
Dynamic Decentralized Preemptive Scheduling across Heterogenous Multi-core
Desktop Grids

Arun Balasubramanian
Department of Computer Science

University of Maryland College Park
arunb@cs.umd.edu

Abstract

The recent advent of multi-core computing environments in-
creases the heterogeneity of grid resources and the complex-
ity of managing them, making efficient load balancing chal-
lenging. In an environment where jobs are submitted reg-
ularly into a grid which is already executing several jobs,
it becomes important to provide low job turn-around times
and high throughput for the users. Typically, the grids em-
ploy a First Come First Serve (FCFS) method of executing
the jobs in the queue which results in poor average job turn-
around times and wait times for most jobs. Hence a con-
ventional FCFS (First come first serve) scheduling strategy
does not suffice to reduce the average wait times across all
jobs.
In this paper, we propose new decentralized preemptive
scheduling strategies that backfill jobs locally and dynami-
cally migrate waiting jobs across nodes to leverage residual
resources, while guaranteeing bounded turn-around and
waiting times for all jobs. The methods attempt to maximize
total throughput while balancing load across available grid
resources. Experimental results for intra-node scheduling
via simlulation show that our scheduling scheme performs
considerably better than the conventional FCFS approach
of a distributed or a centralized scheduler.

1. Introduction

Modern desktop machines use multi-core CPUs to enable
improved performance. Contention or shared resources
can make it hard to exploit multiple computing resources
efficiently and so, achieving high performance on multi-
core machines without optimized software support is
still difficult[1]. Moreover, desktop grids that contain
multi-core machines are becoming increasingly diverse
and heterogeneous[4], so that efficient load balancing and
scheduling for the overall system is becoming a very chal-

lenging problem[6][7] even with global status information
and a centralized scheduler[3].
Previous research[17] on decentralized dynamic scheduling
improves the performance of distributed scheduling by
starting waiting jobs capable of running immediately
(backfilling), through use of residual resources on other
nodes (if the job is moved) or on the same node (if the local
schedule is changed). However, the scheduling strategy
is non-preemptive and follows a First come first serve
approach to schedule the jobs. This results in poor average
wait times and turn around times for jobs in the queue. This
also results in poor overall Job Throughput rate in the grid.

The performance of distributed scheduling and overall
job throughput of distributed scheduling in such multicore
environments can be improved by following a preemptive
scheduling strategy where jobs that wait longer in the queue
get a chance to run. The techniques of migrating jobs to use
residual resources on neighboring nodes can also be used
to increase the overall CPU utilization. However because
of limited and/or stale global state, efficient decentralized
job migration can be difficult to achieve. Moreover, a job
profile often has multiple resource requirements; a simple
job migration mechanism considering only CPU usage can-
not be applied to in such situations. In addition, guarantee
of progress for all jobs is also desired, i.e., no job starvation.

The Contribution of this paper is a novel dynamic pre-
emptive scheduling scheme for multi-core desktop grids.
The scheme includes (1) local preemptive scheduling, with
backfilling on a single node, (2) internode scheduling, for
backfilling across multiple nodes, and (3) queue balancing,
which proactively balances wait queue lengths. The
approach inspires ideas from the preemptive schedulers
in the context of operating systems and schedules jobs
at regular intervals based on its priorities. The priorities
of the jobs are determined according to their remaining
time for completion and the amount of time the job has
spent waiting in the queue. It is a completely decentral-

ized scheme that balances load and improves throughput
when scheduling jobs with multiple constraints across a
distributed system. We demonstrate the effectiveness of our
algorithms via simulations that show that the decentralized
approach performs competitively with an online centralized
scheduler.
The rest of this paper is organized as follows. Section 2 dis-
cusses the Related Work on various preemptive strategies
in literature. Section 3 discusses and describes the basic
architecture of the peer-to-peer desktop grid system and the
resource management schemes for multi-core machines.
The term definitions related to the scheduling algorithm
are presented in section 4. The Preemptive scheduling
approach is discussed in Section 5. The simulation results
are presented in Section 6. Conclusion and Future work are
presented in Section 7 and Section 8 respectively.

