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ABSTRACT 

In this paper, we propose a software tool that can be used to speed 

up the software development lifecycle by automating the process 

of assigning new bugs to developers. Open bug repositories are 

now very common, and they are provided to the software users as 

a means to report any bugs they find while using the software. 

Many of the bugs reported complain about exceptions that are 

thrown by the program during normal operation of the software. 

Users report these bugs to the development team using bug 

reporting tools, (e.g. Bugzilla), and as a result of that, a person 

called Bug Triager tries to link between this bug and a developer 

who can fix it. Sometimes, the source of the bug is unclear, and as 

a result of that the developer can be reassigned several times. In 

this project, we propose an approach to automate this process by 

recommending developers who can fix a bug that complains from 

an exception. Moreover, we provide a ranking of developers 

according to their expected relationship with the bug so that more 

than one developer can work on the bug if needed, or if the first 

recommendation is unavailable. The approach is based on 

network analysis, and uses link prediction to rank developers with 

respect to a bug report. Moreover, in this report, in addition to 

using link prediction, we show several applications to using 

network analysis in the context of software analysis, like 

importance ranking and visualization. The Eclipse open source 

project was taken as a case study, and its CVS and Bugzilla 

repositories were the source of the datasets used to evaluate our 

approach. Experimental evaluation of the link prediction approach 

for recommending developers reveals its effectiveness and shows 

that its recommendations were similar to the actual bug 

assignments to a far extent. 

Categories and Subject Descriptors 

D.2.9 [Software Engineering]: Management – Life cycle, 

Productivity, Programming Teams.  

I.2.6 [Artificial Intelligence]: learning – Concept learning.  

General Terms 

Management, Measurement, Human Factors. 

Keywords 

Version Control, Bug Repositories, Network Analysis, Link 

Prediction. 

1. INTRODUCTION 
Software projects are consistently expanding in size, number of 

developers, and number of users dealing with them. Also, 

software development is spreading over more geographically 

distributed environments, where developers do not necessarily 

have the chance to meet. As a result of that, most state-of-the-art 

software projects maintain software repositories, or version 

control systems that keep track of all work and all changes done to 

project files, and allow several developers, potentially widely 

separated in space and/or time, to collaborate. On the other hand, 

as software projects become larger, software quality becomes a 

central concern. Therefore, the software development process 

involves different procedures for quality assurance, including 

static analysis, in-house software testing, in-field software testing, 

and bug tracking systems. Bug tracking systems are particularly 

interesting because they allow the software users to submit any 

negative experience with the software that looks like a bug, and 

notify the developers about it so that the bug can be fixed. In this 

paper, we are interested in analyzing information in version 

control systems, and information in bug tracking systems. We 

believe that these are very valuable information sources that not 

only record the state of the software, but also can reveal very 

useful information, if well handled and analyzed. In this paper, we 

are proposing a software tool that can be used to speed up the 

software development lifecycle by automatically assigning new 

bugs that complain about exceptions to the appropriate 

developers. This tool extracts CVS information regarding source 

code change history, and applies network analysis techniques on 

the extracted information, to infer rankings of all the developers 

with respect to their relationship with different methods in the 

source code. Link prediction techniques, which are a set of well 

established methods in network analysis, are used to obtain these 

rankings. For finding the ranking on the exception level, rather 

than the method level, method-level rankings are leveraged to 

compute rankings for developers with respect to all the methods 

that are reported in the exception. Moreover, in this paper, we 

also show several applications to network analysis in the context 

of software project analysis rather than developer 

recommendation. These applications include techniques for 

computing importance ranking, and visualization of the 

information extracted from CVS. We show that network analysis 

approaches are effective in understanding and mining new 

information about a software project. The rest of this paper is 

organized as follows. In section 2, we discuss the relevant 

background regarding version control systems and bug reporting 

tools, and focus on two popular tools, CVS and Bugzilla. In 

section 3, we discuss how to extract useful information form CVS, 

and show a way to get more semantic-oriented information about 

the source code changes, rather than pure text-based difference 

information that are supported directly by CVS. In section 4, we 

discuss how to employ the information extracted from CVS to 

construct a network that represents the relationship between the 

source code and the developers. In section 5, we show some 

applications for the network representation including importance 



ranking, visualization, and discovering collaborations. In section 

6, we discuss the different methods of link prediction in dynamic 

network analysis, and show how we employed link prediction to 

rank developers with respect to methods. In section 7, we show 

how to utilize method level rankings to create exception level 

rankings. In section 8, we show experimental evaluation of our 

approach. In section 9, we discuss related work. In section 10, we 

conclude by summarizing our work, and discussing possible 

future directions. 

