Computing 3D Curvature through a Bucket PR
Octree

Marcelo Velloso
Dept. of Computer Science
University of Maryland, College Park
mvelloso@umd.edu

April 11, 2012

Abstract

An empirical study has been conducted to determine the optimal
bucket size for the bucket PR octree while calculating the vertex dis-
tortion of tetrahedral meshes. The motivation is to study the effects of
the bucket PR octree data structure. This study implemented the data
structure using the Java programming language and its libraries and found
that the optimal bucket size was 32. This paper also discusses the exten-
sion of this project, the PR-star octree, and the work that was done on a
recent paper accepted to the ACM SIGSPATIAL GIS 2011 conference.

1 Introduction

The curvature of shapes plays an important role in understanding the geometry
and topology of surfaces. Vertex distortion is a generalization of the notion of
concentrated curvature defined for triangulated surfaces and tetrahedral meshes
embedded in 4D space and provides a powerful tool for understanding the local
geometry and topology of 3-manifolds. Vertex distortion is defined in [2].

The main problem with the calculation of vertex distortion is that for very
large tetrahedral meshes the amount of memory used to calculate it becomes
an issue. The Java programming language and its library classes are used to
test a solution to this problem using a bucket PR octree, the principal focus
of this work, in which local topological connectivity of a tetrahedral mesh is
obtained through its spatial locality. In contrast to previous topological data
structures, which have focused on the adjacencies or incidences of mesh elements,
the bucket PR octree is used as a spatial data structure on its embedding space
to locally reconstruct the optimal application-dependent topological represen-
tation at runtime using the sorted geometry available from this spatial index.
The innovative feature of this data structure is in computing topology through
space. More specifically, vertex distortion is computed by generating the VT



(Vertex-Tetrahedron) topological relation locally with the amount of work to be
done limited by the bucket size of each leaf node in the octree. This implemen-
tation allows for the VT relation to only be present upon the calculation of the
vertex distortion for each leaf node and removed after the calculation has been
completed.

The remainder of this paper is organized as follows: section 2 reviews back-
ground notions; section 3 discusses related work; section 4 introduces the bucket
PR octree and discusses its properties; section 5 reviews the results of the em-
pirical study; section 6 discusses the PR-star octree and how it compares to the
bucket PR octree; and, finally, section 7 discusses the conclusions drawn from
this empirical study.

2 Background Notions

The bucket PR octree combines notions from the PR octree, a spatial data struc-
ture over point datasets, with those of the indexed representation for tetrahedral
meshes.

2.1 The PR Octree

The PR (point region) octree generalizes the PR quadtree defined in [3] to 3D.
Each internal (non-leaf) node in an PR octree subdivides the space it represents
into eight octants (cubic regions). The internal nodes always have eight children
and leaf nodes are either empty or contain at most one vertex and its coordinate
values [3]. An example of a PR quadtree is shown in figure 1.

0
O [ ]
c
A
[ ]
[ ]
D
o
B
.E E
(55,80)(80, 90)
127
(@) (b)

Figure 1: PR quadtree with six vertices

2.2 Indexed Tetrahedral Meshes

An indexed tetrahedral mesh is a common boundary-based data structure for
a tetrahedral mesh. It encodes the Tetrahedron-Vertex (TV) relation, which



is the relation among a tetrahedron and its four vertices. It consists of two
arrays: the vertices V', which encode the geometry of the mesh in terms of their
coordinates in R3; and the tetrahedra T, which are encoded in terms of the
indices in V' of their four vertices [1].

3 Related Work

Hierarchical spatial indices for points in 3D euclidean space are provided by PR
octrees and MX octrees. The MX (matrix) octree is organized in the same way
as the region octree defined in [3]. What differentiates this data structure from
the region octree is that the structure subdivides the 3D spatial region until
each leaf node represents a 1 x 1 x 1 space; these spaces are either empty or
contain a data point and its coordinates [3].

Some data structures have been proposed for spatial indexing of polygonal
maps, including graphs, planar triangle meshes and tetrahedral meshes [1]. The
PM (polygonal map) quadtree family represents an attempt to overcome some
problems associated with edge quadtrees defined in [3]. It is the quadtrees that
are discussed in this section but this knowledge can be extended to 3D spatial
regions as well in the form of PM octrees.