2. Related Work

Various preemptive scheduling algorithms exist in literature
in the contexts of Operating Systems, Batch Processing
environments and Real time scheduling. Round Robin[11]
is the initial and simplest algorithm for a preemptive
scheduler where only a single queue of processes is used.
When the system timer fires, the next process in the queue
is switched to, and the preempted process is put back into
the queue. Classical UNIX systems [12] [13] scheduled
equal-priority processes in a round-robin manner, each
running for a fixed time quantum. If a higher priority pro-
cess becomes runnable, it will preempt the current process
(if it’s not running in kernel mode, since classical UNIX
kernels were non-preemptive) even if the process did not
finish its time quantum. This way, high priority processes
can possibly starve low-priority ones. To avoid this, a new
factor in calculating a process priority was introduced:
the ’usage’ factor. This factor allows the kernel to vary
processes priorities dynamically. When a process is not
running, the kernel periodically increases its priority. When
a process receives some CPU time, the kernel reduces its
priority. This scheme will potentially prevent the starvation
of any process, since eventually the priority of any waiting
process will rise high enough to be scheduled. While the
Operating system schedulers usually act on the basis of
information obtained from the processes execution so far
and the priority of processes, the Batch processing and real
time schedulers have added information like estimated job
completion times and deadlines respectively.

Our environment closely resembles that of the Batch
Processing scenario since it is reasonable to obtain esti-
mates on the job completion times. Shortest remaining
time[14] is a scheduling method that is a preemptive ver-
sion of shortest job next [15] scheduling. In this scheduling

algorithm, the process with the smallest amount of time
remaining until completion is selected to execute. Since
the currently executing process is the one with the shortest
amount of time remaining by definition, and since that
time should only reduce as execution progresses, processes
will always run until they complete or a new process is
added that requires a smaller amount of time. This leads to
higher wait times for long running jobs. Highest Response
Ratio Next (HRRN)[16] scheduling is a non-preemptive
discipline, in which the priority of each job is dependent
on its estimated run time, and also the amount of time
it has spent waiting. Jobs gain higher priority the longer
they wait, which prevents indefinite postponement (process
starvation). i.e. the jobs that have spent a long time waiting
compete against those estimated to have short run times. In
this paper, we use the idea of ’Higher Response Ratio Next’
in a preemptive environment to ensure that long running
jobs are not starved of CPU usage while at the same time
guaranteeing that shorter jobs finish early. This contributres
to the overall high throughput in the system.

3. BACKGROUND

(Content in this section is based on [17])

3.1. Overall System Architecture

Prior to this, a completely decentralized peer-to-peer (P2P)
desktop grid system has been developed that is both resilient
to single-point failures, and provides good scalability[8]. A
desktop grid system exists with heterogeneous nodes with
different resource types and capabilities, e.g. CPU speed,
memory size, disk space and number of cores. Jobs submit-
ted to the grid also can have multiple resource requirements,
limiting the set of nodes on which they can be run. It is as-
sumed that every job is independent, meaning that there is
no communication between jobs. To build the P2P grid sys-
tem, a variant of a Content Addressable Network (CAN) [9]
distributed hash table (DHT) is employed, which represents
a nodes resource capabilities (and a jobs resource require-
ments) as coordinates in a d-dimensional space. Each di-
mension of the CAN represents the amount of that resource,
so that nodes can be sorted according to the values for each
resource. A node occupies a hyper-rectangular zone that
does not overlap with any other nodes zone, and the zone
contains the nodes coordinates within the d-dimensional
space. Nodes exchange load and other information with
nodes whose zones abut its own (called neighbors). The
following steps describe how jobs are submitted and exe-
cuted in the grid system.
1) A client(user) inserts a job into the system through an ar-
bitrary node called the injection node.

2) The injection node initiates CAN routing of the job to the
owner node.
3) The owner node initiates the process to find a lightly
loaded node (runnode) that meets all of the jobs resource
requirements (called matchmaking)
4) The run node inserts the job into an internal FIFO queue
for job execution. Periodic heartbeat messages between
the run node and the owner node ensure that both are still
alive. Missing multiple consecutive heartbeats invoke a
(distributed) failure recovery procedure.
5)After the job completes, the run node delivers the results
to the client and informs the owner node that the job has
completed.
The owner node monitors a jobs execution status until the
job finishes and the result is delivered to the client. To en-
able failure recovery, the owner node and the runnode pe-
riodically exchange soft-state heartbeat messages to detect
node failures (or a graceful exit from the system). More
details about the basic system architecture can be found in
Kim et al. [9].

