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Abstract

One of the cornerstones of modern cryptography is the ability for trusted parties to
establish a sequence of bits known only to themselves. Using that sequence of bits, they are
able to send messages over an insecure channel, and an eavesdropper who does not know
the secret bits cannot tell the difference between a legitimate message and a random one.
In this paper we analyze an existing randomized protocol for establishing a secret key from
a random deal of cards. Worst case bounds are known for the number of bits established
using this protocol, however until now no probabilistic analysis has been applied. We show
that in expectation and with high probability the protocol will do considerably better in
some of the most natural situations than the worst case bounds. We present bounds on the
expected number of bits as well as bounds on the probability of large deviation from the
expected value. Furthermore, in many of these situations we give upper and lower bounds
that approach each other in the limit.

1 Introduction

The ability to send information securely over an insecure channel is at the very heart of cryp-
tography. To achieve this goal, many cryptographic protocols rely upon the establishment of a
secret key, which is a bit string known only by those who should have access to the information
sent over the channel. In this paper we analyze a model where all parties are dealt a set of
distinct cards from a known deck, and then two parties wishing to communicate in secret use
their deals and an insecure channel to establish a key. The problem of establishing a secret key
using a deal of cards may seem like an unrealistically contrived model. However this problem
is a case of the broader and more applicable problem of establishing a key based on a shared
source of correlated randomness, which is studied by Maurer and Wolf [MW03]. The protocol
we use is initially proposed by Fischer et al. [FPR91]. Though the idea of using a deal of
cards to establish a secret key has some foundations in Winkler’s work on cryptography and
the game of bridge [Win83]. Later, Fischer and Wright refine the work around the protocol
we use [FW93, FW96]. Collectively these works give worst case bounds on the number of bits
established using the protocol. Additionally they give sufficient conditions on the deck size
and the size of the deals for any protocol to guarantee a bit. More recent work establishes
necessary and sufficient conditions [KMN08]. However only the cases where at least one bit can
be guaranteed are studied. We extend this work to include an analysis of how many bits are
established in expectation and with high probability.

Our analysis uses the following protocol:
THE PROTOCOL
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A deck of n distinct cards (labeled 1 through n) is dealt to three or more parties, Alice,
Bob, and their adversaries. Alice and Bob each know only their hand, while we assume that
the adversaries are computationally unbounded and can collude. We refer collectively to all
adversarial parties as Eve. Alice and Bob wish to establish some secret bits over an insecure
channel using the cards in their hands. The key exchange proceeds in rounds. In every round,
whomsoever of Alice and Bob has the most cards goes next (ties are broken arbitrarily). The
player going first will change frequently throughout the protocol, however we assume without
loss of generality that Alice is going next, and we use this naming convention throughout the
paper. Alice picks one of her cards x, one card that she does not have y, and a potential key
bit all uniformly at random. If her bit is a 0, she sends (x, y) over the channel, if the bit is
a 1 she sends (y, x). If Bob has y, he knows the bit and sends an acknowledgment over the
channel. At this point they can use the potential key bit and we refer to this round as a hit.
Eve knows the pair sent over the channel, and that a bit was established, but she has no way
of knowing which of the two cards belongs to Alice and which to Bob. Therefore she cannot
determine the bit. If Bob does not have y, then Eve must have it. In this case Bob sends a
negative acknowledgment over the channel and they do not establish a key bit this round. We
refer to a round where no bit is established as a miss. x and y are both removed from the set
of active cards that Alice can use in future rounds.
END OF PROTOCOL

To give this protocol a concrete and natural setting, consider a deck of n cards, dealt evenly
or uniformly at random to each of m � n players (including Alice and Bob). If the cards
are dealt randomly then with high probability (a0, b0, e0) will be very close to ( n

m ,
n
m ,

n(m−2)
m ).

Either way we can write the initial configuration as approximately (k, k, (m−2)k) with k = n
m .

In the case of three players we have a (k, k, k) initial configuration. The worst case bounds
show that at least bk2c bits will be established and our bounds show that we expect at least k

224

extra bits for a total of bk2c + k
224 . In the case of more than three players, the worst case has

no bits being established. In these cases we show that in expectation and with high probability
Θ( k

m−2) bits will be established. For example, when there are four players, we improve on the
previously known zero bits guaranteed by showing that in expectation at least k

9 = n
36 bits will

be established. Figure (1) shows our upper and lower bounds for a few values of m.