PM quadtrees are PR quadtrees that store vertices and edges. There are
three variants to the PM quadtree that are discussed below [3]:

e The PM; quadtree has the following rules:

1. At most, one vertex can lie in a region represented by a quadtree leaf
node.

2. If a quadtree leaf node’s region contains a vertex, then it can contain
no edge that does not include that vertex.

3. If a quadtree leaf node’s region contains no vertices, then it can con-
tain, at most, one edge.

e The PM, quadtree has the following rules:

1. At most, one vertex can lie in a region represented by a quadtree leaf
node.

2. If a quadtree leaf node’s region contains a vertex, then it can contain
no edge that does not include that vertex.

3. If a quadtree leaf node’s region contains no vertices, then it can con-
tain only edges that meet at a common vertex exterior to the region.

e The PM3 quadtree has the following rules:

1. At most, one vertex can lie in a region represented by a quadtree leaf
node.

2. There are no restrictions as to how many edges can be kept in each
leaf node.



4 Bucket PR Octree

This section introduces the bucket PR octree as a spatio-topological data struc-
ture for a tetrahedral mesh.

4.1 Formal Definition

The bucket PR octree combines an indexed tetrahedral mesh representation
(section 2.2) with an augmented PR octree (section 2.1) that also indexes the
set of tetrahedra in the VT relation of its indexed vertices. Thus, the bucket
PR octree over a tetrahedral mesh is represented using three entities:

e An array of vertices V, encoding the geometry of the mesh.

e An array of tetrahedra T'; each tetrahedron in T is encoded in terms of
the indices of its four vertices within V (e.g. the TV relation).

e An augmented PR octree N, whose leaf nodes index the set of vertices
within its domain and the set of all tetrahedra incident in these vertices.

4.2 Implementation Details

Four data structures are used to implement the bucket PR octree: a 2D global
array of double (floating point) values for the vertices in the tetrahedral mesh,
a 2D global array of integer values to represent the tetrahedra in the mesh, a
1D global array of boolean values to represent the vertices on the boundary of
the tetrahedral mesh and the augmented PR octree.

The global array of vertices has the following information stored for each
vertex: x, y and z coordinates and the scalar field value used in the vertex dis-
tortion calculation. The global array of tetrahedra has four integer values stored
for each tetrahedron that represents the vertices making up each tetrahedron.
Those integers are indices into the global array of vertices so that the vertices
are only stored by one data structure. The global array of boolean values has
an entry for each vertex (the vertex index) and it stores a true or false value if
the vertex is on the boundary of the mesh or not.

The bucket PR octree is implemented as a separate class file from the pre-
vious three data structures. This was done to distinguish the global data struc-
tures from the local computations. The class file contains a private class for
the variables and methods of the octree node within the more general octree
class. Each ocnode, as the private class is called, has double values to represent
the minimum and maximum x, y and z coordinates of the region it represents.
Each ocnode also has an array of indices into the global vertex array where the
maximum length is the bucket size of each node, an array of indices into the
global tetrahedra data structure and a potential array of eight ocnode children
if the ocnode is not a leaf node. If the ocnode is not a leaf node then it will only
have an array of eight ocnode children, the other variables will be null. The
array of indices into the tetrahedra array represents the set of tetrahedra that



are incident to the vertices represented by the array of vertex indices in each
ocnode. Finally, each ocnode also has a hash map in which the keys of the hash
map are vertex indices and the values of the hash map are lists of tetrahedron
indices incident to that vertex index. In other words, each hash map represents
the VT (Vertex-Tetrahedra) relation and is only constructed locally when the
vertex distortion is computed. This design decision was made to save memory
so that the VT relation would not linger in memory unless it was needed since
it is not too expensive in terms of time to compute the VT relation when the
vertex distortion calculation needs to be done for a particular ocnode.

5 Experimental Results

Experiments were run on the following tetrahedral meshes: Cubel (27 vertices
and 40 tetrahedra), Cube2 (24 vertices and 30 tetrahedra), SuperPhoenix (2,896
vertices and 12,936 tetrahedra), Fighter (13,832 vertices and 70,125 tetrahe-
dra), BuckyballSmall (35,937 vertices and 163,840 tetrahedra), BluntFin (40,948
vertices and 222,414 tetrahedra), F117 (48,518 vertices and 240,122 tetrahe-
dra), Torso (168,930 vertices and 1,082,723 tetrahedra), SF2_C (378,747 vertices
and 2,067,739 tetrahedra), Bucky?2 (262,144 vertices and 1,250,235 tetrahedra),
Plasma (274,625 vertices and 1,310,720 tetrahedra) and Post (108,300 vertices
and 616,050 tetrahedra). Graphing all the results would make the graphs diffi-
cult to interpret so a set of four meshes representative of the entire space covered
by the experiments was used: Cubel, BluntFin, Torso and SF2_C. A note of
interest is that the smallest bucket size (number of vertices stored in each ocn-
ode) the graphs show results for is 2 because the BluntFin tetrahedral mesh has
two vertices that are identical so infinite recursion is unavoidable for a bucket
size of 1.



