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Abstract

We present BanditLOLS, an algorithm for
learning to make joint predictions from ban-
dit feedback. The learner repeatedly predicts
a sequence of actions, corresponding to either
a structured output or control behavior, and
observes feedback for that single output and
no others. To address this limited feedback,
we design a structured cost-estimation strat-
egy for predicting the costs of some unob-
served structures. We demonstrate the prac-
tical importance of this strategy: without it,
performance degrades dramatically over time
due to high variance. Furthermore, we em-
pirically compare a number of different explo-
ration methods (ε-greedy, Boltzmann sam-
pling, and Thompson sampling) and show the
efficacy of the proposed algorithm. Our ap-
proach yields improved performance on three
natural language processing tasks.

1 INTRODUCTION

The challenge of making a collection of predictions si-
multaneously and consistently arises in a variety of set-
tings, most notably structured prediction (e.g., image
segmentation, machine translation) and control (e.g.,
self-driving cars). For problems like these, it is often
possible to build an initial, baseline system learned
from a small amount of fully supervised data (paral-
lel translations or driving demonstrations). Unfortu-
nately, the performance of such a system is often lim-
ited to: the domain it was built on, the loss function
it was optimized for, the small hypothesis class chosen
(because of small amounts of data), an upper bound of
performance based on the quality of the training data
or demonstrator.
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Our goal is to develop an algorithm that can take such
a baseline system, and improve its performance over
time based on interactions with the world. Because
this improvement is through natural interactions, it
is guaranteed to be in the right domain, and guaran-
teed to match real-world rewards. This also means the
system will naturally improve over time, beyond the
performance of the initial data. In particular, we as-
sume a very weak form of bandit feedback : the system
learns a policy that makes a joint prediction (segmen-
tation, translation or trajectory) and receives a small
amount of feedback about the quality of its prediction.
Such bandit feedback is very limited: the system never
gets to observe the “correct” output. This means that
it faces a fundamental exploration/exploitation trade-
off, where the learning problem requires balancing re-
ward maximization based on the knowledge already
acquired (exploitation) with attempting new behavior
to further increase knowledge (exploration).

We describe BanditLOLS, an approach for improv-
ing joint predictors from bandit feedback. Bandit-
LOLS is an extention of the recently-proposed LOLS
algorithm (Chang et al., 2015) for addressing the
structured contextual bandit learning problem (§ 2).
BanditLOLS extends LOLS algorithm in two crucial
ways. First, during an exploration phase, Bandit-
LOLS employs a doubly-robust strategy of estimating
costs of unobserved outcomes in order to reduce vari-
ance (§ 3.1). In order to accomplish this, we learn a
separate regressor for predicting unknown costs, which
requires some additional feedback for estimation. Ex-
perimentally, we found this to be crucial (§4): without
it, the bandit feedback often led to decreased rather
than increased accuracy. Second, BanditLOLS em-
ploys alternative forms of exploration, based on the
predictions and uncertainties of the underlying policy
(§ 3.2). We demonstrate the efficacy of these devel-
opments on several challenging natural language pro-
cessing applications (§ 4). The experimental setup we
consider is the online learning setting: what is the loss
of the deployed system that faces (simulated) users as
it balances exploration and exploitation. Our imple-
mentation will be made freely available.

Our approach connects to existing work (§5) in several
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ways. In the structured prediction setting, the setting
we address is the structured contextual bandit frame-
work introduced by Chang et al. (2015); in the control
setting, it is closely related to the heuristic used by Al-
phaGo (Silver et al., 2016) in which imitation learning
is used to initialize a good policy for playing Go, after
which reinforcement learning is used to improve that
policy. We jointly address both the structured predic-
tion case and the control case by casting structured
prediction as a learning to search problem (Daumé III
et al., 2009), a view that has had great success re-
cently in neural network sequence-to-sequence models
(Bengio et al., 2015; Wiseman and Rush, 2016).