2. CVS and Bugzillas 
In this section we will give brief and relevant background about 

version control systems, and bug reporting tools, focusing on 

CVS [1] and Bugzilla [2] as case studies. 

2.1 Version Control Systems 
Version Control Systems are commonly used in software 

development to manage ongoing development of relevant project 

files as application source code, documentation files and other 

information that may be worked on by a team of people. Most 

recent versions of the project files are stored in a central 

repository, and developers can check out copies of these files into 

their local workspaces, so that they can work on them, make 

changes, and apply these changes (commit) to the versions in the 

repository. Changes to these documents are usually identified by 

incrementing an associated number, termed the “revision 

number”, and associated historically with the person making the 

change. A simple form of revision control, for example, has the 

initial version of a source code file assigned the revision number 

“1”. When the first change is made, the revision number is 

incremented to “2” and so on [3]. Version control systems not 

only provide complete access to information about all the changes 

that took place in the project, but it also allows for full control 

over these changes, and allow developers to revert back a change, 

and go backward to an older revision if needed. Version control 

systems store different revisions in a compressed way, where only 

the differences from the previous revision are stored for a given 

revision. In addition to the information stored about files, their 

revisions, and the exact changes in each revision, version control 

systems store information about the developer that made a 

particular change, and the timestamp of that change. A very 

commonly used software tool for version control is Concurrent 

Versioning System, or CVS. CVS supports all of the features we 

have just discussed. For example, the command CVS log, shows 

all the files that are currently in the source tree, along with their 

all revision numbers since the file was initially created and the 

developers that created each revision, along with the timestamp of 

the change. The command CVS diff takes two revision numbers 

as a parameter, and returns text-based differences between the two 

revisions. This is usually not helpful in analyzing differences on 

the level of source code, because when analyzing source-code-

level differences, we are more interested in finding semantic 

differences. For example, we may be interested in finding which 

methods have been changed in a class, what data members have 

been added, or which classes had their access qualifiers changed, 

while we might not be interested in information about adding or 

deleting comments, or in changing the location of a function 

definition inside the file. Therefore, it is important to find a more 

meaningful way to analyze source code differences that can 

express more than naive text differences. The last CVS command 

that we are going to discuss is CVS update, which is given a 

revision number, and it synchronizes the local working copy with 

that revision, so that the developer can control which revision 

resides in his/her local working copy. 

2.2 Bug Reporting Tools 
Many open source software projects utilize bug tracking tools as a 

means of reporting software bugs, assigning them to developers, 

and monitor their state. Many of bug repositories store the 

information about bugs and their state in a public database that is 

accessible to all users through a web interface. Therefore, bug 

tracking tools in that sense are also a means of interaction 

between developers and the user community that can be 

geographically distributed. Users report bugs they find in the 

software, and discuss open issues with the developers. 

When a new bug is reported, the bug is assigned a bug ID by the 

system, and the bug reporter is allowed to submit an elaborate 

description of the bug, so that it can be reproduced by the 

developer who will fix this bug. Information is recorded in the 

bug report about who the reporter is, the creation time, the 

component, the operating system and the version. In addition to 

this information that is collected at bug creation time, there is also 

information that occurs over the life time of the bug, like the 

developer to whom the bug is assigned, other people that will be 

on the communication list when discussions about the bug take 

place, and the state of the bug, whether still pending, fixed, or 

cannot be resolved. 

When a bug report is submitted to the bug repository, its status is 

set to NEW. The bug then is examined by a bug triager, who 

assigns the bug to the appropriate developer, and the bug status is 

then set to ASSIGNED. When the bug is fixed, its status is set to 

FIXED. When the bug is found to be a duplicate of another 

existing bug that has been already reported, this bug is reported as 

DUPLICATE.  If the bug cannot be fixed, it is marked as 

WONTFIX. Figure 1 shows the web interface for the Eclipse 

project Bugzilla repository for Bug ID 178190 as an example. 