Vertex Distortion Calculation

25

20

-
2]

W =#=Cubel
=8 BluntFin

]J\/ —#—Torso
—=SF2_C

Time (secs)

[
o

300

Bucket Size

Figure 2: The time elapsed while calculating vertex distortion for each mesh

The graph in figure 2 shows a general trend that the greater the bucket size
the longer it takes to compute the vertex distortion using the bucket PR octree
data structure. However, it also shows a trend that if the bucket size is too
small for meshes that are very big the performance is not good. The above
graph shows the optimal bucket size to be 4 to minimize the time it takes to
compute vertex distortion for every vertex in the mesh. Bucket sizes of 8 and
32 also seem to perform well.

Set Up Time
80
70
60 @W,QQ
-
4]
& 50
_E 40 'A Y =4=Cubel
2 U \_‘—’*/ ~#-BluntFin
= 30
1 ~#—=Torso
wv
20 =>=SF2_C
0 50 100 150 200 250 300
Bucket Size

Figure 3: The time elapsed while setting up the bucket PR octree for each mesh

The results in figure 3 show a similar result to the vertex distortion time



results. If the bucket size is too small (smaller than 4) it takes longer to set
up the bucket PR octree data structure because of the amount of splits and
recursive calls that get made due to the depth of the tree. One interesting
oddity in this graph is the bad performance of bucket size 16. The performance
seems to be a bit of an outlier and theoretically it does not make sense why
that would be the case. The optimal bucket size for set up time is either 8 or
32 with a bucket size of 4 also performing well.

Memory Used

1200

1000

& J&
S 800
g \b)\
2 600 =4=Cubel
? ‘ —#—BluntFin
E 400 +— Torso
=
==SF2_C
200
i L
o e ry
0 ; ; - 7 )
0 50 100 150 200 250 300
Bucket Size

Figure 4: Memory used to set up the bucket PR octree for each mesh

The results in figure 4 have a clear downward trend where the smaller the
bucket size is the more memory is used to store the bucket PR octree. This is
because more nodes need to be created and maintained for smaller bucket sizes.
The downward trend seems to level out at a bucket size of 32 or 64 so these
two values seem to be the optimal sizes for memory efficiency; for bucket sizes
greater than 64 there are diminishing returns in memory efficiency.



Number of Tetrahedra in Octree

9000000

8000000
o
g 7000000 X
& 6000000 e~y
£ 5000000 ——Cubel
2 e
§ 4000000 § & BluntFin
£ 3000000 Torso
@ ———
& 2000000 —=sF2.C

1000000

0 ——————— : <
0 50 100 150 200 250 300
Bucket Size

Figure 5: Number of tetrahedra in bucket PR octree for each mesh

The graph in figure 5 shows that when the bucket size increases there are
less tetrahedra stored in the bucket PR octree. Therefore, the optimal bucket
size is 256 but there seems to be diminishing returns after a bucket size of 64.
The principal reason for this is that when the bucket size increases there are
less leaf nodes for the incident tetrahedra to spread out among.

Average Number of Buckets Each
Tetrahedra Is Indexed By

- \"ﬂ— =#=Cubel
== ~#=BluntFin
Torso
* ¢ —=SF2.C
0 T T r T |
0 50 100 150 200 250 300

Bucket Size

Avg. Buckets Each Tetrahedra Is Indexed By

Figure 6: Average number of buckets each tetrahedra is indexed by for each
mesh

The graph in figure 6 shows the average number of buckets each tetrahedron
is indexed by. If all four vertices of the tetrahedron appear in different nodes
of the octree then four buckets index that tetrahedron. The results above show
that when the bucket size is really small the average numbers approach 4, the
worst case and when the bucket size is large the average numbers approach 1,
the best case. It is important to note that, save for the Cubel mesh, the other



meshes seem to approach 2 as the bucket size increases but if greater bucket
sizes were tested this number would theoretically continue to approach 1 and
not 2. The optimal bucket size is 256 but after a bucket size of 64 there are
diminishing returns to increasing the bucket size.

Leaf Nodes in Octree

700000

600000

500000

@
g 400000 ——Cubel
g 300000 —#—BluntFin
200000 | \ Torso
100000 %* =>=SF2_C
0 kg-&—?: i " i ‘
0 50 100 150 200 250 300
Bucket Size

Figure 7: Amount of leaf nodes in the bucket PR octree for each mesh

Total Nodes in Octree

800000

E 700000
5 600000
E 500000
£ 400000 ¢ Cubel
2 300000 —,‘ = BluntFin
E 200000 ‘\ Torso
°
S 100000 ik - - SmSF2C

0 o e——— ‘ 54 ‘

0 50 100 150 200 250 300
Bucket Size

Figure 8: Amount of total nodes in the bucket PR octree for each mesh

The final set of results, shown in figure 7 and figure 8, involves the amount
of leaf nodes and total nodes in the bucket PR octree. As the two graphs above
show, with a smaller bucket size more leaf nodes and total nodes are created in
the data structure. By the same logic, with a greater bucket size less leaf nodes
and total nodes are created in the data structure. The optimal bucket size is
256 but at a size of 32 there are diminishing returns to increases in bucket size.