Number of Players m 3 4 5 12 102 1002
f(k) in (k, k, kf(k)) 1 2 3 10 100 1000

Minimum Guaranteed Bits k 0 0 0 0 0
Expectation Lower Bound k/224 k/9 k/12 k/30 k/120 k/1017
Expectation Upper Bound k/3 2k/3 k/2 k/5 k/98 k/998

Figure 1: This table shows the values for the function f , the minimum number of bits estab-
lished, and our bounds on the expected number of extra bits established given km total cards
dealt evenly to m players.

Our analysis starts with the observation that the protocol describes a Markov process. If
we let ai, bi, ei be the number of cards in each of Alice, Bob, and Eve’s hands respectively
at the start of round i, then at every round i only the current values for ai, bi, ei affect the
probability pi of getting a secret bit during that round. Let Xi denote the event that round i is
a hit. Assuming ai ≥ bi, the probability of getting a bit during the ith round is the probability
that Alice picks y from Bob’s hand, or pi = bi

ei+bi
, and that probability decreases for each bit
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established. It is known that in a system where Alice, Bob, and Eve initially have a0, b0, e0

cards, at least ba0+b0−e0
2 c secret bits will be established.

While ba0+b0−e0
2 c is a tight lower bound on the guaranteed number of bits established, some

extra bits are possible. In fact, up to min(a0, b0) bits are possible. This gap between the upper
and lower bounds on the number of bits established is significant, particularly when the lower
bound is 0. For example, when (a0, b0, e0) = (k, k, 2k) the lower bound is 0 while the upper
bound is k. Our contribution in this paper consists of probabilistic bounds on how many extra
key bits are established given an initial deal of the form (a0, b0, e0) = (k, k, k · f(k)) for a range
of functions f . We show bounds on both the expected number of extra bits and the probability
of large deviation from the expected value. The probability change from one round to the next
is highly dependent on the event Xi. Our main technique to remove this dependency involves
creating another sequence of random variables, one for each round in the protocol. We create
this sequence such that for any round, the probability of a hit in this sequence is at least (or
most) that of the protocol’s. We can then apply Chernoff bounds [Che52] to this new sequence
which will give a lower (or upper) bound as well as tail bounds on the protocol’s expected
number of hits.

We decompose the question of how many extra bits are expected into two natural cases,

• How many extra bits are established if none are guaranteed (f(k) ≥ 2)?

• How many extra bits are established if some are guaranteed (f(k) < 2 with k · 2−f(k)
2 bits

guaranteed)?

We address the case where no bits are guaranteed in Section 2. The results are primarily
inspired by two observations. First, since the number of guaranteed bits is zero, the number of
extra bits is exactly the number of total bits. Thus once a bit is established, it can be added to
our count immediately. Second, pi decreases from one round to the next regardless of whether
or not a bit is established. An interesting exception is when f(k) = 2. In this case as long as
no bits have been established, pi will stay constant at 1

3 in each pair of rounds. We use the
fact that pi is non-increasing after each pair of rounds, and bounds on how much it decreases,
to create a sequence which stochastically dominates the events Xi. We show that for all values
of f(k) ≥ 2, the expected number of bits is between k

3(1+f(k)) and 2k
1+f(k) . This is significant

because no bits are guaranteed, and yet with high probability Θ( k
1+f(k)) are established in

practice. Furthermore we use the observation that when f(k) is high, hits are rare, to show
that higher values of f(k) will have expected values that quickly approach k

f(k) with deviation
bounds given by Chernoff.

In Section 3 we address the case where there are guaranteed bits. This case involves the
relative, not absolute, number of bits established because an established bit is not necessarily
an extra bit. For similar reasons, pi may fluctuate up and down as the algorithm progresses.
Establishing a bit will lower p and missing will increase p. In this case we establish an upper
bound of kf(k)

3 on the expected number of bits. Whenever f(k) ≥ 1 we establish a lower bound
of k(f(k)−1)

9 . Both of these bounds provide a smooth transition from the no guaranteed bits case
at f(k) = 2. Unfortunately we have no good lower bounds for when f(k)� 1. We do not view
this as significant though since in these cases there are k · 2−f(k)

2 ≈ k guaranteed bits which is
much larger than the at most k · f(k)

3 extra expected bits.
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2 The Case when No Bits Guaranteed

The first case we consider in detail is when no bits are guaranteed, which means f(k) ≥ 2.
Our first step is to upper bound the rate of decrease per round of the hit probability. This
allows us to create a sequence which stochastically dominates from below the events Xi. We
use this sequence and a trivial upper bound to show that the expected number of extra bits
is Θ( k

f(k)+1). Furthermore, for even constant functions f(k), as f(k) ≥ c increases above 2,
with high probability the number of hits becomes at most a small fraction of the number of
rounds. We use this observation to tighten our dominating sequence on both the upper and
lower bound. We show that when f(k) ≥ c, the expectation quickly approaches k

c with upper
and lower tail bounds given by Chernoff.

