
FriendGuard: A Context-Awareness Mobile App
Helps Securing College Female Safety

Xiaomeng Jiang
University of Maryland College Park

jackiezjiang@gmail.com

Abstract—The prevalence of sexual harassment, sexual as-
saults and rapes has brought social attention across the world.
US government, universities, companies and groups all make
significant efforts preventing such events [1].To help reduce sexual
affends and crimes, and help securing college female safety, we
study the problems of existing safety apps, design and implement
a new Android app FriendGuard. It is a context-awareness app
that enables location sharing and status updates through shared
session with friends. By sending notifications through alerts or
check-ins, user’s status will be shared to the friends, who can
take proper action to help and prevent possible sexual crime
when necessary.

Keywords—Context-Awareness, Safety App

I. INTRODUCTION

Female students are on the rise of sexual harassment risks,
even though a growing body of efforts has been make to
prevent it. Campus Law Enforcement has been issued by U.S.
Department of Justice[2], to prevent violence and crime as a
whole, and to reduce sexual crime as well. Many Universities
and Colleges in US also publish anti-harassment policies as a
way to reduce sexual harassment or sexual assaults[3].

However, according to Association of American University
(AUU) ’s survery, the incidence of sexual assault and sexual
misconduct happens to 23.1 percent of surveyed students
across 27 universities throughout US [4]. Other survey shows
that among all the rape or sexual assault experienced by
females between 1995 to 2013, 33% were completed rape,
25% attempted rape, 31% sexual assaults, and 11% threats [4],
[5]. Behind those high percentage, one also has to notice that
the response rate of surveys are between 20% to 30% [6], [7].
That is, most of the females, victims or not, are reluctant to
report sexual assaults or harassment [4]. On one hand, it means
that even though we have many anti-harassment policies and
offices available, they may not serve well when unpleasant
things occurred. One possible reason is that, females don’t
want to report and share their feeling with someone they are
not familiar with, and they would rather keep it secret. On the
other hand, that means the percentage of female victims may
be under-estimated.

What also worth noticing is that, most sexual crime occurs
when victims were pursuing leisure activities away from home
[5]. Therefore, we should not only enforce safety policies and
actively prevent sexual harassment/assaults on-campus or at
working places, but also need to actively educate students and
reduce the off-campus occurrence as well.

To reduce the on-campus and off-campus sexual harass-
ment and assaults as a whole, we need to answer the following
questions.

• How to increase the report rate? It will not only
provide us more detail insights and statistics, but also
will help females speak out when something unsafe
or unpleasant happens.

• How to protect privacy? The more privacy we can en-
sure, the higher reporting rate we can expect, and the
more likely it will help preventing sexual harassment
and assaults.

• How to achieve timely report? If we can make report
close to real-time, then many of the crimes can be
prevented, or stopped before it gets worse.

We here present FriendGuard, an mobile app that allows
location and safety status sharing with family and friends. It
aims to increase the sexual harassment/assualts report rate,
protect user privacy, by letting users connect and notify their
close friends or families only. It also enables real-time report
through a shared session between user and their friends.
Note that, FriendGuard is designed to help preventing sexual
harassment and assaults, but it is by no means can serve
as an emergency app, or a substitute of 911. That is, when
emergency happens, one should always call 9-1-1 for help,
rather than relying on our app.

In the following sections, we use notation User and Friend,
referring users to be FriendGuardED and to be FriendGuard-
ING, respectively.

II. RELATED WORKS

There are existing applications targeting female safety [8],
among which Companion, bSafe, Drunk Mode are popular
among users. We therefore review their features and compare
our work with those existing apps in the following section.

According to Companion description [9], it is a ”personal
security solution” with the help from connected friends and
families. Users can share location with chosen friends or
families, and fire alarms to them when emergencies occur. It
has 2 alert types based on severity of events. One can send “I
am nervous” or “call 911” directly. Companion also asks user
to confirm their status at certain time interval. This will help
firing alarms when they dropped the phone.

bSafe is another very popular safety app with many media
exposure [10]. It has rich features: notifying friends, fake call,



and share location, et al. Customer has many options when
something unpleasant occurs. And the more a customer gets
familiar with the app, the better it can serve the customer.
However, it may involve too many human interactions, which
will delay the reporting time and make operations not simple
enough for an emergency response.

Drunk Mode [11] focuses more on party safety, by tracking
drunk user. It can prevent drunk if necessary, and will also help
a friend to locate and reach a drunk user after a party. Even
though it seems a party-specific app, it can also serve as a
safety app in general.

All the above apps have several common features: record
user location and sharing status with friends. FriendGuard
bears those key ideas, and explore further. We makes our
app more proactive by involving user safety confirmation at
each active check-in time point. We define our target users as
college students. The narrowed target of FriendGuard brings a
favorable feature - the college friends may know the location
of FriendGuard user much better than a remote friend. The
background information from friend will increase the possibil-
ity that they make a best decision to help, and come to the
shared location in the shortest possible time. Also, we provide
only two simple mode: Alarm or Check-in, and keep the user
input to a minimum. This will on one hand make our app
simple and easy to use; and on the other hand, let user send
alarms as quickly as possible.

