--l)” (20) 

which is the same as the leaf-only expression. The expression 
for L(n) for this case, analogous to Equation 4 for the leaf- 
only case, is: 

L(n) = 2 k’ 
I=1 

Figure 5 shows the results for this expression for our 
canonical cases of k = 2 and k = 4 (with three values of 
D). As we can see, the curves still show the same behavior 

of L(n) M n(c - $$) but the value of c has changed from 
when the receivers were located only on the leaves. 

4 More General Networks 

We have used k-ary trees as a simple test case where the 
computation of L(n) is reasonably tractable. The real net- 
works of interest, such as those we discussed in Section 2, are 
far more complicated. We now ask whether the asymptotic 
form for L(n) we derived in Section 3 applies to these more 
general networks. We begin by deriving an approximate ex- 
pression for L(n) for a more general class of networks. 

4.1 Basic Analysis 

For a given graph with a chosen source, let the reachability 
function S(T) denote the number of distinct sites that are 
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Figure 4: In y versus lnm for k-ary trees with receivers at leaves, compared to the line q = m”.8. 
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Figure 5: * versus In $ for k-ary trees with receivers throughout, compared to the line q = I& - - 
Ink 

exactly r hops from the source. Initially assume that all 
receivers are on leaf sites a distance D from the source (and 
so C = D), define M = S(D), and consider the set of links 
that are r hops (counting themselves) from the source. If 
we assume that the receivers are equally likely to be down- 
stream from any of these links, then we can approximate the 
probability that these links are on the delivery tree by the 
expression: 

1 n 
l- l-S(r) ( > (22) 

Assuming that all such calculations are independent, the 
average number of links in the delivery tree is given by: 

Following the analysis in Section 3, we find: 

A”i(n) = - $ & (I- &)” (24) 

Consider the limit of large n and large D, with T& fixed, we 
approximate the sum by an integral as we did in Section 3: 

A”i(n) M - (25) 

Setting .z = &I we can rewrite this and then take the limit 
of large 12: 

I 
S(D+1/2)-’ 

A”i(n) z dz $$(l --z)~ (26) 
S(l/z)-l 

We now consider several different possibilities for S(r). 

4.2 Exponential Case 

Random graphs and k-ary trees have the property that S(r) 
is exponentially increasing. More generally, an exponential 
increase in S(r) results if the increase in the number of sites 
reachable as we go from r to r + 1 is proportional to the num- 
ber of sites reachable in r hops (i.e., s(‘+.&s(p~ is roughly 
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Figure 6: 9 versus Inn for several networks. 

constant). When we initiated this study we expected that 
such exponential increase in S(r) was the generic behavior 
in real networks. Accordingly, we first considered the case 
where S(T) NN exr for some X. Then 

Using the function h(z) E - In (-z(Mln M)w) as 

in Section 3 yields: 

h(x) -4 M xe (28) 

Thus, if the function S(r) is exponential, we find the same 
form for the function A’i(n) as WC did in Section 3 for 
k-ary trees with the parameter X playing the role of ln]E. 
Continuing to follow the derivation in Section 3, we find 

We now ask whether this approximate analysis matches what 
we see in the networks WC first considered in Section 2. Be- 
fore doing so, we generalize our treatment to include putting 
receivers at non-leaf sites since that is the more realistic 
case. Following the derivation of Equation 21, WC find that 
the analogous expression for general networks is: 

E(n)=cS(Q l- 
( ( 

l-T(D)-T(l-l) 7% 
wT(D) >> (30) 

I=1 

where T(r) = ~~=r S(j) is the number of sites reachable 
in T or fewer hops. T(D) is thus the total number of sites 
in the network (excluding all sites that are farther than D 
hops from the source), and T(D) - T(r - 1) is the number 
of sites reachable in r or more hops. 

Figures 6(a) and 6(b) shows the plot of * versus Inn 
for the generated and real networks we conzered in Sec- 
tion 2. The generated networks r100, ts1000, and ts1008 
all appear to fit the predicted linear behavior quite well; 

the curve for the ti5000 network is significantly less lin- 
ear. In addition, it is a bit surprising that the two transit 
stub networks, tslOO0 and ts1008, have such similar slopes 
even though they have very different average degrees (3.6 
and 7.5). Turning to the data from real networks, the Inter- 
net and AS topologies give rise to fairly linear curves. The 
ARPA data is slightly less linear, but the MBone data is 
significantly less linear. 