2.1 Lower Bound on the Expectation

Letting mi = min(ai, bi), the probability of getting a bit in round i is the number of cards in
Bob’s hand divided by the number of cards in Bob and Eve’s hands combined or

pi =
mi

ei +mi
(1)

Once again, Eve may be several adversaries working together. Initially this probability is
k

f(k)k+k = 1
f(k)+1 . Since at all steps in the protocol ei−ei+1 ≤ ai−ai+1+bi−bi+1, we inductively

have that, for all rounds i, e0 − ei ≤ a0 − ai + b0 − bi and thus ei ≥ (e0 − a0 − b0) + (ai + bi) ≥
(f(k)− 2)k + 2mi.

There are three cases we consider by which the probability of getting a bit can change from
round to round.

1. Alice and Bob get a bit. In this case, ai+1 = ai − 1, bi+1 = bi − 1, and ei+1 = ei. Thus

pi − pi+1 =
mi

ei +mi
− mi − 1
ei + (mi − 1)

=
ei

(ei +mi)(ei +mi − 1)
> 0

2. Alice and Bob do not get a bit, and m decreases. In this case both m and e decrease by
1 giving

pi − pi+1 =
mi

ei +mi
− mi − 1

(ei − 1) + (mi − 1)
=

ei −mi

(ei +mi)(ei +mi − 2)
≥ 0

3. Alice and Bob do not get a bit, and m stays the same. In this case p increases in round
i+ 1.

pi − pi+1 =
mi

ei +mi
− mi

(ei − 1) +mi
=

−mi

(ei +mi)(ei +mi − 1)
≤ 0

When Alice and Bob initially have the same number of cards, ai and bi are always the same or
one apart, thus cases two and three always alternate with case one interspersed at any point.
This can be seen because case two starts with ai and bi the same, so ai + bi is even, and it
finishes with ai+1 and bi+1 different so their sum is odd. Case three follows the reverse pattern
of case two and case one does not change the parity of ai + bi. This alternation between cases
two and three and the fact that ei never drops below 2mi gives the following lemma:

Lemma 1 When no bits are guaranteed, for all i, pi+2 is at most pi
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The most p can decrease in two sequential rounds is when case one happens twice in a row,
when both rounds are hits. This gives

pi − pi+2 =
mi

ei +mi
− mi+2

ei+2 +mi+2

≤ mi

ei +mi
− mi − 2
ei +mi − 2

=
mi(ei +mi − 2)− (ei +mi)(mi − 2)

(ei +mi)(ei +mi − 2)

=
2(ei +mi)− 2mi

(ei +mi)(ei +mi − 2)

=
2ei

(ei +mi)(ei +mi − 2)
(2)

We can similarly establish a lower bound on pi − pi+2 when cases 2 and 3 happen as

pi − pi+2 =
mi

ei +mi
− mi+2

ei+2 +mi+2

≥ mi

ei +mi
− mi − 1

(ei − 2) + (mi − 1)

=
ei − 2mi

(ei +mi)(ei +mi − 3)
(3)

Also the most the sum e+m can decrease in two rounds is 3 (with one of e and m decreasing
by 1 and the other by 2), so e2i +m2i ≥ e0 +m0 − 3i. Thus in each of the first 1

2k rounds (the
first 1

4k pairs of rounds), ei +mi must be at least k(f(k) + 1)− 31
4k. Using this we can upper

bound pi − pi+2 for each of these rounds by

2ei
(ei +mi)(ei +mi − 2)

≤ 2e0

(f(k)k + k − (1
4k)3)(f(k)k + k − (1

4k)3− 2)

=
2e0

(f(k) + 1
4)k((f(k) + 1

4)k − 2)

≤ 2f(k)k
(f(k) + 1

4)f(k)k2
(when k ≥ 8)

≤ 2
(f(k) + 1

4)k
(4)

Therefore for the ith pair of rounds (up to the k
4

th
pair), the probability of getting a bit in

each round is at least p0 − i · 2
(f(k)+ 1

4
)k

.