III. DESIGN AND IMPLEMENTATIONS

A. Context Awareness

In Context Awareness systems, Context is defined as ”Any
information that can be used to characterize the situation of
an entity” [12]. FriendGuard enables Context Awareness in
a slightly different way than most of the Context Awareness
systems. Our definition of Context is ”the combination of
location, time and safety status, along with human decisions”.
For User, context will determine when and what to be sent
to Friend. For Friend, context will provide information so
they can decide how to help User. The involvement of human
thinking will allow best flexibility and most proper response
to User from their friends.

B. External Dependencies

The way our application provides protections for female
college students is through (1) sharing locations with friends
and family using (2) notifications. Therefore, the following
dependencies are used in our app:

• Google Map API: This is how we share locations
between user and friend, and how we keep track of the
location change of users. For both User and Friend, a
map is displayed through Google Map, so the shared
location can be visualized.

• Google Messages: It will relay the message between
user and friend with minimum delay. Therefore, all
the notifications sent are close to real-time.

C. Features

1) Create A Session: A Session is a connection within
certain time range, where the Users share their locations and
safety status with their Friends. It can be created anytime by
the Users by specifying Start Time, End Time, Check-in
Intervals and a list of friends from Contacts. Then all the
friends invited will receive invitations about the very session.
Once the Friend accepts invitation, a connection is successfully
built, so now User’s location and safety status can be shared
with Friend.

2) Sending Alerts: Alerts are sent manually by Users when
they feel unsafe or in a situation where they feel uncomfortable
with. By simply pressing the big alert button in the app, the
User will be able to send a “In Danger” notification along with
their exact location to the Friends. Once the Friends receive
the notification, they can open and view the User’s location
(when Alert is sent) pinned on the shared Google Map. Then,
the Friend can respond by contacting User, coming to User’s
location to help, or directly calling the police if necessary.

3) Active Check-ins: As compared to Alerts, Active Check-
ins will proactively check the safety status of User by prompt-
ing notifications at the end of each time interval. The User
can confirm their safety. Or if they missed the check-in after
5 min, a “In Danger” notification will be sent to the Friend.
After that, if User realizes he/she missed a check-in, they can
notify Friends by setting the status back to ”Safety”. Being
safe or in danger, the exact location of User will be sent and
stored for later retrieval.

D. System Design

The FriendGuard system is partitioned into Client side and
Server side. Server side includes the back-end data storage,
while client side is the actual application. Based on the role
of FriendGuard app users, user is categorized as either User
(who would like to be FriendGuardED) or Friend (who does
FriendGuardING). Both User and Friend have to be registered
to be able to interact with Server. And Friends will be restricted
to those on User’s contact list. This will ensure the privacy of
User’s status, and also increase their willingness to report the
unpleasant sexual harassment or assaults.

We will explain in details about interactions between Client
and Service for our key features.

Fig. 1: Data flow of User Registration



1) User Register:

1 When a User registers with FriendGuard, the Server
will request and get a Google Cloud Messenger
(GCM) token by interacting with GCM service. At
the same time, User’s information and the contact
lists from their mobile device is also uploaded to the
Server.

2 The Server stores information of User to the local
database, and find all the registered Friends’ infor-
mation. Once the registration succeeds, it will send
notifications to GCM, asking broadcasting of the reg-
istration success message.

3 GCM will relay the message sent from Server, so
User and Friend with receive registration notifications.
Behind the scene, User and Friend will receive GCM
token to be used for messaging in their session, so they
have the token to talk to each other through GCM.

Fig. 2: Data flow of Start Session

2) Create A Session:

1 To create a Session, User needs to specify a start
time, end time, friends to be connected, and check-
in interval through the app. All those information will
be sent to Server, and will be stored in the database.

2 The Server will create and assign a unique sessionID
for the new session. The sessionID is then sent to
GCM, so it can be distributed to all Friends.

3 GCM sent invitation notification to Friend for the
newly created session bind to sessionID received from
Server.

4 Once a Friend accepts the invitation, the sessonID
will be shared between User and Friend. Therefore,
a connection is build. Then the confirmation is sent
back to the Server and get stored.

5 The Server sends the agreement to the User via GCM.
And User will receive notification for invitation ac-
cepted and confirmed, and he/she gets the FriendGuard
ready to work.

Fig. 3: Data flow of Send Alert

3) Sending Alert:

1 Sending alert will be triggered in 2 cases: (1) When
User sends an safety alert by hitting the alert button
in app (2) User misses a response to Active check-in
for more than 5 min. In both cases, the time, location,
and sessionID will be sent to the Server.

2 Server will store the information sent from User, and
sends a message to the connected Friends via GCM.

3 Friend receives a notification for the User’s alert.

4 Opening the alert notification, Friend is able to see
User’s exact location when alert is sent, along with
the time and safety status in Google Map.