3.2. Matchmaking Procedure

Matchmaking is the initial job assignment to a node that
satisfies all the resource requirements of the job, and also
does load balancing to find a (relatively) lightly loaded
node. A good matchmaking algorithm has several desir-
able properties: expressiveness, load balance, parsimony,
com-pleteness, and low overhead. The matchmaking frame-
work should be expressive enough to specify the essen-
tial resource requirements of the job as well as the capa-
bilities of the nodes. It should balance load across nodes
to maximize total throughput and to obtain the lowest job
turnaround time. However, over-provisioning can decrease
total system throughput, therefore the matchmaking should
be parsimonious so as not to waste resources. Complete-
ness means that as long as the system contains a node that
satisfies a jobs requirements, the matchmaker should find
that node to run the job. Finally, the overall matchmaking
process should not incur signicant costs, to minimize over-
head.
The CAN-based decentralized matchmaking framework di-
rectly supports expressiveness and completeness with low
overhead. The previous efforts to enhance load balancing
performance but be parsimonious are two-fold-employing a
virtual dimension and using probabilistic pushing of jobs.
The basic CAN mechanisms do not allow the multiple
nodes to have the same coordinates in the multidimensional
space.However, the coordinates in our CAN are determined
by the amount of each resource a node has, so multiple
nodes with identical resource capabilities can conflict. This
problem is addressed by adding another dimension (called
the virtual dimension), which has a random value assigned

to differentiate multiple nodes with the same capabilities.
The random value in the virtual dimension also helps dis-
tribute jobs across nodes evenly, so improves load bal-
ance. However, using the virtual dimension does not always
achieve good load balance.
The basic matchmaking algorithm has been modified to im-
prove load balance by pushing jobs into less loaded regions
in the CAN in a probabilistic way. The global load infor-
mation is aggregated along each dimension by piggyback-
ing load data onto the periodic heart beat messages sent be-
tween neighbors that are used to maintain the CAN struc-
ture. After a job is routed to the node that meets its mini-
mum resource requirements, that node chooses a dimension
and a target node among its neighbors, to try to find a path
to a more lightly loaded region in the CAN. The decision
process to push the job employs the periodically updated
aggregate load information along each dimension. How-
ever, before pushing the job, the node computes a stopping
probability based on known load information in outer re-
gions of the CAN, to determine whether the job is to be
pushed or not. If a job stops at a node, that node will pick
as the run node the least loaded node among itself and its
neighbors. Otherwise,the job continues to be pushed to a
node with higher resource capability farther out in some di-
mension in the CAN. This probabilistic approach can bal-
ance load effectively, but also minimizes over-provisioning.
More details on this work for initial job placement can be
found in Kim et al. [10].

3.3. Resource Management in a Multi-core
Grid

Multi-core nodes may be capable of running multiple jobs
simultaneously, so that the number of currently available
cores and the available amount of other shared resources
can vary over time for each node in the grid. Jobs also may
request more than one core to express the requirements of a
multi-threaded application. However, a structured DHT like
CAN can have problems with frequent changes to its struc-
ture, because it works best in a low-churn environment. To
express the dynamically changing amount of available re-
sources in each node,and to minimize the changes required
to the existing CAN mechanisms, a dynamic resource avail-
ability is represented by employing two logical nodes for
each physical one: one that models the maximum resource
available for that node (Max-node),and a second that mod-
els the currently unused amount of that resource(Residue-
node)[2].
Two resource management schemes have been designed,
named Balloon-Model and Dual-CAN, that employ two
logical nodes per physical node. Dual-CAN uses two sepa-
rate CANs, one for each logical node type, so that dynamic
effects due to resource changes (e.g.,jobs starting or end-