Lemma 2 The expected number of bits established after the first k
2 rounds is at least 1

3(f(k)+1) ·k.

To prove the lemma, take the linearity of expectation over all of those rounds (summing over
the pairs), we get that the expected number of bits established is at least

1
4
k∑

i=1

(E[X2i−1] + E[X2i]) ≥
1
4
k∑

i=1

(2Pr[X2i = 1])
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≥ 2

1
4
k∑

i=1

(
1

f(k) + 1
− i · 2

(f(k) + 1
4)k

)

=
k

2(f(k) + 1)
− 4

(f(k) + 1
4)k
·

1
4
k∑

i=1

i

=
k

2(f(k) + 1)
− 4

(f(k) + 1
4)k
·

k
4 (k

4 + 1)
2

=
k

2(f(k) + 1)
−

k
4 + 1

2(f(k) + 1
4)

≥ k

2(f(k) + 1)
−

k
3 + 4

3

2(f(k) + 1)
using that f(k) ≥ 2

=
2
3k −

4
3

2(f(k) + 1)

=
1−O( 1

k )
3(f(k) + 1)

· k

2.2 Upper Bound on the Expectation

From Eq (1) and Lemma (1) we know that the initial hit probability is p0 = m0
e0+m0

= 1
f(k)+1

and that pi ≥ pi+2. Combining those results with p1 < p0 (because m1 = m0 − 1) gives
∀i, pi ≤ 1

f(k)+1 . Using this fact and taking the linearity of expectation over all rounds gives
us an easy first order bound. There are no more than 2k trials (one for each of Alice and
Bob’s cards), and for each the probability of establishing a bit is at most 1

1+f(k) . Therefore the
expected number of bits is bounded above by

2
1 + f(k)

· k (5)

Define Bf,k to be number of bits established starting with an (a0, b0, e0) = (k, k, kf(k))
configuration. Using this definition and direct applications of Lemma (2) and Eq (5) gives

Theorem 1 If f(k) ≥ 2, then 1/3−O( 1
k

)

1+f(k) ≤
E[Bf,k]

k ≤ 2
1+f(k)

Thus EBf,k = Θ( k
1+f(k)). And furthermore, the event that a bit is established in round i is

negatively correlated with the sum of the previously established bits (because the change in p
is always more negative when a bit is established). Therefore Chernoff like tail bounds apply,
and the probability that Bf,k deviates by a factor of x√

E[Bf,k]
is exponentially small in x.

2.3 Tighter Bounds

There is a constant factor gap of 6 between our upper and lower bounds above. In this section
we show much tighter bounds when f(k) = Ω(1) where the hidden constant is even moderately
large and f(k) = O( k

log k ). We require f(k) = O( k
log k ) so that E[Bf,k] = Ω(log k) which is

necessary for Chernoff to give large deviation probabilities on the order of k−Ω(c). Our analysis
relies primarily on bounding the change in probabilities after two steps. From Equations (2
and 3) we know that for all i ei−2mi

(ei+mi)(ei+mi−3) ≤ pi − pi−2 ≤ 2ei
(ei+mi)(ei+mi−2) .
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The upper bound comes from the case where a bit is established, and the lower bound comes
from the case where no bits are established. The numerator of the lower bound can be as low
as k(f(k)− 2). Thus when f(k) = 2 the lower bound is zero. However as f(k)→∞ the lower
bound approaches 1

2 the upper bound.
It is useful to observe that if f(k) is small, there is a lot of entropy in the process, for

example when f(k) = 2 the probability of getting a bit starts at 1
3 . However if f(k) is large,

we expect that almost all attempts to establish a bit will fail.
For the remainder of this section we will use c in place of f(k) in the analysis. We do this

to emphasize that the bounds derived are tight even with f(k) as low as a constant.
Notice that when c is high, we expect the majority (at least c

1+c) of the trials not to establish
a bit, and therefore only decrease p by the smaller amount. We now upper bound the number
of times that p can decrease by more than ei−2mi

(ei+mi)(ei+mi−3) in two rounds. There are at most
2k trials, one for each card dealt to Alice and Bob. Each trial i has a bit establish probability
pi ≤ 1

1+c . Therefore we can apply Chernoff bounds with µ = 2k
1+c to the upper tail of bits

established. Specifically, the probability that Bf,k ≥ 2k
1+c +

√
3 2k

1+c log k is at most 1
k2 . Next we

bound E[Bf,k] by its expectation given at most 2k
1+c +

√
3 2k

1+c log k bits are established.

