
 1

Evaluating Window Placement for Hypertext-based Source
Code Exploration Tools

Jeffrey Blank
University of Maryland

Department of Computer Science
blank@cs.umd.edu

ABSTRACT
Developers incur significant interaction effort while
browsing hypertext-based source code windows on large
displays. A window placement strategy designed to address
this problem, as well as assist program comprehension, is
presented. The strategy uses program structure information
to position hypertext-based source code windows. For
example, when a function implementation is summoned
from a function call site, it is placed to the right of the
window of focus. Thus, a user following flow of execution
shifts their focus rightward to browse deeper into the
program call graph. A user study was conducted to compare
this strategy with an available space-filling placement
system. The study measured window positioning effort and
completion time during source code browsing tasks. The
study revealed variations in users’ window placement
behavior, but no significant differences between the
window placement strategies.

INTRODUCTION
Although the display of program abstractions has been the
primary focus of software visualization research over the
last decade, recent developments motivate the investigation
of improvements to exploring source code itself. First,
studies have shown that software maintenance tasks occupy
the greatest percentage of programmer time and that
comprehension is its largest component – and the source
code may be the only accurate source of information [6].
Second, low-cost 2-megapixel displays are available now
and, as prices drop, popular adoption can be safely
anticipated for 4-megapixel and higher displays [10].
Recent workshop activity also demonstrates interest in
using textual views of source code to support
comprehension [3].

When multiple source code windows are open – which
easily happens on a large display [11] – their arrangement
becomes a noticeable component of the hypertext browsing
activity. The programmer expends time and effort to
arrange the source code windows to suit the exploration or
analysis task at hand, and this arrangement may affect the
speed of program comprehension. We suggest that
programmers might benefit from careful layout of the large
amount of source code that can be shown on-screen.

To test this idea, a new window layout strategy was
implemented. The strategy places hypertext source code
windows based on the underlying program control flow
structure. When a link to a function implementation is
requested, the new source code window appears to the right
of the current window. Shifting focus rightward across the
screen should create a sense of being deeper in the
program’s call graph. When a link to a references (call-site)
list is requested, it opens a new window below the current
window. Requesting a call-site from this list results in
placement of a window to the left, allowing a user to shift
focus leftward to move up the call graph. Data type
declarations are placed above the current window.
Declarations and references thus appear in the same column
as the window whose comprehension they are supporting.
To evaluate the placement strategy, a study was conducted
in which participants performed source code browsing
tasks. The first hypothesis of the experiment is that a
window placement system based on the underlying program
structure would decrease the amount of effort spent on
window manipulation to complete browsing tasks. The
second hypothesis of the experiment is that this window
placement system would decrease the time required for a
developer to make certain realizations while browsing code.
Participants’ time spent for the tasks was recorded, as well
as all window position manipulations. The study did not
reveal a significant effect for completion times or window
manipulation effort.

After a review of previous work, window placement
strategies for hypertexts on large displays are described.
Next, a user study designed to evaluate these placement
systems is described, followed by its results and a
discussion.

PREVIOUS WORK
The most common approach to program exploration at the
source code level is hypertext. Hypertext browsing support
can be found in popular integrated development
environments such as Eclipse and Visual Studio, as well as
in more specialized tools such as HyperSoft [9], Source
Navigator, CodeSurfer [1], and the Linux Cross Reference
(LXR). In these tools, source code elements effectively
become links, such as from a function’s call to its
implementation, or an abstract data type’s usage and its

 2

declaration. However, on systems with adequate screen size
to display many windows, we are aware of no techniques
that attempt to place a new hypertext document in a
location that would attempt to minimize manual layout and
maximize comprehension. Many of these browsing systems
rely on the system window manager. Typical strategies for
placement include cascading the new window above the
current one, placing it in the nearest available open space,
or placing it at an arbitrary absolute position. The resulting
layout of source windows on large displays is distracting,
tedious and time-consuming, and the resulting
arrangements foster confusion.

The SHriMP [17] multi-perspective approach to program
comprehension and navigation is related, but its
implementation does not provide multiple, simultaneous
source file views. Its intent is to provide many different
perspectives at different levels of program abstractions, not
to effectively expose large amounts of code. The
NavTracks project [16] supports the browsing experience
by recommending related files to developers, based on
browsing history. Our approach depends instead on
program structure information and additional display space
to show related files near each other. The SeeSoft approach
[2] is also related in that it employs large displays to aid
program comprehension based on the display of code.
However, its goal is to convey high-level information about
the code by representing it as colored lines, not to allow
users to browse the code.

The Elastic Windows placement system attempted to lay
out windows using knowledge of the underlying structure
of the items on display [7] and the effect was evaluated
[13]. The system demonstrated improved interaction time
and was even translated to display hypertext. The window
placement strategy proposed here draws from this approach.
Our window placement algorithm relies on the program
structure to decide the optimal placement of each window.
As in the case of Elastic Windows, we hope this will
improve task completion time.