2 BACKGROUND

We operate in the learning to search framework, a style
of solving joint prediction problems that subsumes
both structured prediction and control. This family in-
cludes a number of specific algorithms including LaSO
(Daumé III and Marcu, 2005; Xu et al., 2007; Wiseman
and Rush, 2016), Searn (Daumé III et al., 2009), DAg-
ger (Ross et al., 2010; Bengio et al., 2015), Aggrevate
(Ross and Bagnell, 2014), LOLS (Chang et al., 2015),
and others (Doppa et al., 2014). These approaches all
decompose a joint prediction task into a sequence of
smaller prediction tasks1, which are tied by features
and/or internal state.

Because these approaches decompose a joint predic-
tion task into making a sequence of predictions, it be-
comes natural to leverage terminology and techniques
from reinforcement learning. Learning to search ap-
proaches solve the fully supervised structured predic-
tion problem by decomposing the production of the
structured output in terms of an explicit search space
(observations and actions); and learning hypotheses
that control a policy that takes actions in this space.
For example, in a neural machine translation setting
(Bahdanau et al., 2014), in each step, the predictor
observes the input sentence, the previously predicted
word, and its own internal state; from this, it predicts
the next word. In practice, this policy is typically im-
plemented as a multi-class classifier, where it chooses
an action (class) given an observation (features). Af-
ter the prediction is complete, the world reveals a joint
loss over the entire set of predictions.

The key learning challenge is the chicken-and-egg
problem regarding measuring the quality of a policy’s

1Although the decomposition is into a sequence of pre-
dictions, such approaches are not limited to “left-to-right”
style prediction tasks. The standard way to approach
broader classes of problems is to take a well known infer-
ence algorithm like belief propagation, linearize its behav-
ior, and train predictors based on that linearization (Ross
et al., 2010; Stoyanov et al., 2011).
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Figure 1: A search space implicitly defined by an im-
perative program. The system begins at the start state
S and chooses the middle among three actions by the
rollin policy twice. At state R it considers both the
chosen action (middle) and both one-step deviations
from that action (top and bottom). Each of these de-
viations is completed using the rollout policy until an
end state is reached, at which point the loss is col-
lected.

individual decisions. A good individual decision is
one that, together with all the other individual de-
cisions (past and future) made by that policy, yields a
low joint loss. Different learning to search algorithms
largely vary in terms of how they address this chicken-
and-egg problem, typically through forms of iteration.
This problem is shared in full reinforcement learning;
however, unlike full reinforcement learning, learning to
search approaches assume access to a reference pol-
icy that guides behavior at training time, significantly
reducing (or sometimes entirely eliminating) the ex-
ploration/exploitation trade-off. This reference policy
has historically been assumed to be optimal, in which
case it is called an oracle policy2.

A common strategy for solving this chicken-and-egg
problem is to consider a form of “one-step deviations.”
In particular, some policy is used to generate the pre-
fix of a prediction (a “roll-in”), from which all possi-
ble actions are considered (one-step deviations), and
the joint prediction is completed according to a roll-
out policy (see Figure 1). This allows one to address
the credit assignment problem (by holding everything
fixed except the one-step deviation). Chang et al.
(2015) theoretically and experimentally analyze sev-
eral choices of roll-in and roll-out policies, many of
which subsume existing algorithms. They advocate an
online learning strategy, in which the current learned
policy is used for roll-in. If the reference policy is
known to be optimal, they advocate using the refer-
ence policy for roll-out (matching the Aggrevate algo-
rithm); if not, they advocate using a mixture of the

2Occasionally the term “dynamic oracle” is used to refer
to an “oracle”; we avoid this term because it is giving an
unnecessary new name to an old concept.
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Input: Dataset {xi, yi}Ni=1 drawn from D and
β ≥ 0: a mixture parameter for roll-out.