3. CVS Information Extraction 
In this section we describe how to obtain structured information 

from CVS that describes change history on both the file level and 

method level. File level changes are supported by CVS through 

the command “CVS log”. The output of this command can then 

be processed and stored in a database relation that has the fields 

(file name, revision id, developer name, date of change, time of 

change, number of lines changed). On the other hand, CVS does 

not support a direct way for finding method level changes. 

Therefore, special techniques have to be employed to obtain this 

kind of information. Note that the command “CVS diff” will not 

help much, because it returns only text differences between two 

files. It actually treats two files as sequences of characters, even if 

they contain source code. Therefore, in the following subsection, 

we will discuss our approaches for finding function-level 

differences in source code, and then show our proposed approach.  

3.1 Method-level difference analysis 
Java fact extractor [4] is a software tool that has the capability of 

parsing both the class files and Java source files in order to extract 

information about class and method signatures. Extracting 

information from a Java source file involves implementing almost 



all the functionality of a Java source compiler. It also involves 

completely understanding the language semantics. This scheme 

works very well to gather course grained information about the 

class file, its methods modifiers and member variables. However, 

it fails to capture information from the method bodies, which is an 

essential requirement in our analysis. Moreover, Java fact 

extractor is not a differencing tool, which implies that extra steps 

are required in order to compare different outputs of Java fact 

extractor. 

JDiff [5] is an open source differencing tool that generates HTML 

reports of all the packages, classes, constructors, methods, and 

fields which have been removed, added or changed, when two 

APIs are compared. This is very useful for describing exactly what 

has changed between two releases of a product. Only the API 

(Application Programming Interface) of each version is compared. 

Therefore, like Java Fact Extractor, it does not support detecting 

differences on the level of method bodies, and will report methods 

that have the same signatures as identical, even if they implement 

different functionalities. 

Eclipse Compare plugin is a tool that ships with the Eclipse IDE. 

It is used to find structural differences between two files. That 

means that it is capable of finding differences on different levels, 

i.e. classes, constructors, fields and methods. Since Eclipse is an 

open source project, the Compare module itself can be obtained 

and used in isolation of Eclipse to compare Java files. An 

advantage of this tool is that it focuses more on structural 

differences. That means that changing method location inside the 

file will not affect the comparison. However, a drawback of using 

this tool is that it pays attention to source code formatting 

differences. For example, an “if” statement that is written on one 

line will be different from the same “if” statement that is written 

on two lines. 

A technique for supporting source code difference analysis was 

proposed by Maletic et al [6]. In this technique, source code files 

are converted to the srcML language [7]. The representation, 

srcML, is an XML format that explicitly embeds abstract syntax 

within the source code while preserving the documentary structure 

as dictated by the developer. A drawback of using such an 

approach is that the srcML representation preservers the 

documentary structure of the source code. Therefore, it will be 

affected by many minor and unimportant changes, like 

whitespaces, whether composite statements are written on one line 

or more, whether comments are written in the backslash notation 

or in the star notation, and so on. 

3.2 Proposed approach for method level 

changes 
The technique that we propose for solving our problem is by 

using an XML representation of the source code files; however, 

by employing compiler output information, rather than source 

code text information. Therefore, we used the JavaML [8] 

language to represent the source code files we have, and used the 

tool Java2XML [9] to perform the conversion. Using this 

approach has many advantages. It is not sensitive to source code 

“format”, or the location of functions inside the source code. 

Furthermore, comments can be easily ignored. Also, using XML 

as a representation in general allows performing XSLT 

transformations and XPATH queries on the output XML output. 

Once source files are converted to XML, XPATH can be used to 

query the XML output for the contents of the <method> tag that 

represents methods information. For CVS analysis purposes, this 

approach can be applied for each two consecutive versions of a 

file and then the information can be stored in a database relation 

that has the fields (file name, revision number, class name, 

different method). 

Figure 1: Bugzilla bug report example for Eclipse 



By applying the approaches mentioned above for both file level 

and method level differences on the Eclipse CVS repository for 

the JDT module, we found that the repository contains about 

200,000 different revisions (and each revision has a group of 

method differences as well). Therefore, comparing pairs of 

revisions by converting each revision to XML first would take a 

very long time on such a big dataset. Therefore, we focused only 

on the changes done during the year 2007. This reduced the 

dataset size, so that it had 2871 revisions totaling 5978 method 

differences.  