PLACEMENT STRATEGIES
Placement strategies for large displays address how to
position new windows, possibly taking into account how
their contents relate to already-open windows. The problem
of window placement and its effects only becomes
interesting on large displays, and may become more
interesting as displays become larger. Because there are a
limited number of positions for new windows on small
displays, the initial placement may not matter much. The
user is condemned to jarring context switches when
changing focus from one overlapping window to another
anyway. A 2560x1600 display, however, can easily show 6-
8 source code windows at once with minimal overlap.

Many programs (or their underlying window manager)
simply cascade new windows atop the window of origin.
This behavior may be a vestige of the belief that the user
will be working on a screen that can barely show more than

one window at a time. In order to see both the origin and
destination window, the user needs to immediately move
the window, possibly into a completely free space where
the window system could have placed it. This approach
does, however, respect locality [14]; the new window is
always placed near (atop, in fact) the prior area of focus.
Such placement strategies are common in popular
development environments and web browsers.

Space-filling window placement systems place new
windows into available free space on the screen. Such a
system is implemented in the Gnome desktop environment,
and is used by applications that do not explicitly specify
new window positions. When that system cannot find
adequate free space on the display, it positions the new
window at the top left of the display. Subsequent new
windows are cascaded from that arbitrary position, as
shown in Figure 1. The system first chooses free space over
locality, but has an advantage over simple cascading in that,
at least while the screen is relatively unfilled, the user is
able to see both the origin and destination hypertexts.

Figure 1 - Space-filling strategy, reverting to cascading when
space is not available.

New Strategy.
We implemented a window placement strategy dubbed
locality+splay specifically for the task of browsing source
code. The strategy chooses position based on the type of
link being followed, attempting to layout the source code
on-screen in a manner roughly representative of the
program call graph. When a user is following execution
forward by opening function implementations, windows
open rightward across the screen as new source files are
encountered. Shifting focus rightward across windows thus
creates a sense of being deeper in the program call graph.
To track execution backward, as might happen when
determining where a variable of interest was allocated, the
user can change shift focus leftward across the windows.
Windows containing declarations and reference listings are
presented above and below the current window as they
provide information that supports comprehension of its
code.

 3

To implement this strategy, the Source Navigator program
version 5.2b2 was modified. Source Navigator implements
3 primitive operations for hypertext source code browsing:
finding a function implementation, finding a type/structure
declaration, and finding a list of references (calls) to a
function.

Figure 2 – Locality+splay strategy. From the center code
window, a new window can be opened to the right, above, or
below, depending on the type of link requested. Requests for

call-sites from a reference listing open to the left.

The different placement actions are illustrated in Figure 2.
When opening a hyperlink to request a function
implementation (shown with solid black arrow), the new
window will appear directly to the right of the current
window. This allows the user to see the implementation
along with the code in which it was used. Additional
requests for implementations from the same source window
will splay outward to the right (not shown).

Information that supports the current source window, such
as a declaration or reference listing, appears in the same
column on-screen. When requesting a datatype or function
declaration (shown with dotted blue arrow), the new source
file (typically a header) will appear higher on the screen
than the current window. When choosing to request a list of
references to a function (shown with dashed red arrow), the
reference listing window will appear below the current
window. Clicking on successive items in the reference
window will splay them to the left of the reference window,
shown with alternating-dash green arrows. The ability to
splay the windows should allow a user to easily compare
source code from many call sites side-by-side, which would
be useful in identifying patterns in code. Alternatively, if
browsing a single code path, a user can explore higher in
the call graph by moving leftward across the screen by
summoning call sites.

This layout attempts to honor locality, by placing new
windows near their origin hyperlink when possible. It tries
to avoid overlap by not typically placing the new window
atop its hyperlink origin or in any set arbitrary position. Of
course, screen space is not infinite; when more windows are
summoned, the system will place windows against the

edges of the screen; if a window already exists in that
position then overlap via cascading remains the fallback
strategy. Overlap also occurs if, for example, function
implementations are requested from two mostly-
overlapping windows. Both new implementation windows
would be overlapped, in much the same way as their
windows of origin. Another example of overlap occurs
because a function can have multiple callers. This occurs
when a user opens an implementation window, requests the
other callers for that implementation in a reference listing,
and then opens one. Assuming that the just-opened caller
was in a different file from the original, the two windows
would then overlap in approximately the same column
on-screen.

USER STUDY
A user study was conducted to test the hypotheses that the
window placement strategy could affect window
manipulation effort and browsing task completion time. The
locality+splay strategy was compared with the space-filling
strategy. Despite its widespread use, the simple cascading
strategy was not considered because it would not be
competitive in terms of window manipulation effort; nearly
every window would require adjustment if the user wanted
to make use of the large display area at all. In the study,
window manipulation effort was measured as the mouse
dragging distance traversed while making window position
adjustments.