1 Initialize a policy π0;
2 for all examples/episodes i = 1 . . . N do
3 Generate a reference policy πref ;
4 Initialize Γ = ∅ ;
5 for t = 0 . . . T − 1 do
6 Roll-in by executing πin

i = π̂i for t steps
and reach st;

7 for all a ∈ A(st) do
8 Let πout

i = πref with probability β,
otherwise π̂i;

9 Evaluate cost ci,t(a) by rolling-out
with πout

i for T − t− 1 steps and
observing the final loss;

10 end
11 Generate a feature vector Φ(xi, st);
12 Set Γ = Γ ∪ {〈ci,t,Φ(xi, st)〉};
13 end
14 π̂i+1 ← Train(π̂i,Γ) (Update).

15 end
16 return the average policy across π̂0, π̂1, · · · π̂N
Algorithm 1: Locally Optimal Learning to Search

learned policy and the reference policy for roll-out.

This yields LOLS, shown in Algorithm 1. In LOLS,
the system follows policy π ∈ Π, which chooses an
action a ∈ A(s) at each non-terminal state s (corre-
sponding to the observations at each time step). An
action specifies the next state from s. A trajectory
is a complete sequence of state/action pairs from the
starting state to an end state e. Without loss of gen-
erality, we assume the lengths of trajectories are fixed
and equal to T . The expected loss of a policy is the
expected loss of the end state of the trajectory e ∼ π,
where e ∈ E is an end state reached by following the
policy.

LOLS assumes access to a cost-sensitive classification
algorithm. A cost-sensitive classifier predicts a label ŷ
given an example x, and receives a loss cx(ŷ), where cx
is a vector containing the cost for each possible label.
For each decision point t ∈ [0, T ), LOLS executes πin

for t rounds reaching a state st. A cost-sensitive multi-
class example is generated using the features Φ(xi, st).
Classes in the multiclass example correspond to avail-
able actions in state st. The cost c(a) assigned to ac-
tion a is the difference in loss, `, between taking action
a and the best action.

c(a) = `(ye(a), yi)−min
a′

`(ye(a′), yi) (1)

where e(a) is the end state reached with rollout by
πout after taking action a in state st. LOLS collects
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Figure 2: BanditLOLS for learning a POS tagging
model: a pre-trained tagging model provides an initial
policy π, which faces a user. The user views predicted
tags and provides, for instance, the total hamming loss
in the output. This is used to update the policy.

the T examples from the different roll-out points and
feeds the set of examples Γ into an online cost-sensitive
multiclass learner, thereby updating the learned policy
from π̂i to π̂i+1.

LOLS enjoys a compelling regret bound (see Theorem
3 and Corollary 1 of (Chang et al., 2015)), which en-
sures that if the underlying cost-sensitive learner is no-
regret, then: (a) if the reference policy is optimal and
in the hypothesis class, and β = 1, then the learned
policy will have low regret with respect to the optimal
policy; (b) if the reference policy is optimal and not in
the hypothesis class, and 0 < β < 1, then the learned
policy will have low regret with respect to its own one-
step deviations, a form of local optimality; (c) if the
reference policy is very suboptimal, then the learned
policy is guaranteed to improve on the reference.

3 BANDIT LOLS

One key property of LOLS, and many other learning
to search algorithms, is that they assume that one can
make many predictions on the same example/episode.
In particular, if the trajectory length is T and the num-
ber of actions at each step is A, LOLS will evaluate
the cost of AT different trajectories. In a bandit set-
ting, we can evaluate precisely one. Figure 2 shows an
overview for how BanditLOLS works for POS tag-
ging. A pre-trained tagging model provides an initial
policy π, which faces a user. The user views predicted
tags and provides, for instance, the total hamming loss
in the output. This is used to update the policy.
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Chang et al. (2015) describe a variant of LOLS that
requires only one evaluation, which they refer to as
“Structured Contextual Bandit Learning.” This ap-
proach modifies LOLS (Algorithm 1) in three ways:

1. Instead of evaluating deviations at all T time
steps, a single time step t is chosen uniformly at
random.

2. Instead of evaluating all A actions at t, only one
action, a, is chosen. ε-greedy exploration is em-
ployed: with 1− ε probability, the current policy
is followed (exploitation), and with ε probability
an action a is chosen uniformly at random.