4. Network Construction 
In order to be able to use network analysis approaches on the 

information extracted from CVS, a network that expresses the 

relationship between developers and the methods, and also the 

methods and themselves should be constructed. Therefore, we 

constructed a network that has the project developers and all the 

methods in the source code as nodes. Such kind of networks that 

contains more than one node type is called multimodal networks. 

In order to construct the network links, we use the information 

extracted from CVS, to link each developer with the methods 

he/she changes. We also link methods that change together in the 

same time to represent relationship between methods. When we 

say that we group methods based on the change time and the 

developer, we mean that methods that have been changed on the 

same day by the same developer are considered related to each 

others and we link them together in the constructed network. 

5. Network Analysis 
In this section we section we discuss some of the results we 

observed from analyzing the network constructed as described in 

the previous section. We first start by developer importance 

ranking, then by method importance ranking and finally, we show 

a way for visualizing the information extracted and extracting 

useful information from the visualization. 

5.1 Developer Importance Ranking 

A measure of importance that is usually used in network analysis 

is betweenness centrality [10]. Betweenness centrality is a 

measure of a node within a graph. Nodes that occur on many 

shortest paths between other nodes have higher betweenness than 

those that do not. 

For a graph G: = (V,E) with n nodes, the betweenness CB(v) for 

node v is: 

 

where σst is the number of shortest geodesic paths from s to t, and 

σst(v) is the number of shortest geodesic paths from s to t that pass 

through a node v. This may be normalised by dividing through by 

the number of pairs of nodes not including v, which is (n − 1)(n − 

2). 

Calculating the betweenness centrality of all the vertices in a 

graph involves calculating the shortest paths between all pairs of 

vertices on a graph. This takes Θ(V3) time with the Floyd–

Warshall algorithm. On a sparse graph, Johnson's algorithm may 

be more efficient, taking O(V2logV + VE) time. 

Therefore, we rank developers according to the betweenness 

centrality measure. Such a measure should reveal information 

regarding which developers are more involved in the JDT 

development more than others, and which developers work on 

broad topics and which work on specific ones. We show the 

rankings in Table 1 along with the score of each developer (the 

ordering is row-major). Figure 2 shows the distribution of 

developer scores. It can be observed that few developers have 

very high centrality, with large gaps between them, then the 

centrality drops very sharply with less gaps. 

In order to validate these results, we contacted the developers 

themselves, and asked them questions about their role in the 

software, and how would they rank themselves among all the 14 

developers in terms of their overall interaction and knowledge of 

different project pieces. The developer who was ranked second by 

our measure, responded that he would reply as soon as he gets 

some time, because he was in a delivery rush (pretty busy!). One 

developer ranked the UI module team developers according to 

their interaction with the entire project, and mentioned that the 

ranking is maeschli , dmegert , mkeller and bbaumgart, which is 

the same ranking like ours, except for mkeller’s rank. The least 

ranked developer in our measure, responded by that he did not 

want to answer the question, when we asked him about his belief 

of his rank. 

Developer Score Developer Score 

daudel 5899005 oliviert 4351020 

ffusier 2946859 wharley 1394260 

jeromel 1359807 pmulet 834203.4 

mdaniel 387839.4 kent 248123.7 

erjodet 237345.3 jgarms 48562.5 

mkeller 42813.29 maeschli 28059.27 

dmegert 13289 bbaumgart 330.25 

Table 1. Developer centrality measure 

 

Figure 2: Developer centrality distribution 

5.2 Method Importance Ranking 
As we ranked developers according to their centrality, we can also 

rank methods according to their centrality. Such a ranking would 

reveal information about which methods are “broker methods”, or 

methods that connect different parts of the program together. 

Table 2 shows the names of the 20 highest ranked methods, and 



Figure 2 shows the distribution of their centrality score. We can 

observe two interesting results. First, 19 out of the 20 methods are 

testing methods. This result coincides with the proposition we 

have just mentioned, regarding the interpretation of method 

centrality, where we stated that central methods are the broker 

methods that connect different parts of the program together. 