E[Bf,k] ≥ E

Bf,k|Bf,k <
2k

1 + c
+

√
3

2k
1 + c

log k

 (6)

For any c we can find k0 such that for k ≥ k0 we can bound 2k
1+c +

√
3 2k

1+c log k ≤ 3k
1+c .

With probability at least k2−1
k2 , for all but at most 3k

1+c values of i, no bits are established
in the ith pair of rounds. For this majority of rounds
p2i − p2i+2 = mi

ei+mi
− mi−1

ei+mi−3 = ei−2mi
(ei+mi)(ei+mi−3) and for those (at most 3k

1+c) values of i where
a bit is established pi − pi+2 ≤ mi

ei+mi
− mi−2

ei+mi−2 = 2ei
(ei+mi)(ei+mi−2) .

To lower bound the expectation E[Bf,k], we first note that given at most 3k
1+c bits are

established over the course of the protocol, the sum of 2p2i over all pairs of rounds i is minimized
when all of the bits are established first and all subsequent rounds do not establish any bits.
In this case pi after that initial string of successes is

p6k/(c+1) ≥ p0 −
3k/(c+1)∑

i=1

p2i − p2i−2

≥ 1
c+ 1

− 3k
c+ 1

· 2e0

(ei +mi)(ei +mi − 2)

≥ 1
c+ 1

− 3k
c+ 1

· 2kc
k2(c− 2)2

=
1

c+ 1
− 6c

(c+ 1)(c2 − 4c+ 4)

=
1− 6

c−4

c+ 1

In this lower bounding scenario, after the initial 6k/(c+ 1) rounds, no more bits are estab-
lished, and the probability after two rounds is always a decrease by ei−2mi

(ei+mi)(ei+mi−3) <
(c+1)k

(c−2)2k2 .
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Thus the total expected sum is at least

E[Bk,f ] ≥ E

Bf,k|Bf,k <
2k

1 + c
+

√
3

2k
1 + c

log k

 from Eq (6)

=
∑

i

pi|Bf,k <
2k

1 + c
+

√
3

2k
1 + c

log k


≥ 6k

(c+ 1)
·

1− 6
c−4

c+ 1
+

2k−3k/(c+1)∑
i=1

(
1− 6

c−4

c+ 1
− i

2
· (c+ 1)k

(c− 2)2k2

)

= 2k ·
1− 6

c−4

c+ 1
−

2k−3k/(c+1)∑
i=1

(
i

2
· (c+ 1)

(c− 2)2k

)

= 2k ·
1− 6

c−4

c+ 1
− (c+ 1)

2(c− 2)2k
·

2k−3k/(c+1)∑
i=1

i

= 2k ·
1− 6

c−4

c+ 1
− (c+ 1)

2(c− 2)2k
·
(
k 2c−1

c+1

2

)

≥ 2k ·
1− 6

c−4

c+ 1
− 4k(c+ 1)(c− 1/2)2

4(c+ 1)2(c− 2)2

= Θ(
k

c
) (7)

We can similarly upper bound E[Bk,f ] by noticing that the decrease in probability every
two rounds is at least ei−2mi

(ei+mi)(ei+mi−3) >
(c−2)k

(c+1)2k2 . Therefore

E[Bk,f ] ≤
2k∑
i=1

(
1

1 + c
− i

2
· (c− 2)k

(c+ 1)2k2

)

=
2k
c+ 1

− (c− 2)
2(c+ 1)2k

·
2k∑
i=1

i

=
2k
c+ 1

− (c− 2)(2k + 1)
2(c+ 1)2

= Θ(
k

c
) (8)

Theorem 2 For any f(k) such that f(k) ≥ c, as c→∞ the expectation E[Bf,k] approaches k
c

with lower error term at most O
(

c−1/2
c−2

)2
and upper error term at most O

(
c−2
c+1

)
.

This theorem follows directly from combining the lower bound on the expectation from Eq (7)
with the upper bound from Eq (8). And since both the lower and upper bounds leading to
this result are obtained first by removing the dependence between trials, we can apply Chernoff
bounds to the probability of deviation from this expected value.