3. Upon exploration, the cost vector ci,t(a
′) is set to

0 for all a′ 6= a and set to K = |A(st)| times the
observed loss for that trajectory (the K factor is
compensation for importance sampling).

Although Chang et al. (2015) are able to obtain a re-
gret bound for this bandit algorithm, we found that, in
practice, it is ineffective. In fact, the bandit feedback
often serves to make the predictions worse, not better,
over time (see § 4)! Below we describe the two key
issues with the algorithm, and at the end present an
improved algorithm, BanditLOLS, which is effective
in practice. The first issue is that in modification (3)
above, the cost vector estimate remains unbiased, but
has incredibly high variance (§ 3.1). The second issue
is that in modification (2) above, an ε-greedy strat-
egy is insufficient to explore the space well, and more
nuanced exploration strategies are necessary (§3.2).

3.1 Doubly-Robust Variance Reduction

To better understand the variance reduction issue,
consider the part of speech tagging example from Fig-
ure 1. Suppose the deviation occurs at time step 3,
as in that figure, and that during roll-in, the first two
words are tagged correctly by the roll-in policy. There
are 45 possible actions (each possible part of speech)
to take from the deviation state, of which three are
shown; each action (under uniform exploration) will
be taken with probability 1/45. If the first is taken,
a loss of one will be observed, if the second, a loss
of zero, and if the third, a loss of two. When a fair
coin is flipped, perhaps the third choice is selected,
which will induce a cost vector of ~c = 〈0, 0, 90, 0, . . . 〉.
Clearly, in expectation over this random choice, we
have Ea[c] = 〈1, 0, 2, . . . 〉, implying unbiasedness, but
the variance is clearly very large: O((Kcmax)2).

This problem is exacerbated by the fact that LOLS,
like other learning to search algorithms, typically de-
fines the cost of an action a to be the difference be-
tween the cost of a and the minimum cost (see Eq. 1).
This is desirable because when the policy is predicting
greedily, it should choose the action that adds the least

Input: current state: st, roll-in trajectory: τ ,
K regression functions (0ne for every
action): ρ, set of allowed actions: A(st),
roll-out policy: πout, explored action:
at, observed cost: e(at)

1 t← |τ |;
2 Initialize ĉ: a vector of size |A(st)|;
3 roll in cost = 0;
4 for (a, s) ∈ τ do
5 roll in cost + = ρa(Φ(s));
6 end
7 for a ∈ A(st) do
8 if a = at then
9 ĉ(a) = e(at);

10 else
11 action cost = roll in cost;
12 append action a to roll-in trajectory;
13 roll-out with πout for T − t− 1 steps;
14 for (a′, s′) in roll-out trajectory do
15 action cost + = ρa′(Φ(s′));
16 end
17 ĉ(a) = action cost;

18 end
19 return ĉ: a vector of length |A(st)|, where ĉ(a)

is the estimated cost for the action a at state st.
Algorithm 2: estimate cost

cost; it should not need to account for already-incurred
cost. For example, suppose the first two words in Fig-
ure 1 were tagged incorrectly. This would add a loss of
2 to any of the estimated costs, but could be very diffi-
cult to fit because this loss was based on past actions,
not the current action.

To address this challenge, we adopt a strategy simi-
lar to the doubly-robust estimation used in the vanilla
(non-structured) contextual bandit setting (Dudik
et al., 2011). In particular, we estimate the cost func-
tion for each action using the predicted trajectories
and use this estimate in place of the actual cost for
the unobserved actions.

Algorithm 2 shows how this works. We assume access
to a action-cost regressor, ρ. To estimate the cost of
an un-taken action a′ at a deviation, we simulate the
execution of a′, followed by the execution of the cur-
rent policy through the end. The cost of that entire
trajectory is estimated by summing ρ over all states
along the path. For example, in the part of speech
tagging example above, we learn 45 regressors: one for
each part of speech. The cost of a roll-out is estimated
as the sum of these regressors over the entire predicted
sequence.