To understand these results a bit better, we examined 
the reachability functions S(r) for these networks. Figure 7 
depicts T(r) = xi=, S(j) for these various networks (av- 
eraged over the Nsourre choices for the source). The r100, 
ts1000, and ts1008 exhibit exponential growth before reach- 
ing the saturation point where T(r) zz M. Note that the two 
transit-stub networks have similar growth rates despite their 
having different degrees; this may be due to the philosophy 
of the transit-stub portion of the ITM network generator [l] 
which constructs portions of the graph randomly while con- 
straining the gross structure. This similarity in exponential 
growth rates, whatever its origin, is likely the reason that 
the slopes of the curves in Figure 6 associated with the two 
transit-stub topologies are so similar. In contrast to the ran- 
dom and transit-stub networks, the ti5000 curve in Figure 7 
has a significant degree of concavity for a wide range of r 
values, suggesting sub-exponential growth. 

The corresponding data from real networks has a similar 
but less clear-cut dichotomy. The curves in Figure 7 from 
the Internet and AS maps exhibit exponential growth before 
saturating.6 The ARPA curve has significant concavity, and 
the MBonc data has a slight concavity, which would be con- 
sistent with sub-exponential growth for these two networks. 

In both the real and generated networks, when T(r) ex- 
hibits exponential behavior (the ts1000, ts1008, r100, Inter- 
net, and AS) the predicted form for i(n) appears to hold. In 
the cases where T(r) appears to be sub-exponential (ti5000, 
MBone, and ARPA) the predicted form applies less well. 
Our original intuition that real networks have exponential 

6However, the existence of exponential growth in real networks 
is the subject of some controversy; see [8] for a different reading of 
similar data. 
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Figure 7: lnT(r) versus r for several networks. 

T(r) appears to hold for the direct Internet measurements 
(Internet and AS maps), but applies less well to the MBone. 
The MBone remains partially an overlay network, which 
may affect the nature of T(r). The nature of S(r) for real 
networks is an interesting, and open, research question: see 
[9] and [8] for some related work on this topic. 

4.3 Non-exponential Cases 

While we expect that S(r) M exr for some X for many 
networks, we have already seen that there are cases where 
the reachability function S(r) has somewhat different be- 
havior. Let’s consider two other extremes: S(r) M rx and 
S(P) EC ear’. The first grows more slowly, and the second 
grows more quickly, than exponential. 

To simplify matters, we can assume that receivers are at 
the leaves of the network and can use Equation 23 to cal- 
culate x(n). Figure 8 shows the curves for an exponential 
S(r) = 2’ along with the two non-exponential cases we are 
considering: S(r) M T’ and S(T) M e?’ The constants were 
normalized so that S(D) is the same for all three networks. 
As can be seen, the non-exponential cases have quite dif- 
ferent behavior than the exponential case. This shows that 
the asymptotic form we derived for the exponential case does 
not apply to these other kinds of networks. If it turns out 
that real networks do not exhibit the exponential reachabil- 
ity functions S(r) then our analysis here is rendered moot. 

5 Receiver Affinity and Disaffinity 

Up to now we have assumed that receivers are uniformly dis- 
tributed in the network.’ However, the distribution of such 
receivers will, in practice, deviate from this uniform distribu- 
tion. There are many situations, like teleconferences, where 
the participants will tend to cluster. There will be others 
- such as sites in a sensor network in which the sensors are 
evenly spread out -- where the participating sites will tend 
to be apart. We use the terms affinity and disaffinity for 

‘At times we have limited receivers to leaf sites, as in Section 3, 
but so far in all cases the receivers are distributed over the possible 
sites in a uniform manner. 

these tendencies: receiver affinity means the receivers like 
to cluster together, and disaffinity means that they have a 
bias towards spreading out. 