ing) in a multi-core node affect only the Secondary CAN,
which contains only Residue-nodes. The number of nodes
in the Secondary CAN is typically much fewer than in the
Primary CAN (composed of Max-nodes), so the additional
overhead for managing the Dual-CAN is not high. How-
ever, maintaining an additional CAN is not free, so its also
possible to incorporate Residue-nodes into a single Primary
CAN in a simple form, called a Balloon. A Balloon repre-
sents the currently available amount of resources for a node
as a point in the CAN, and is associated with the zone that
contains that point in the CAN. Therefore, the addition or
removal of a Balloon due to resource availability changes
for the node the Balloon represents affects atmost 2 nodes in
the CAN, minimizing changes to the Primary CAN. Using
both static and dynamic node information in the two man-
agement schemes, a job is assigned to an appropriate node
capable of running the job, preferably a node not currently
running any other jobs (a free node). The initial job match-
making and information aggregation schemes are similar to
what was described for a single-core environment in Section
3.2, except that the algorithms require information on core
utilization rather than on the number of free nodes. Once
a run node is determined, the job is inserted into the local
queue of the node to wait to be run. The default queuing
policy is first-come first-serve (FCFS), based on the time
the job arrived in the system, but a node tries to run as many
jobs as possible simultaneously to utilize all its available
resources.

4. Term Representations

1) An arbitrary job in queue (Non executing) job = Ja.
2) Currently Running (or executing) Job = J ′a
3) Priority of Job Ja = Pja

4) Priority of currently running job = Pj′a
5) Job at head of queue = Jh
6) Priority of Job at head of queue JH = Pjh

7) Remaining Time for Job Ja = Trem(Ja)
8) Resource requirements for Job Ja = Rja

9) Current free residual resources = Rf

10) Residual resources that would be available when some
current running jobs are preempted = Rf (temp)
10) Resource requirements of Job at head of queue = Rjh

11) Resource requirements of Job currently running = Rj′i
12) Minimum Priority Job running currently in a given set
= J ′Pmin

13) Minimum Resource consuming Job running currently
in a given set= J ′Rmin

14) Resource requirements of J ′Pmin = Rj′Pmin

15) Resource requirements of J ′Rmin = Rj′Rmin

16) Waiting time of Job Ja = WJa

17) Jobs covered so far for analysis = Jcovered
18) Jobs currently running = Jrunning

19) The remaining jobs (those yet to be examined for pre-
emption) = Jrem
20) Priority of the Highest priority job that is covered so far
= Pmax(Jcovered)
21) Priority of the Lowest priority job that is covered so far
= Pmin(Jcovered)
22) Resources required for the Minimum Resource consum-
ing job that is covered so far = Rmin(Jcovered)
23) Resources required for the Maximum resource consum-
ing job that is covered so far = Rmax(Jcovered)
24) Priority of the Highest priority job from the remain-
ing jobs (those yet to be examined for preemption) =
Pmax(Jrem)
25) Priority of the Lowest priority job from the remain-
ing jobs (those yet to be examined for preemption) =
Pmin(Jrem)
26) Resources required for the Minimum Resource consum-
ing job from the remaining jobs (those yet to be examined
for preemption) = Rmin(Jrem)
27) Resources required for the Maximum resource consum-
ing job from the remaining jobs (those yet to be examined
for preemption) = Rmax(Jrem)

5. PREEMPTIVE SCHEDULING

5.1. Local Scheduling

This section deals with the scheduling criteria for a single
node. As mentioned in section 2, we combine the ideas
of ’shortest remaining time next’ and the ’higher response
ratio next’ to come up with a preemptive scheduling
algorithm for the desktop grids. The ’shortest remaining
time next’ ensures that jobs that have the smaller remaining
time are run, so they end sooner. However, this could lead
to starvation for long running jobs and hence we increase
the priority for jobs that wait longer in the queue. Thus,
the jobs waiting in the node’s queue have their priorities
calculated as

Pja = 1 + (α ∗WJa
)/Trem(Ja)

i.e. the priority for a job is directly proportional to its
wait time WJa and inversely proportional to its estimated
time for completion Trem(Ja). α is the weight factor
associated with the wait time. Typically, the α value is
greater than 1. The section on ’Experimental Results’
provide more details on the values of α.
The job queue is sorted according to the order of their
priorities calculated as above. Initially, the jobs in the head
of the queue are scheduled until the available resources are
insufficient for the next job to run. Next, those jobs that
can run in the available residual resources are scheduled to
run (Backfilling). Since the backfilled jobs have priorities

Figure 1. Local Preemptive scheduling

associated with them, they are also prone to preemption and
therefore do not starve jobs waiting in the queue.