This modification fixes both of the problems mentioned
above. First, this is able to provide a cost estimate



Amr Sharaf, Hal Daumé III

for all actions. Second, because ρ is deterministic, it
will give the same cost to the common prefix of all
trajectories, thus solving the credit assignment issue.

The remaining question is: how to estimate these re-
gressors. Currently, this comes at an additional cost
to the user: we must observe per-action feedback3.
In particular, when the user views a predicted out-
put (e.g., part of speech sequence), we ask for a bi-
nary signal for each word whether the predicted part
of speech was right or wrong. Thus, for a sentence of
length T , we generate T training examples for every
time step 1 ≤ t ≤ T . Each training example has the
form: (at, ct), where at is the predicted action at time
t, and ct is a binary cost, either 1 if the predicted ac-
tion was correct, or zero otherwise. This amounts to a
user “crossing out” errors, which hopefully incurs low
overhead in many application settings. Using these
T training examples, we can effectively train the 45
regression functions for estimating the cost of unob-
served actions. Such regression estimators have prov-
ably low variance whenever the regression function is a
good estimate of the true cost (an analysis is provided
for the contextual bandit case in Dudik et al. (2011)).

3.2 Improved Exploration Strategies

In addition to the ε-greedy exploration algorithm, we
consider the following exploration strategies:

3.2.1 Boltzmann (Softmax) Exploration

Although ε-greedy exploration is an effective and pop-
ular method for balancing the exploration / exploita-
tion trade-off, exploration is performed by choosing
an action equally among all the available actions. This
means that it is as likely to choose the worst-appearing
action as it is to choose the next-to-best action. In
tasks where there is a wide distinction between the
different actions, this could be unsatisfactory.

Boltzmann exploration targets this problem by vary-
ing the action probabilities as a graded function of
estimated value. The greedy action is still given the
highest selection probability, but all the others are
ranked and weighted according to their cost estimates;
action a is chosen with probability proportional to

exp
[

1
tempc(a)

]
, where “temp” is a positive parame-

ter called the temperature, and c(a) is the current
predicted cost of taking action a. High temperatures
cause the actions to be all (nearly) equiprobable. Low
temperatures cause a greater difference in selection
probability for actions that differ in their value es-
timates. In the limit as temp → 0, softmax action
selection becomes the same as greedy action selection.

3We leave open the question of how to remove this.

3.2.2 Thompson Sampling

Thompson Sampling has recently generated significant
interest after several studies demonstrated it to have
better empirical performance compared to other ex-
ploration strategies. Recent theoretical advances have
also shown the effectiveness of this exploration ap-
proach (Agrawal and Goyal, 2013; Komiyama et al.,
2015).

The general structure of Thompson sampling involves
the following elements: a set Θ of parameters µ; a prior
distribution P (µ) on these parameters; past observa-
tions D consisting of observed contexts and rewards; a
likelihood function P (r|b, µ), which gives the probabil-
ity of reward given a context b and a parameter µ; In
each round, Thompson Sampling selects an action ac-
cording to its posterior probability of having the best
parameter µ. This is achieved by taking a sample of
parameter for each action, using the posterior distri-
butions, and selecting that action that produces the
best sample.

We use Gaussian likelihood function and Gaussian
prior for the Thompson Sampling algorithm, which is
a common choice in practice. In addition, we make a
linear payoff assumption similar to Agrawal and Goyal
(2013), where we assume that there is an unknown un-
derlying parameter µa ∈ Rd such that the expected
cost for each action a, given the state st and context
xi is Φ(xi, st)

Tµa.