3 The Case when Some Bits Guaranteed

Once again, the number of guaranteed bits is ba+b−e
2 c. If we let ef be the number of cards left

in Eve’s hand when Alice and Bob are out of cards, then the number of extra bits is b ef

2 c. Since
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initially a0+b0 > e0 and at the end of the protocol af +bf = 0 ≤ ef , there must be some point at
which the two sums cross and ai+bi = ei. Specifically this point gives a (k′, k′, 2k′) configuration
for some k′ (or a (k′ + 1, k′, 2k′ + 1) configuration, which is asymptotically equivalent). Once
that point is reached, we can directly apply Theorem (1) to get that the expected number of
extra bits from that point on is

1
3(1 + 2)

· k′ ≤ E
[
Bf,k|(k′, k′, 2k′)

]
≤ 2

(1 + 2)
· k′

Two conclusions fall from this observation. The first is that the crossing point can have ei
at most e0. Secondly, we can use bounds on the crossing point (k′, k′, 2k′) to give bounds on
E[Bf,k]. Thus 2k′ ≤ e0 = kf(k)→ E[Bf,k] ≤ kf(k)

3 .
In this section, we use pm to indicate the probability of a hit (establishment of a bit) and

pe for the probability of a miss (no bit established).

3.1 Configurations where m ≤ e < 2m

In this section we prove the following theorem:

Theorem 3 If 1 ≤ f(k) < 2 then max(f(k)−1
9 , 1

224) · k ≤ E[Bf,k] ≤ kf(k)
3

For any intermediate configuration where m ≤ e < 2m, we have probabilities pm = m
e+m ≤

e
e+m = pe <

2m
e+m . This means that for any series of trials in this range, we expect more misses

than hits, and at most twice as many misses as hits. Also note that any sequence of trials
with M hits and E misses will decrease m by M + E

2 and e by E. This is important because
once we establish a gap of e −m ≥ k′, we expect that any sequence will have at most twice
as many misses E as hits M , decreasing mi to at most mi − M − E

2 ≤ mi − E and ei to
ei − E which preserves the gap between e and m. Furthermore, Chernoff bounds give that
with high probability a gap of size O(k) will not decrease by more than O( 1√

k
). Therefore with

high probability once m ≤ e < 2m, over any long enough sequence of trials, the gap between
m(1 + ε) and e will not decrease significantly.

The above observation leads to our first lower bound. If f(k) = 1 + ε then e0 − m0 =
εk. Because of the gap preserving property, with high probability the protocol will cross the
(k′, k′, 2k′) threshold with k′ ≥ εk. Therefore in this case, for any 0 < ε < 1

kε

9
≤ E[Bf,k] ≤ k(1 + ε)

3
As ε → 1 this bound approaches that which we have for k, k, 2k configurations. However

as ε → 0 the lower bound becomes very week. We can improve significantly in the ε = 0 case
by noting that the first k

4 trials create a significant gap (linear in k) with high probability.
Specifically, for each of the first k/2 trials i from a (k, k, k) configuration mi ≥ k · 3

4 and ei ≤ k.
Thus for each of those trials pm = m

e+m ≥
3/4

3/4+1 = 3
7 and conversely pe ≤ 4

7 . With high

probability no less than k
4 ·

3
7 −O( 1√

k
) of the trials will hit and no more than k

4 ·
4
7 +O( 1√

k
) will

miss. This produces a gap of at least(
hits +

misses
2

)
−misses = hits− misses

2

≥ k

4
· 3

7
− 1

2
· k

4
· 4

7
−O(

1√
k

)

=
k

28
−O(

1√
k

)
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Thus even with arbitrarily small ε, the number of expected bits is still at least a constant
fraction of k, more specifically k

28∗8 ≤ E[Bf,k] when 1 ≤ f(k) ≤ 2. A more careful analysis
could improve this constant further. We do not attempt to improve the constant because the
important point is that such a constant exists. This completes the proof of Theorem 3.

4 Conclusion

When using the secret key establishment protocol of Fischer et al., the number of secret bits
established is often significantly greater than the number of bits guaranteed. This effect is most
pronounced when no bits are guaranteed but just barely. In this case, the number of extra bits
will be linear in the total number of cards with high probability. The number of extra bits
gradually diminishes as the number of guaranteed bits goes up. Since much of the work on this
and related problems has focused on the worst case bounds of how many bits are established,
the expected number of bits has largely been ignored. As such, one open problem is to devise
a deal based secret key protocol that has a higher number of expected bits, though perhaps a
weaker (even zero) bound on the number of guaranteed bits.
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