In this section we investigate the implications of receiver 
affinity and disaffinity through the use of a simple model. 
We do not claim that our model is in any way an accurate 
representation of reality, merely that it captures the notion 
of clustering (and spreading out) sufficiently well so that we 
can look at how affinity and disaffinity affect L(n). 

5.1 Simple Model of Receiver Affinity/Disaffinity 

We model the tendency for receivers to cluster (or spread 
out) by assuming that receivers have an affinity (or disallin- 
ity) for being near other sites in the group. Consider some 
network and a multicast group with m distinct receiver sites 
and a given sender. Let A(m) be the set of all receiver config- 
urations (i.e., set of receiver placements) with m distinct re- 
ceiver sites. Consider some specific configuration (Y E A(m) 
and let L,, denote the size of the delivery tree for this config- 
uration. Let ,S denote some parameter reflecting the degree 
of affinity or disaffinity; p = 0 is the uniform distribution 
of receivers we have focused on so far, fl = 00 is infinite 
affinity (receivers pack as closely as possible), and p = -oo 
is infinite disaffinity (receivers spread out as much as possi- 
ble). We can then model affinity or disaffinity by assigning 
weights Wa(fl) to the various receiver configurations (with 

c aea(nj Wa(,B) = 1) and then take a weighted average, as 
follows: 

-ha(m) = C Wm (P)L (31) 

We could similarly define &r(n), where n is the number 
of not necessarily distinct receiver locations, by defining the 
set A(n) = U,<,A(m), which contains configurations with 
multiple receivers at a given site. Note, however, that the 
relationship between n and m developed in Section 3 no 
longer applies when p # 0 (because there is a bias either for 
or against receivers to be at the same site). Therefore we 
cannot simply study one of these functions and convert it 
into the other. as we have done so far. 
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Figure 8: s versus Inn for several reachability functions S(T). 

The key aspect to affinity or disafhnity is that receivers 
are either more or less likely to situate themselves near each 
other, for some definition of near. For convenience, we mea- 
sure the distance d between two receivers in terms of the 
number of hops in the shortest path between them. For a 
given receiver configuration let d^(cr) be the average inter- 
receiver distance for configuration CX. We then define W, (ff) 
as follows: 

Wa@) = pemPSca) (32) 

where p is chosen so that ‘&A(mj Wa(p) = 1. We now 
ask what happens in the limit of extreme affinity (/3 = 03) 
and disaffinity (p = -oo), and then review some simula- 
tion results for intermediate values of 0. For simplicity, in 
the theoretical discussion in Sections 5.2 and 5.3 we restrict 
ourselves to k-ary trees with receivers at the leaves. For 
the simulations in Section 5.4 we allow receivers to be at all 
sites. 

5.2 Extreme Disaffinity 

Consider the case where the receivers stay as far apart as 
possible. This is equivalent to adding them in an order that 
maximizes the number of links added to the tree at each 
step. Set L-,(O) = 0. Then, we have the sequence: 

AL-,(O) = D ,..., AL-,@-- 1) = D, 

AL-,(k) = D - 1,. . . , AL-,&k2 - 1) = D - 1, 

AL-,(t2) = D - 2,. . . , AL-.&k3 - 1) = D - 2, 

AL-,(k3) = D - 3,. . . , AL-,(Ic4 - 1) = D - 3, 

AL-,(k4) = D-4,... 

Therefore, A2L-,(m) is given by: 

A2L-,(k’ - 1) = -1 for all 1 > 0 (33) 

with A2L-,(m) = 0 for all others values of m. Smoothing 
this out, we find: 

A2L-,(m) z -’ 
m(k - 1) 

Thus, 

A2L-,(zkD) s -’ ’ 
kD(k - 1); (35) 

Returning to the original formula, we can write: 

L-,(l) = D, 

L-,(k) = kD, 

L-,(k2) = kD + k(k - l)(D - 1) 

L-&k”) = kD + k(k - l)(D - 1) + k2(k - l)(D - 2) 

More generally, 

I-l 

L-&k’) = D + c k’(k - l)(D - i) 
i=o 

= Dk’ - & (k’-‘(Zk - k - 1) + 1) (36) 

Thus, for m = k’ for some I, we have: 

L&n)=mD-A(($-1)~s+l) 

(37) 
The slope starts out high (D) and then decreases slowly as 
sites are added. Note that in this case, since receivers won’t 
occupy the same site unless necessary, L-,(n) = L-,(n) 
for all n 5 M, and L--(n) = L-,(M) for all n > iVf. 