6 PR-Star Octree

The PR-star octree is an extension of the work done in this paper. It is de-
scribed in more detail in a paper accepted to the ACM SIGSPATIAL GIS 2011



conference [1].

The PR-star octree keeps some aspects of the bucket PR octree but also
makes some changes to the data structure. The similarities between the two
data structures are listed below:

e An array of vertices V, encoding the geometry of the tetrahedral mesh.

e An array of tetrahedra T, where each tetrahedron is encoded by the indices
of its four vertices within V.

e An augmented PR octree N, whose leaf nodes index the set of vertices
within its domain and the set of all tetrahedra incident in these vertices.

There are some differences between the two data structures. They are listed
below:

e The PR-star octree includes an additional step to reindex the array of
vertices V and the array of tetrahedra T in order to exploit the spatial
locality of the vertices once the octree has been properly set up.

e The bucket PR octree has a 1D array of boolean values that encodes which
vertices are on the boundary of the tetrahedral mesh.

e The PR-star octree stores the range of vertex indices represented by each
node while the bucket PR octree stores the range of x, y and z coordinates
represented by each node.

7 Concluding Remarks

A summary of the experimental results found in the previous section shows that
for vertex calculation time and set up time the optimal bucket sizes are 4, 8,
or 32; for the memory used the optimal bucket sizes are 32, 64, 128 and 256;
for the number of tetrahedra in the octree and average number of buckets each
tetrahedra is indexed by the optimal bucket sizes are 64, 128 and 256; and for
the leaf nodes and total nodes in the octree the optimal bucket sizes are 32,
64, 128 and 256. The best performing bucket size throughout all these tests
seems to be 32. A bucket size of 32 achieves just the right balance of memory
efficiency and vertex distortion calculation time.

The PR-star octree, as well as the bucket PR octree, was designed to be
more memory efficient than the standard PR octree. The observation here is
that many queries in typical GIS applications have spatial locality and the two
data structures above exploit this spatial locality by only having topoplogical
relations computed when they are needed at runtime. This amortizes the cost of
constructing these relations over multiple accesses while processing each node.
The PR-star octree paper demonstrates the advantages of the PR-star octree
representation in several typical GIS applications, including the detection of
boundaries, computation of local curvature estimates and mesh simplification

[1].

10



Appendix - File Organization

This section discusses the organization of files in the project and briefly goes
over the source code. All the source code appears in the src folder of the
Eclipse project folder. There are four packages associated with the source code:
data_structures, exceptions, main and test. The data_structures package con-
tains the code used to implement the bucket PR octree. The exceptions package
contains code for an exception that gets thrown when a vertex is out of bounds.
The main package contains the code that stores the global vertex, tetrahedra
and boolean arrays. Finally, the test package contains code that runs a se-
ries of Junit tests to test the project. TetrahedralMeshAnalysis.java is a test
file that generates a series of .txt files in the analysis_results folder. The .txt
files are file names according to the bucket size and run the full series of tests
shown in the graphs above for all the tetrahedral meshes in the project folder.
TetrahedralMeshTest.java is a test file that tests some methods in Tetrahe-
dralMesh.java such as the method for rounding the min and max values of the
mesh to the nearest power of 2. Finally, VertexDistortionTest.java is a test file
that tests the correct function of the vertex distortion calculation. The sam-
ple_vertex_distortions folder has the correct output of vertex distortion for some
meshes. The distortion_results folder is where VertexDistortionTest.java stores
its vertex calculation results. The graphs folder is where all the excel files of
the graphs used in the paper are stored. All the tetrahedral meshes used in this
project are stored in the main project folder as files that end with the suffix ts.
To run the Junit tests using Eclipse simply open any of the source files in the
test package and right-click then select to run as a Junit test.

Acknowledgements

A very big thanks to Kenny Weiss for all his advice over email, for the help with
debugging questions, for the sample code provided with the vertex distortion
calculation algorithm and for the tetrahedral meshes provided. A big thanks to
professor Leila De Floriani for all her advice over email and for her feedback to
make this paper a success.

References

[1] Kenneth Weiss, Riccardo Fellegara, Leila De Floriani and Marcelo Velloso.
The PR-Star Octree: A Spatio-Topological Data Structure for Tetrahedral
Meshes. In Proceedings of the ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, Chicago, IL, November
2011. Association for Computing Machinery.

[2] Mohammed Mostefa Mesmoudi, Leila De Floriani and Umberto Port. Dis-
crete Distortion in Triangulated 3-Manifolds. FEurographics Symposium on
Geometry Processing, 27(5):1333-1340, 2008.

11



[3] Hanan Samet. Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann Publishers, 2006.

12