3.3 Putting it All Together

The complete BanditLOLS algorithm is shown in Al-
gorithm 3, working roughly as follows. On each ex-
ample it chooses whether to explore or exploit. This
choice matters only for ε-greedy; all the other explo-
ration methods always explore. Upon exploitation, it
simply predicts accoding to the current policy. Other-
wise, it picks a timestep uniformly at random, rolls-in
to that time step using the learned policy, and allows
the explorer to choose a one-step deviation. It then
generates a rollout to comptute the cost of the cho-
sen deviation. All other costs are estimated using the
doubly robust regressors ρ. The underlying policy is
updated according to a cost-sensitive classification up-
date based on this full cost vector.

4 EXPERIMENTAL RESULTS

In this section, we show that BanditLOLS is able
to improve upon a suboptimal reference policy under
bandit feedback setting, where only a loss for a single
predicted structure is observed. We conducted exper-
iments using three exploration algorithms: ε-greedy,
softmax (Boltzmann) exploration, and Thompson
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Input: Examples {xi}Ni=1, reference policy πref,
exploration algorithm explorer, and
β ≥ 0: a mixture parameter for roll-out.

1 Initialize a policy π0 and set I = Φ;
2 Initialize cost estimator ρ;
3 for all i ∈ {1, 2, · · · , N} (loop over each

instance) do
4 Observe the example xi;
5 set ni = |I|;
6 if explore(explorer) then
7 Pick random time t ∈ {0, 1, · · · , T − 1};
8 Roll-in by executing πin

i = π̂ni
for t

rounds to compute the roll-in trajectory
τ and reach st;

9 at = choose action(explorer, st);

10 Let πout
i = πref with probability β, else

π̂ni ;
11 Roll-out with πout for T − t− 1 steps and

observe total cost e(at);
12 train cost estimator ρ from observed

trajectory;
13 Estimate cost vector: ĉ =

estimate cost(st, τ, ρ, A(st), π
out, at, e(at));

14 Generate a feature vector Φ(xi, st);
15 π̂i+1 ← Train(π̂ni

, ĉ,Φ(xi, st)) (Update);
16 Augment I = I ∪ {π̂i+1}
17 else
18 Follow the trajectory of a policy π drawn

randomly from I to an end state e,
predict the corresponding structured
output yie.

19 end

20 end
Algorithm 3: BanditLOLS

sampling. We report results on three natural language
processing tasks: Part-of-speech tagging, dependency
parsing, and noun phrase chunking.

4.1 Experimental Setup

In our experiments, we demonstrate the effectiveness
of BanditLOLS in two ways:

1. We show that BanditLOLS can improve effec-
tively upon a reference policy by observing only a
partial feedback signal.

2. We show that BanditLOLS handles the explo-
ration / exploitation trade-off effectively.

To capture both notions, we used an online learning
setting for evaluation. We learn from one structured
example at every time step, and we do a single pass
over the available examples. Online evaluation using

progressive validation is particularly suitable for mea-
suring the effectiveness of the exploration algorithm,
since the decision on whether to exploit or explore at
earlier time steps will affect the performance on the
observed examples in the future.

We extended the Vowpal Wabbit open source machine
learning system (VW) (Langford et al., 2007) to in-
clude the BanditLOLS algorithm. We did not do
any parameter tuning of the underlying learners. The
regression problems are estimated using squared er-
ror regression, and the classification problems (policy
learning) is solved via cost-sensitive one-against-all.

4.2 Tasks, Policy Classes and Data Sets

We experiment with the following three tasks. For
each, we briefly define the problem, describe the policy
class that we use for solving that problem in a learning
to search framework (we adopt a similar setting to that
of (Chang et al., 2016), who describe the policies in
more detail), and describe the data sets that we use.