Actually, this is exactly what testing suits are doing [11, 12, 13, 

14]. Good testing suits are the ones that achieve higher code 

coverage, and, hence, have relations to many of other program 

functionalities. A future study can look at how to achieve test 

prioritization using these ranking results. The second interesting 

result is that the distribution of the ranks follow a similar pattern 

to the distribution of the developer ranks, where there are few 

methods at the top which are very central, followed by other 

methods that are much less central than the higher ones. However, 

the degradation is not as sharp as it is in the case with developer 

rankings. 

Method Rank 

ResolveTests.testDuplicateTypeDeclaration7 1 

JavadocTypeCompletionModelTest.test024 2 

CompletionTests2.testChangeInternalJar 3 

CompletionTests2.testBug91772 4 

JavadocPackageCompletionModelTest.test025 5 

JavadocMethodCompletionModelTest.test139 6 

JavadocPackageCompletionModelTest.test031 7 

JavadocPackageCompletionModelTest.test024 8 

JavadocMethodCompletionModelTest.test038 9 

ASTConverterTest2.test0607 10 

TestUtils.convertToIndependantLineDelimiter 11 

CompletionParserTest2.test0156_Method 12 

JavadocTest_1_5._testBug209936 13 

ASTConverterTest2.test0608 14 

BuildpathTests.testMissingLibrary2 15 

BuildpathTests._testMissingLibrary3 16 

BuildpathTests._testMissingLibrary4 17 

ErrorsTests.test0104 18 

InnerEmulationTest.test125 19 

VariableElementImpl.hides 20 

Table 2. First 20 methods with highest betweenness centrality 

 

 

Figure 3: Method centrality distribution 

5.3 Visualization 
Having constructed a network, a useful way of analyzing it is 

simply by visualizing this network. However, it becomes 

prohibitive to visualize networks when the size of the network 

becomes quite large, like the case under study in this paper. 

Therefore, it becomes important to find a way to summarize the 

information in the network, and come out of a smaller network 

that conveys the most important concepts that exist in the original 

network. One way of summarizing networks is by filtering out 

unimportant nodes from it [15]. Therefore, we used the 

betweenness centrality measure, and removed low ranked nodes 

from the graph, so that the information about important nodes can 

be captured quickly. Figures 4 and 5 show two cases where we 

show only the network containing only the most important 20 and 

100 nodes respectively. We removed relationships between 

methods to aid clearer visualization of links between methods and 

developers, and hence, focus on information like developer 

collaboration information. We also used node ranks rather than 

names to have an idea about the ranks of the nodes collaborating 

together.  We can see in Figure 4 that developers D1 and D2 are 

collaborating, and also we can see the methods they are 

collaborating on. In Figure 5, we can see more collaborations than 

the ones observed in Figure 4. Some examples are between D2 

and all of D6, D7, D3, D1,D4, and also between D3 and both of 

D6 and D5. 

6. Link Prediction 
As we mentioned earlier, we use link prediction to predict the 

relationships between developers and the methods in the source 

code. Link prediction [16] is a set of techniques in network 

analysis that predict future link formation in a network, given the 

network structure at the present time. Most of the techniques for 

link prediction leverage the network structure information to find 

the predictions. All the methods assign a connection weight 

score(x, y) to pairs of nodes x and y, based on the input graph, 

and then produce a ranked list in decreasing order of score(x, y). 

Thus, they can be viewed as computing a measure of proximity or 

“similarity” between nodes x and y, relative to the network 

topology. 

There are several methods for calculating the node proximity. The 

simplest approach to find score of two nodes x, y is to calculate 

the shortest path between x and y. However, since we prefer 

higher scores, then we use the negated length of the shortest path. 

But in this approach, all links that share only one neighbor will 



have higher scores than others. Newman [17] studied the problem 

of link prediction in the context of scientific collaboration, and he 

found that the probability of scientists collaborating together 

increases with the number of other collaborators they have in 

common. Therefore, he proposed the scoring function: 

 

where Γ(x) are the neighbors of node x. Adamic/Adar measure 

[18] is a measure that counts the common neighbors as well; 

however, it gives more weight to rare neighbors that are shared 

with only few other nodes. Therefore, the scoring function is: 

 

Another measure by Newman [17] is preferential attachment, 

which is again in the context of scientific collaboration, and states 

that the probability of co-authorship of x and y is correlated with 

the product of the number of collaborators of x and y. The scoring 

function for that measure is: 

 

Other methods for link prediction include Hitting Time, Rooted 

PageRank, SimRank [19], Unseen Bigrams, and clustering. 