The scheduler is invoked at the following 3 phases in the
system:
1) After, every periodic scheduling interval δ.
2) As a new job enters the queue.
3) A job completes its execution.
The periodic interval δ is much higher when compared to
the scheduling intervals for schedulers in the OS. This is
because a context switch
between jobs is more expensive (in terms of time) when
compared to context switch between processes. And so,
frequent context switches would result in low overall CPU
utilization. More details regarding the values of δ are dis-
cussed in the Results section.
The scheduler is also invoked when a new job enters the
queue because the newly arrived job could be backfilled.
And, when a job completes execution, it frees up some re-
sources which allows new jobs to run. At every scheduling
turn, the priorities of job in the head of queue is compared
with that of the least priority job thats currently running.
This is done because the job at the head of the queue cannot
run currently if its priority is lower than the lowest priority
job thats currently running. This also addresses the back-
filled jobs immediately since backfilled jobs have the lowest
priority among the running jobs.
If the priority of the job at head of queue(Pjh) is greater,
the scheduler checks if the current running job J ′Pmin frees
up enough resources for the new job to run. If yes, the job
J ′Pmin is preempted and Jh is scheduled. Otherwise, the
scheduler compares the prioritiy of the second lowest pri-
ority job (J ′a) with Jh. This is carried out until the sched-

uler appropriately preempts jobs that free up just the right
amount of resources for the job Jh to run. If the sched-
uler is unable to free up sufficient resources for the job to
run, the job Jh is not scheduled in this interval and has to
wait until the next scheduling turn. The scheduling (at ev-
ery scheduling turn) is carried out for all jobs in the queue
that have a higher priority than the lowest priority job that
is currently running. More details are presented in the algo-
rithm.

5.2. Algorithm for Scheduling

1. Job queue is sorted based on Job Priority.

2. Calculate priority for each job as :
a. Pja = 1 + ((α ∗WJa)/Trem(Ja))

3. Schedule all jobs from the head of queue until the
available resources run out for a job.

4. Then, look for other jobs that can run in residual
resource. Schedule them if a match is found.
While (Rf ! = null)
{
i.e. Find Ja such that Rja < Rf . If found such a Ja,
Ja− > J ′a
Rf = Rf −Rja

}
5. In the next Scheduling turn, compare the priorities of job
in the head of the Q with that of the least priority job that is
currently running.
Jh = next job in queue
While ((Pjh > Pmin(Jrunning)||Pjh ! = null)
{
Jcovered = null;
Jrem = null;
Rf (temp) = Rf

Jcovered = J ′Pmin

if Rjh <= (Rj′Pmin
+Rf (temp))

Preempt J ′Pmin and schedule Jh
else {
Rf (temp) = Rf (temp) +Rj′Pmin

and Goto step 6.
}

6. While (Jrem! = null)
{
Choose new job J ′a such that Pj′a

> Pmax(Jcovered) and
Pj′a = Pmin(Jrem)
Jcovered+ = J ′a
Jrem = Jrunning − Jcovered
If Pj′a

> Pj′h
{
cannot preempt jobs;

Wait for next scheduling turn;
break;
}
else
{
If Rjh >= Rj′a
then, only preempt J ′a and schedule Jh
break;
else
Goto Step 7
}

7. if Rj′a
>= (Rjh −Rf)

(
From among the list of J ′i with Pj′i

< Pj′a
choose J ′i such

that
Rj′i

= RJ′
Rmin

and check
if Rj′a + Rj′i

>= Rjh then Preempt J ′i ,J ′a and schedule
Jh.
else
continue searching for J ′i incrementally with respect to the
resource requirements.
break;
)
else
Rf (temp) = Rf (temp) +Rj′i
Proceed to step 6.
}
Jh = next job in queue;
}

5.3. Internode Scheduling

Internode scheduling is an extended version of local
scheduling; the target node for backfilling can be the
neighbors in the CAN. Local scheduling only deals with
changes to the job execution order within the queue on
a node. Internode scheduling however, must decide the
following:
1) Which node initiates job migration,
2) Which node should be the sender of a job,
3) and which job should be migrated.
Internode scheduling takes place periodically at every
scheduling interval after the local scheduling process to see
if the job at the top of the queue in the node can be run
on any of its neighbors and also to see if the node can run
the job of any of its neighbors in its currently free residual
resources.
In the PUSH scheduling model the job sender initiates the
migration process. First the sender node tries to match
priority of the job at the head of the queue with the neigh-
boring nodes queue. If the priority of the job at head of the
queue in its neighbor node is less than the job at sender

Figure 2. Internode scheduling

node, a PUSH message for the job is sent to its neighbor
containing the priority and the resource requirements. If
the job can be backfilled at the neighbor node, the PUSH
message is accepted. Otherwise, a PUSH-reject message
is sent back to the sender node. If a job can be run on
multiple neighbors, the sender sends it to the node that has
minimum objective function value as follows.

fInter−PUSH = BM ∗ FM ∗ (1/CPUspeed)

To prefer the fastest node among neighbors, the ob-
jective function also includes an inverse term for CPU
speed. Before sending a job profile, there is a simple
confirming handshake process between a sender and a
potential receiver to avoid inappropriate job migration
because the potential receiver information may not be
up-to-date at the sender.