Part-Of-Speech Tagging is a sequence labeling task
(see Figure 3, top), in which one assigns a part of
speech tag (from a set of 45 possible tags defined by
the Penn Treebank tagset (Marcus et al., 1993)) to
each word in an input sequence. We treat this as a
sequence labeling problem, and decompose the predic-
tion into a greedy left-to-right policy. We use star-
dard features: words and their affixes in a window
around the current word, together with the predicted
tags for the most recent words. To simulate a do-
main adaptation setting, we train a reference policy on
the TweetNLP dataset (Owoputi et al., 2013), which
achieves good accuracy in domain, but does poorly out
of domain. We simulate bandit feedback over the en-
tire Penn Treebank Wall Street Journal (sections 02–
21 and 23), comprising 42k sentences and about one
million words. (Adapting from tweets to WSJ is non-
standard; we do it here because we need a large dataset
on which to simulate bandit feedback.) The measure of
performance is average per-word accuracy (one minus
Hamming loss).

Noun Phrase Chunking is a sequence segmenta-
tion task, in which sentences are divided into base
noun phrases (see Figure 3, middle). We solve this
problem using a sequence span identification predic-
tor based on Begin-In-Out encoding, following Ratinov
and Roth (2009), though applied to chunking rather
than named-entity recognition. We used the CoNLL-
2000 dataset4 for training and testing. We used the
smaller test split (2, 012 sentences) for training a ref-
erence policy, and used the training split (8, 500 sen-
tences) for online evaluation. Performance was mea-

4http://www.cnts.ua.ac.be/conll2000/chunking/
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POS
NNP NNP , CD NNS JJ , MD VB DT NN IN DT JJ NN

Pierre Vinken , 61 years old , will join the board as a nonexecutive director . . .

NP Chunking

NP︷︸︸︷
He reckons

NP︷ ︸︸ ︷
the current account deficit will narrow to

NP︷ ︸︸ ︷
only # 1.8 billion in

NP︷ ︸︸ ︷
September .

Parsing Root Flying planes can be dangerous

Figure 3: Example inputs (below) and desired outputs (above) for part of speech tagging task, noun phrase
chunking, and dependency parsing.

POS Dependency Chunking
Algorithm Exploration Accuracy UAS F-Score
Reference - 47.24 44.15 74.73
LOLS ε-greedy 2.29 18.55 31.76
BanditLOLS ε-greedy 86.55 56.04 90.03

Boltzmann 89.62 57.20 90.91
Thompson 89.37 56.60 90.06

Table 1: Total progressive accuracies for the different algorithms on the three natural language processing
tasks. LOLS uniformly decreases performance over the Reference baseline. BanditLOLS, which integrates
cost regressors, uniformly improves, often quite dramatically. The overall effect of the exploration mechanism
is small, but in all cases Boltzmann exploration statistically significantly better than the other options at the
p < 0.05 level (because the same size is so large).

sured by F-score over predicted noun phrases (for
which one has to predict the entire noun phrase cor-
rectly to get any points).

Dependency Parsing is a syntactic analysis task, in
which each word in a sentence gets assigned a gram-
matical head (or “parent”). An example is shown in
Figure 3, bottom. The experimental setup is similar to
part-of-speech tagging. We train an arc-eager depen-
dency parser (Nivre, 2003), which chooses among (at
most) four actions at each state: Shift, Reduce, Left or
Right. As in part of speech tagging, the reference pol-
icy is trained on the TweetNLP dataset (using an ora-
cle due to (Goldberg and Nivre, 2013)), and evaluated
on the Penn Treebank corpus (again, sections 02− 21
and section 23). The loss is evaluated in UAS (unla-
beled attachment score), which measures the fraction
of words that pick the correct parent.

4.3 Effect of Variance Reduction

Table 1 shows the progressive validation accuracies for
all three tasks for a variety of algorithmic settings.
To understand the effect of variance, it is enough to
compare the performance of the Reference policy (the
policy learned from the out of domain data) with that
of LOLS. In all of these cases, running LOLS substan-
tially decreases performance. Accuracy drops by 45%
for POS tagging, 26% for dependency parsing and 43%

for noun phrase chunking. In fact, for POS tagging,
the LOLS accuracy falls below the accuracy one would
get for random guessing (which is approximately 14%
on this dataset for always guessing NN)!