The last link prediction measure that we will discuss is the Katz 

measure [20], which we used for our link prediction purposes. 

Katz defines a measure that directly sums over the collection of 

paths between two nodes x and y, exponentially damped by length 

to count short paths more heavily. This leads to the measure: 

 

where 
,

l

x ypaths  is the set of all length l paths from x to y. (A very 

small β yields predictions much like common neighbors, since 

paths of length three or more contribute very little to the 

summation.) An interesting property of the Katz measure is that 

the matrix of scores is given by (I – βM)-1 – I, where M is the 

adjacency matrix of the graph. However, in order for the Katz 

measure to converge, β should be less than the reciprocal of the 

largest Eigen value of the adjacency matrix. In our Eclipse CVS 

network, by computing the Eigen values of the adjacency matrix, 

we found that the largest Eigen value is 54.2. Therefore, we set β 

to 0.018, which is the maximum beta less than the reciprocal of 

the largest Eigen value. 

Having obtained the link prediction matrix, we can sort the scores 

of developers for each method, by extracting the sub matrix 

scores(x,y) where x ∈ methods and y ∈ developers. We will call 

this matrix canFixMethod(x,y). Therefore, for each x ∈ methods, 

we sort the vector canFixMethod(x) to obtain a ranking on the 

developers who can work on or fix this method. 

7. Who should catch this Exception? 
Given an exception that is reported in a Bugzilla bug, we try to 

match this exception with a developer who can fix it. For that 

purpose, we employ ranking information obtained by link 

prediction as discussed in the previous section to calculate an 

overall ranking for the developers, with respect to the whole 

exception. Since the exception is a trace of methods that were 

active in the call stack when the exception took place, it is 

reasonable to obtain the ranking based on the average developer 

score over all the functions that show up in the exception trace. 

Therefore, the score canFixException(z,y) of a developer y to fix 

an exception z is: 

1

( , )

( , )

n

i

i

canFixMethod m y

canFixException z y
n

=

=

∑
  

where the methods m1, m2 … mn are the methods that appear in the 

exception z stack trace. By sorting the vector canFixException(z) 

we obtain a ranking on developers who can this exception. 

Figure 5: Collaboration graph for the top most 100 important 

nodes 

Figure 4: Collaboration graph for the top most 20 important 

nodes 



8. Evaluation 
Figure 6 shows an example of using the proposed tool. In the top-

left textbox, the user inputs a Bug ID that she wants to find 

recommendations for. To the right, if the bug was already 

assigned to a developer, the developer’s name and email are 

shown, and also all other the information about other people that 

were on the communication list during the discussions about that 

bug. In the bottom half of the user window, appears the methods 

that the tool can provide a ranking for, which are basically any 

methods that exist in the network constructed, and also one more 

entry that expresses the overall exception recommendation. As we 

can see in the figure, the user asks for recommendation for the 

bug report 178190. This is the same bug shown in Figure 1. The 

tool shows the bug description, and the person who was assigned 

that bug, Markus Keller, and people who were on the 

communication list, J M Synge, and Martin Aeschlimann. In the 

second half, the user is allowed to select the method that she is 

interested in seeing its individual rankings, and also the user is 

allowed to see the overall ranking based on all the methods. This 

should be a ranking for people that can work on that bug. As we 

can see from the figure, the tool names Martin Aeschlimann as the 

first recommendation, who was listed on the CC list, and Markus 

Keller as the second recommendation, who was actually assigned 

the bug. Furthermore, the tool recommends other developers in 

the order of their ranks so that they can be picked subsequently if 

needed. 