In the PULL model, a receiver node tries to obtain a
job from its CAN neighbors so as not to waste its available
resources. However, the node does not have all information
on the queued jobs resource requirements in its neighbors
to minimize neighbor update message sizes, so the node
invokes a PULL-Request message to the node having the
closest priority job at the head of queue that is higher than
the priority of job at the head of the queue in the current
node. If there are multiple such nodes, the request is sent to
the node with maximum queue size among its neighbors. If
there are multiple candidate jobs in the waiting queue, then
the job that has minimum objective function value (BM
* FM, as above), is selected. If there is no candidate job,
then the requesting node gets a PULL- Reject message and

continues to look for another potential sender having the
appropriate priority along with maximum queue length not
contacted recently.

5.4. Queue Balancing

Queue Balancing is a technique to proactively distribute the
loads across nodes so that the job loads are equally balanced
between the nodes. This ensures that the resources on all
the nodes are efficiently utilized at any point in time either
through local scheduling, backfilling or internode schedul-
ing. Although the design techniques for Queue Balancing
have been analysed to some extent, the details are not dis-
cussed here since the algorithm has not been implemented
and the design ideas themselves may need more introspec-
tion. Hence, we discuss its details in the Section 7.

6. Experiment and Results

6.1. Experimental Setup

A synthetic workload was generated to model the grid re-
source configuration containing heterogenous nodes capa-
ble of executing a heterogenous set of jobs. The simulation
scenario consists of 1000 multi-core nodes (having 1 , 2, 4
or 8 cores), and 5000 jobs submitted to run on those nodes.
Each node has multiple resource capabilities for CAN re-
source dimension such as CPU speed, memory size, disk
space and the number of cores. The jobs are also mod-
eled similarly having the heterogenous resource configura-
tion as their requirements. A high percentage of the nodes
(and jobs) have relatively low resource capabilities (require-
ments), and a low percentage of nodes (jobs) have high re-
source capabilities (requirements).
The interval between job submissions follow a poisson dis-
tribution, with varying average job inter arrival times in the
experiments. Each job has an estimated running time asso-
ciated with it. The estimated times are uniformly distributed
between 0.5T and 1.5T, with T= 3600 seconds, running on
a canonical node with a normalized CPU speed of 1. The
simulated job running time is then scaled up by the CPU
speed relative to the canonical node.
We compare our schemes to the FCFS scheduler with back-
filling which schedules jobs in the order they arrive and
also performs backfilling of jobs on residual resources. To
measure the performance of the long running desktop grid
system, we run the simulations in a steady state environ-
ment. By steady state, its implied that the job arrival and
departure rates are similar, so that the system acheives a dy-
namic equilibrium state during the simulation period, with
the system neither highly overloaded, nor very underloaded.
Hence, the average total system load is determined by the

Figure 3. Median wait times for different Job inter-arrival times

inter-job arrival rate. However very lightly loaded systems
were not tested, because those are not very interesting for
measuring dynamic scheduling performance.

6.2. Experimental Results

Figure 3 lists and compares the median wait times across
all jobs for each job inter-arrival times. The effect of α (the
weight associated with the wait time of a job) on the median
wait times is observed for each job inter-arrival times. For
lower α values, the job with the lesser time to complete
gains more priority and as a result the current running jobs
execute for longer periods without getting preempted. This
results in a lower preemption frequency and hence higher
wait times for jobs. As α increases, more priority is given
to the waiting time of the job and so jobs are preempted
more frequently. This results in a better performance (lower
median wait times).

We also observed that the preemptive scheduling algorithm
works best for smaller scheduling intervals δ i.e. they re-
sulted in the low median and average wait times for jobs.
The graphs are plotted for δ = 5 seconds and we can ob-
serve the low median wait times in all cases. As expected,
the median wait times for jobs decrease as the inter arrival
time for jobs increase since jobs are submitted later in the
system.