5.3 Extreme AfFinity 

Consider the case where the receivers tend to cluster. This 
is equivalent to adding them in such a way as to minimize 
the number of links added to the tree at each step. Consider 
a binary tree. Then, we have the sequence: 

AL,(O) = D, AL,(l) = 1, AL,(2) = 2, 

AL,(3) = 1, AL,(4) = 3, AL,(5) = 1, AL,(6) = 2, 

AL,(7) = l,... 

More generally, when m = k’ then 

k’+’ - k 
L&k’) = D - 1+ lE-l = D - 1+ (k’ - l)& (38) 

Thus, L,(m) is roughly linear (with an additive logarithmic 
correction) when restricted to m = k’ for some 1. 

In the extreme affinity case, L,(n) = D for all n (all 
receivers cluster at the same location). 

49 



a 0.8 
F: 
z- 0.6 

13 
0.4 

0.8 

0.6 

0.4 

0.2 

0 
1 10 100 1000 10000 1 10 100 1000 10000 

n 
(a) binary tree with depth D = 10. (b) binary tree withndepth D = 12. 

Figure 9: % versus Inn for a binary tree and various values for /3. 

5.4 Intermediate p 

Figure 9 depicts $$ for p = -10, -1, -0.1, 0, .l, 1, 10 for 
binary trees with depth D = 10 and D = 12 respectively. 
As expected, Figure 9(a) shows that-increasing affinity de- 
creases the size of the multicast tree Lp; the effects are most 
obvious for smaller n. When WC increase the size of the net- 
work by a factor of 4, going from D = 10 to D = 12, the 

i,, (n) effect of a change in 0 for a fixed n (i.e., & - i, (n) 2- ) 
remains relatively constant. This suggests tnhuat if we?ake 
the limit of large D and fixed z = $ then the effect of 

affinity on s will vanish: 

We therefore conjecture that in the asymptotic limit of large 
networks and fixed fractional population, affinity does not 

disturb the basic form for i(n) described in Equation 17. 
However, for a fixed n, affinitynand disaffinity do significantly 
affect the size of the delivery tree L(n). 

6 Discussion 

Inspired by the intriguing results of Chuang and Sirbu, we 
have focused on a very narrow question: what is the ssymp- 
totic nature of the function i(n) which describes the number 
of links in a multicast tree connecting a single source to n 
randomly located receivers? We were able to analyze k-ary 
trees, deriving an exact expression (Equation 4) and showed 

that, asymptotically, L(n) zz n(c - !$-). We argued that 
this form should apply to any network whose reachability 
function S(r) exhibited exponential behavior. This predic- 
tion then led to an expression for L(m) which was quite 
different than the Chuang-Sirbu scaling law in form, but 
which was not too dissimilar in behavior. 

To test these predictions, we looked at several more re- 
alistic networks. Our simulations results were not entirely 
conclusive. The results for several of the networks agreed 
quite closely with the predicted form, while the results for 

the ARPA, MBone, and ti5000 topologies were somewhat 
less in agreement. This lack of agreement may be due to 
the non-exponential behavior of these networks’ reachabil- 
ity function S(r). Thus, we still conjecture that the form 

i(n) M n(c - $$) will apply to networks with exponential 
reachability functions. The question then becomes: do real 
networks (current or future ones) have exponential reacha- 
bility functions S(T)? More investigations of artificially gen- 
erated networks [l, 7, 11, lo] and real networks (see [9, 81) 
would shed light on this question, and this will be the sub- 
ject for our future research. 

If exponential behavior in S(r) is generic then we think 
our analysis helps explain the asymptotic nature of i(n), 
and the universality of the Chuang-Sirbu scaling law. How- 
ever, we should emphasize that this result is of little practi- 
cal importance. The Chuang-Sirbu scaling law is sufficiently 
accurate for the purposes for which it was intended, and our 
analysis merely suggests an explanation for its origin. 
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