When the underlying algorithm changes from LOLS
to BanditLOLS, the overall accuracies go up signifi-
cantly. Part of speech tagging accuracy increases from
47% to 86%; dependency parsing accuracy from 44%
to 57%; and chunking F-score from 74% to 90%. These
numbers naturally fall below state of the art for fully
supervised learning on these data sets, precisely be-
cause these results are based only on bandit feedback.

4.4 Effect of Epsilon

Figure 4 shows the effect of the choice of ε for ε-greedy
exploration in BanditLOLS. Overall, best results are
achieved with remarkably high epsilon, which is possi-
bly counter-intuitive. The reason this happens is be-
cause BanditLOLS only explores on one out of T
time steps, of which there are approximately 30 in
each of these experiments (the sentence lengths). This
means that even with ε = 1, we only take a random
action roughly 3.3% of the time. It is therefore not
surprising that large ε is the most effective strategy.
Overall, although the differences are small, the best
choice of ε across these different tasks is ≈ 0.6.
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Figure 4: Analyzing the effect of ε in explo-
ration/exploitation trade-off. Overall, large values of
ε are strongly preferred.

4.5 Effect of Exploration Strategy

Returning to Table 1, we can consider the effect of dif-
ferent exploration mechanisms: ε-greedy, Boltzmann
(or softmax) exploration, and Thompson sampling.
Overall, Boltzmann exploration was the most effective
strategy, gaining about 3% accuracy in POS tagging,
just over 1% in dependency parsing, and just shy of 1%
in noun phrase chunking. Although the latter two ef-
fects are small, they are statistically significant, which
is measurable due to the fact that the evaluation sets
are very large. In general, Thompson sampling is also
effective, though worse than Boltzmann exploration.

5 DISCUSSION

Learning from partial feedback has generated a vast
amount of work in the literature, dating back to the
seminal introduction of multiarmed bandits by (Rob-
bins, 1985). However, the vast number of papers on
this topic do not consider joint prediction tasks; see
Auer et al. (2002); Auer (2003); Langford and Zhang
(2008); Srinivas et al. (2009); Li et al. (2010); Beygelz-
imer et al. (2010); Dudik et al. (2011); Chapelle and
Li (2011); Valko et al. (2013) and references inter alia.
The system observes (bandit) feedback for every de-
cision it makes. Other forms of contextual bandits
on structured problems have been considered recently.
For example, (Krishnamurthy et al., 2015) studied a
variant of the contextual bandit problem, where on
each round, the learner plays a sequence of actions,
receives a score for each individual action, and obtains
a final reward that is a linear combination to those
scores. This setting has applications to network rout-
ing, crowd-sourcing, personalized search, and many
other domains, but differs from our setting in that we
do not assume a linear (or other) connection between
individual actions and the overall loss.

The most similar work to ours is that of (Sokolov et al.,
2016a) and (Sokolov et al., 2016b). They propose a
policy gradient-like method for optimizing log-linear
models under bandit feedback. Although the approach
works in practice, the gradient updates used appear
to be biased, potentially leading to an algorithm that
is inconsistent. They evaluated their approach most
impressively to the problem of domain adaptation of a
machine translation system, in which they show that
their approach is able to learn solely from bandit-style
feedback, though the sample complexity is fairly large.

In this paper, we presented a computationally efficient
algorithm for structured contextual bandits, Bandit-
LOLS, by combining: locally optimal learning to
search (to control the structure of exploration) and
doubly robust cost estimation (to control the variance
of the cost estimation). This provides the first practi-
cally applicable learning to search algorithm for learn-
ing from bandit feedback. Unfortunately, this comes at
a cost to the user: they must make more fine-grained
judgments of correctness than in a true bandit setting.
In particular, they must mark each decision as correct
or incorrect (notably, in the case of incorrect decisions,
they do not provide a correction). It is an open ques-
tion whether this feedback can be removed without
incurring a substantially larger sample complexity. A
second large open question is whether the time step
at which to deviate can be chosen more intelligently,
along the lines of selective sampling (Shi et al., 2015),
using active learning techniques.
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