In contrast however, the ’average’ wait times (see figure 4)
across the jobs tend to increase with increase in inter job
arrival time. Although it may seem perplexing at first, this
trend can be explained. As the jobs arrive later, the jobs
that were initially running executed for longer periods of
time. So, their estimated time for completion is now much
lesser when compared to the jobs that have newly arrived.
This results in continued execution of the old jobs until they
complete i.e., as the inter arrival times become larger, the
scenario resembles that of the FCFS approach with no pre-

Figure 4. Average wait times for different Job inter-arrival times

Figure 5.

emption. Hence, the newly arriving jobs have longer wait
times. It can also be observed that in some cases (inter-
arrival times 3 and 4) very high values of alpha (200) could
result in a slight performance degradation. This is because
jobs that are near completion do not finish immediately due
to excessive preemption. Figures 5 to 9 illustrate the distri-
bution of the wait times for jobs in both environments i.e.
preemptive and non preemptive FCFS scheduling. As ex-
pected, the waiting times of jobs decrease with increasing
job inter-arrival times in the FCFS environment. In the pre-
emptive environment however, most jobs have the least wait
times when the job inter arrival time is minimum. This is
because, jobs arrive quicker and hence the earlier jobs that
were executing are not very close to their completion and
so are preempted by the new jobs. This results in low wait-
ing times across all jobs. As explained earlier, when the
job inter arrival times increase considerably, the preemptive
scheduler behaves more as an FCFS scheduler. This can be
observed in figure 9.

7. Conclusion

A preemptive scheduling algorithm (with backfilling) for
desktop grids was designed and implemented. As part of

Figure 6.

Figure 7.

Figure 8.

local scheduling, jobs that are estimated to complete sooner
were given higher priority compared to long running jobs
while at the same time ensuring that the long running jobs
get their fair share of the CPU. In other words, the jobs that
have waited too long compete with those having short re-
maining times. Results show that this algorithm performs
much better and yield lower average job wait times when
compared to the FCFS approach. The Internode scheduling
ensures that those jobs that cannot be immediately sched-
uled are PUSHED to a neighboring node if it can be run in

Figure 9.

the neighboring nodes residual resources. It also allows a
node to PULL jobs from neighboring nodes to utilize its lo-
cal residual resources. Queue Balancing assures a proactive
method for balancing the load across nodes.

8. Future Work

The Internode scheduling algorithm has to be implemented
and the results have to be studied. Since the results of the
local scheduling algorithm are very promising, we expect
the Internode scheduling to further bring down the waiting
times for jobs and increase the average throughput.

The local scheduling and internode scheduling algo-
rithms find and execute a job using residual free resources
in a node. This means that only jobs that can start running
immediately will be moved. However, if the load across
nodes is skewed, the job queue lengths vary greatly, and
hence a more pro-active queue balancing scheme would
improve load distribution, and overall throughput, across
heterogeneous nodes. The grid model allows for multiple
resource types to be specified for a node, therefore defining
and measuring load is more complex than for a single
resource type. Firstly, the maximally loaded resource
among the K available resources is set as the Load of a
node, and the algorithm minimizes the total sum of the
Loads among neighbors, and also balances Load across the
nodes[5]. The term W k

i is defined, normalized load for
Resource k of Node i by:

W k
i =

∑
Jj∈Queuei

(Rk
j), 1 ≤ k ≤ K

where Jj is Job j, Rk
j is the kth normalized resource

requirement for Jj , and Queuei is the job queue for node i.
The normalized load of Node i, Li is given by

Li =Max(W i
k), 1 ≤ k ≤ K

The PUSH and PULL job migration models can be
used for queue balancing, as they were for internode
scheduling. For PUSH, a node i computes normalized
load(Li) for itself and for its neighbors. If Li is the locally
maximum value among all its neighbors, then node i checks
its queue to find candidate jobs for migration that reduce Li

if the (candidate) job is moved. Among these jobs, those
jobs that satisfy the priority constraints in the neighboring
node are considered. When there are multiple candidate
jobs, the algorithm selects the job and the receiver node
that minimize an objective function if the job is moved to
the neighbor.
The PULL model is similar to the PUSH model, except
that the node with a locally non-zero minimum normalized
load among equal or less capable neighbors will initiate
the PULL process from the most loaded node among
its neighbors. The Queue Balancing and the Internode
Scheduling techniques are expected to further improve the
performance of the desktop grid system.