We collected from Bugzilla all the bugs that took place over the 

year 2007. Out of them, we found the bugs whose any of their 

methods was encountered in our social network analysis. There 

are 16 bugs of this kind. By computing the average ranking as 

recommended by our tool for the developers who actually fixed 

these bugs, we found that the average ranking is 2.4, which 

indicates that the developers who actually solved the bugs were 

ranked pretty high by our tool. By considering both ranking of the 

developers who fixed the bug and the developers on the CC list, 

the average rank of them became 2.9. The reason for the average 

increase is that now there are multiple persons who are working 

on a single bug. Therefore, in addition to the person that is ranked 

number 1, other persons will take ranks more than 1, and may be 

more, according to the number of people who were actually in 

both the “Assingned to” and “CC” list. 

9. Related Work 
Three types of approaches have been used to recommend experts 

for a software development project: heuristic-based (e.g., [22]), 

social network-based (e.g., [25]) and machine learning-based 

(e.g., [26]). 

Heuristic-based approaches apply heuristics measures to quantify 

experience. Some approaches require users to maintain profiles 

that describe their area of expertise or organizational position (i.e., 

[21]). However, as expected, it is difficult to keep such profiles 

up-to-date. Other heuristic-based expertise recommenders are 

based solely on data extracted from the archives of the software 

development. The Expertise Locator system [22] uses file 

dependency matrix that keeps track of how many times pairs of 

files are changed together, as well as file authorship matrix, that 

keeps track of how many times developers change different files, 

to come up with the experience matrix, that shows how much two 

developers can benefit from each others. The Expertise Browser 

(ExB), for example, uses the concept of experience atoms (EA), 

which are basic units of experience, as the basis for 

recommending experts [23]. Experience atoms are found by 

mining software repositories for the changes along with their 

associated information like the developer name, the file 

containing a modification, the technology used, the purpose of the 

change and/or the release of the software. A simple counting of 

experience atoms for each domain in question is then used to 

Figure 6: Screen shot of the proposed tool 



determine the experience in that area. As another example, the 

Expertise Recommender (ER) [21] was proposed as method for 

finding experts based on the developers change history. The 

authors assume that the most appropriate developer for a module 

is the one who changed it last. Girba et. al. [24] used line-level 

approach for locating experts. The authors assumed that each 

developer has an amount of experience proportional to the 

number of lines she changed. However, this measure is not always 

accurate and not indicative of the experience. For example, some 

changes are done in a batch manner, or sometimes just add few 

comments. Social network approaches have been addressed as 

well. The approaches describe relationships between developers 

built using data mined from the system development. For 

example, in [25] the authors are studying the open source project 

development phenomena using a social network approach, where 

they link two developers if the collaborate on the same project. 

They find that this collaboration network follows a power law 

distribution, and there are few developers who are working on 

multiple projects. Machine learning-based approaches used text 

categorization techniques to characterize find developers who 

should fix a bug [26]. In these approaches, existing bug reports 

along with their bug assignments are given to a text categorization 

algorithm, so that future bug reports can be predicted for their 

appropriate developer who should handle them. This approach is 

different than ours in that we do not train our system on existing 

but reports, rather, we train it on information that already exists in 

the software project repository. 

10. Conclusions 
In this report we have studied approaches for applying network 

analysis methods on information extracted from source code 

repositories. First, we have seen an approach for how to get 

semantic differences between different versions of the source 

code. Then we utilized the information extracted regarding 

method level differences to construct a network of relationships 

between the developers and the methods on one hand, and the 

methods and themselves on the other hand. We also showed 

techniques for analyzing this network by ranking, visualization 

and link prediction. Lastly, we showed how link prediction can be 

employed to predict who the developers are that can fix an 

exception. Experimental evaluation showed that network analysis 

is a powerful tool to promote the understanding of software 

projects, and that link prediction approaches are effective methods 

for finding experts. Future directions include validating the 

developer rankings by contacting the developers themselves, and 

exploring their work nature. Also, we will consider using method 

ranking to aid test prioritization. Furthermore,  from the network 

construction point of view, we will consider the enriching the 

network’s link structure by adding links between methods that call 

each others, or methods that are in the same class. Moreover, an 

improvement to the accuracy can be preformed by making use of 

previous bug reports by linking them to the developers who 

actually fixed them, and predict developers who should fix new 

bugs. From the computational point of view, we will consider 

expanding the system so that it can incrementally be updated 

when new data comes to the scene. As we have seen, the data sets 

are huge, and doing the entire analysis every time new 

transactions take place will be prohibitive. 
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