E. UI Design

The main purpose of our app is to let the User respond to
unsafe situations as quickly as possible. Therefore, our design
focuses on

• minimizing User input once the session starts

• making the user input as easy as possible.

a) Start A Sessioin: To simplify the process of ses-
sioncreation, we use scrolling menus for check-in interval
input,and Google Datepickers for start time and end time input.
Theinterface for session creation is shown in Figure 4

Fig. 4: Start a new Session



b) Session View: Fig 5 shows the interface when User
is in a active session. It has a big ALERT button, so the it can
be easily found and pressed in unsafe situation by User. Also,
the map in the session view will allow the User to visualize
their location.

Fig. 5: Session View Interface

c) Friend View: Once alert notification is sent by User,
Friend’s device will vibrate when the notification arrives. This
will help make sure the Friend will not miss the important
update from User. If Friend opens the alert notification, he/she
will see the message as shown in Fig 6. It states that User is
sending ALERT, and the exact location is shown in the map.

Fig. 6: Friend’s view of a User alert.

IV. CONCLUSIONS

We present a context-aware mobile app helping prevent
sexual harassment and assault of female college students.

It provide features allowing users to share location, safety
status to friends. Also, we introduce an active check-in feature,
so the users can confirm their safety status at certain time
interval. Having this, the user is able to actively check the
surrounding environment and make sure they are safe, to
periodically share their status by simple click, to be tracked
when something happens and they cannot update the status.

Our target users are female students, so we designed our
system in a way that can serve the target user in a best way.

First, we make assumptions that User will prefer choosing
their college Friends as guard when using this app, rather than
remote families and friends. Since both User and Friends are
very familiar with places around campus, Friends will easily
locate and find User when they receive alerts. This will make
sure that User can receive the best possible help. Second, we
narrow down the use case, by providing only “Alerts” and
“Check-ins” features. Therefore, our app is simple to use.
Under unsafe situations, the simplicity will save User time
sending alerts and get help. Finally, we use GCM instead of
SMS messaging to minimize delay. This is essential for a
safety app, since timeliness will determine whether the app
can provide protect or not.

V. FUTURE WORK

Currently, FriendGuard is in prototype stage. More favor-
able features need to be added, so it provide more secure
guarding service. Followings are aspects remain to be im-
proved.

• Enable indoor location sharing. This is to ensure that
wherever the users go, their locations can be found
and updated precisely.

• One common issue of safety app is battery life. To
save battery, in-app computation should be minimized.
Also, when mobile device is out of battery, we need
to report to the friend before the system shuts down.

• Enable friend selection. Currently, all those on the
mobile contact list are regarded as friends. While
further work needs to customize the friend selection,
so users feel comfortable sharing their information.

• Further user survey. It will help us select the most
in-need features.

ACKNOWLEDGMENT

I would like to thank Professor Ashok Agrawala for
advising this scholar paper. He provided an interesting and
involving course, where this project started and grew. He spent
his valuable time guiding me how to read, understand and write
paper. I thank Ryan Eckenrod, Master student at University of
Maryland, for his contributions on FriendGuard overall design
and FriendGuard Server implementations. I also thank Seokbin
Kang, PhD student at University of Maryland, for designing
the FriendGuard UI.



REFERENCES

[1] Tanya Somanader. President obama launches the ”it’s on us” campaign
to end sexual assault on campus. 2014.

[2] Brian A Reaves. Campus law enforcement, 2011–12. Bureau of Justice
Statistics Special Report. NCJ, 248028, 2015.

[3] Association of American Universities. Combating sexual assault and
misconduct. 2017.

[4] Christopher P Krebs, Christine H Lindquist, Tara D Warner, Bonnie S
Fisher, and Sandra L Martin. The campus sexual assault (csa) study:
Final report. Washington, DC: National Institute of Justice, US
Department of Justice, 2007.

[5] Lynn Langton and Sofi Sinozich. Rape and sexual assault among
college-age females, 1995-2013. 2014.

[6] Bonnie S Fisher, Francis T Cullen, and Michael G Turner. The sexual
victimization of college women. research report. 2000.

[7] David Cantor, Bonnie Fisher, Susan Chibnall, Reanne Townsend, Hyun-
shik Lee, Carol Bruce, and Gail Thomas. Report on the aau campus
climate survey on sexual assault and sexual misconduct. Association of
American Universities, 21, 2015.

[8] Rena Bivens and Amy Adele Hasinoff. Rape: is there an app for that?
an empirical analysis of the features of anti-rape apps. Information,
Communication & Society, pages 1–18, 2017.

[9] Companion. Companion. https://www.companionapp.io/, 2017. Ac-
cessed: 2017-05-16.

[10] bSafe. bsafe. http://getbsafe.com/, 2017. Accessed: 2017-05-16.
[11] DrunkMode. Drunkmode. http://www.drunkmode.org/, 2017. Accessed:

2017-05-16.
[12] Gregory Abowd, Anind Dey, Peter Brown, Nigel Davies, Mark Smith,

and Pete Steggles. Towards a better understanding of context and
context-awareness. In Handheld and ubiquitous computing, pages 304–
307. Springer, 1999.