9. References

[1] S.Moore, Multicore is bad news for super computers,
IEEE Spectrum, vol.45, no.11, pp.1515, Nov.2008.

[2] J.Lee, P.Keleher and A.Sussman, Decentralized
resource management for multi-core desktop grids, in
Proceedings of the 24th IEEE International Parallel and
Distributed Processing Symposium. Atlanta, Georgia,
USA: IEEEComputer SocietyPress,2010.

[3] W.Leinberger, G.Karypis, and V.Kumar, Job scheduling
in the presence of multiple resource requirements, in
Supercomputing99: Proceedings of the 1999 ACM/IEEE
conference on Supercomputing(CDROM). NewYork, NY,
USA: ACM, 1999, p.47.

[4] Jaehwan Lee, Pete Keleher and Alan Sussman.
Supporting Computing Element Heterogeneity in P2P
Grids. In Proceedings of the IEEE Cluster 2011 Confer-
ence. September 2011. IEEE Computer Society Press.

[5] W.Leinberger, G.Karypis, V.Kumar, and R.Biswas,
Load balancing across near-homogeneous multi-resource
servers, in Proceedings of the 9th Heterogeneous Comput-
ing Workshop, 2000.(HCW2000), 2000, pp.6071, appears
with the Proceedings of IPDPS 2000.

[6] D.Zhou and V.Lo, Wavegrid: a scalable fast-turnaround
heterogeneous peer-based desktop grid system, in Pro-
ceedings of the 20th International Parallel and Distributed
Processing Symposium (IPDPS2006). IEEE Computer
Society Press, April2006.

[7] Wave scheduler: Scheduling for faster turnaround time
in peer-based desktop grid systems, in Proceedings of the
11th Workshop on Job Scheduling Strategies for Parallel
Processing, June2005.

[8] J.-S.Kim, B.Nam, P.Keleher, M.Marsh,
B.Bhattacharjee, and A.Sussman, Resource Discovery
Techniques in Distributed Desktop Grid Environments, in
Proceedings of the 7thIEEE/ACM International Conference
on Grid Computing-GRID2006, Sep.2006.

[9] S.Ratnasamy, P.Francis, M.Handley, R.Karp, and
S.Shenker, A Scalable Content Addressable Network,
in Proceedings of the ACMSIGCOMM Conference,
Aug.2001.

[10] J.-S.Kim, P.Keleher, M.Marsh, B.Bhattacharjee,
and A.Sussman, Using Content-Addressable Networks for
Load Balancing in Desktop Grids, in Proceedings of the
16th IEEE International Symposium on High Performance
Distributed Computing(HPDC-16), Jun.2007.

[11] M. Shreedhar and G. Varghese, Efcient Fair Queuing
Using Decit Round-Robin, IEEE/ACM Transactions on
Networking, vol. 4,3, pp. 375-385, 1996.

[12] Ken Thompson, UNIX Implementation, 2.3 -
Synchronization and Scheduling, Bell Laboratories

[13] Maurice J. Bach, The Design of the UNIX Oper-
ating System, Chapter 8 - Process Scheduling and Time,
Prentice Hall

[14] Harchol-Balter, Mor; Schroeder, Bianca; Bansal,
Nikhil; Agrawal, Mukesh (2003). Size-Based Scheduling
to Improve Web Performance. ACM Transactions on Com-
puter Systems 21 (2): 207233. doi:10.1145/762483.762486

[15] William Stallings: Operating systems: internals
and design principles. 4th ed., Prentice-Hall, 2001, ISBN
0-13-031999-6.

[16] Tanenbaum, A. S. (2008). Modern Operating
Systems (3rd ed.). Pearson Education, Inc.. p. 156. ISBN
0-13-600663-9.

[17] Jaehwan Lee, Pete Keleher and Alan Sussman.
Decentralized Dynamic Scheduling across Heterogeneous
Multi-core Desktop Grids. In Proceedings of the 19th
International Heterogeneity in Computing Workshop
(HCW2010). April 2010. IEEE Computer Society
Press. Appears with Workshop Proceedings of IPDPS
2010.