Tasks.
The source code to be browsed was an older version of
GNU Wget, a command-line program designed to accept
FTP and HTTP URL’s as arguments and then retrieve them.
Wget was chosen because all users could be expected to
either know its purpose or be trivially informed of it.
Wget’s code is well-commented and well-organized, and
does not use function pointers or any particularly opaque
sequences of pointer arithmetic or dereferencing. Although
some participants were certainly capable of parsing
obfuscated code, the point of the experiment was to observe
their browsing of code in a limited amount of time.

In order to test participants’ browsing of program source
code, a questionnaire was created. The questionnaire
consists of 18 multiple-choice questions a programmer
would browse source code to answer. A multiple-choice
format was chosen to remove the need for users to spend
time entering answers. Because browsing is generally
considered an exploratory strategy with no fixed endpoint,
the questionnaire had to be carefully designed to prompt
natural exploration of the code, posing questions that the
programmers might pose to themselves. Some of the easier
questions involved little more than applying reading
comprehension. For example (with answers provided for
the benefit of the reader):

• Expand main.c to open the function main(). What
function does main() call in order to retrieve a

 4

URL entered from the command line? (A:
retrieve_url)

Other questions built off the results of these and were
designed to prompt deeper browsing of the source code; the
following question involves the participant going 3 function
calls deep:

• Assume the user has entered an HTTP URL on the
command line. Starting from retrieve_url(), follow
the path of execution until a network socket
connection is made. In what function does this
happen? (A: make_connection)

An exploration question such as the previous one would be
followed by questions involving the data passed down the
particular control path:

• In gethttp's call to make_connection(), the second
argument is the hostname. What is the name of this
argument in the call, and what is the name inside
the called function? (A: u->host/hostname)

• The string you identified in the call to
make_connection, u->host/hostname, is an
element of a urlinfo struct passed in from previous
callers. What function in the path you explored
took care of allocating memory for this struct? (A:
newurl, called from retrieve_url)

Because it often requires familiarity with the source code,
other questions involved identifying where aspect-oriented
refactoring could be applied. This was accomplished by
asking the users to identify whether patterns existed in the
code such that they could be considered join points [8] for
advice:

• After every call to make_connection, a switch
statement with other code is run. What does this
code do, and is it identical after every call to
make_connection? (A: Error processing and
logging; it's NOT identical.)

Design.
For the experiment, half the participants used the normal
Source Navigator browser which makes use of the
underlying window manager’s space-filling placement
system while the other half used the locality+splay version.
A between-subjects design was chosen due to concerns
about participants’ familiarity with the source code
dominating any improved performance during the second
half of the session. Although this concern could be
mitigated by using a different target source program for the
second half of the questionnaire, time limits made this
impractical. Another possibility would be to alternate
window placement systems during the questionnaire, but it
was felt this would prove too unpredictable and potentially
annoying or jarring to the users.

Protocol.
A pre-questionnaire was used to verify that the participants
had adequate knowledge of the target language (C) to

perform the browsing tasks. When asked about their
programming language experience, all participants
indicated at least 1 year of experience with C. When asked
about memory management in C, all were able to describe
the malloc and free functions. The pre-questionnaire also
verified that none of the participants had previously seen
the Wget source code.

Users were seated at the test system and invited to make
ergonomic changes. Each participant was given a verbal
description of the Wget program, as well as a printed
summary of its operation, and given time to read it
carefully. Each participant was then directed to use the 3
primary hypertext operations available for C programs in
the Source Navigator browsing tool (Find Implementation,
Find Declaration, References). Next, users completed a
6-question warm-up questionnaire (presented by an on-
screen program) targeting the vsftpd program to ensure
their familiarity with Source Navigator, as well as the
directed-browsing style questions.

Next, each participant began the questionnaire. Once a
question or task was complete, it could not be revisited.
Participants were urged to advance to the next question as
soon as they felt confident in their answer. Although time
was recorded, no timer was present on the screen; all users
completed all questions. Only one user incorrectly
answered one question.

A survey to gather feedback was taken immediately
following the questionnaire. The total time for the session
was approximately 1 hour.

Participants.
Sixteen participants were selected from a pool of
professional programmers at the Department of Defense.
The programmers regularly perform software maintenance
and analysis tasks in which browsing source code plays a
major part. All had experience with hypertext-based source
code exploration tools.

Apparatus.
The same display, input devices, and computer were used
for all participants. The display was an Apple 30” Cinema
Display at its native resolution of 2560x1600. The input
devices were a standard Dell USB keyboard and optical
scrolling mouse, and the computer was a Dell XPS Gen 4
running a default installation of the Fedora Core 4 Linux
distribution with the Gnome desktop environment.

RESULTS
The results for task completion time and window
manipulation effort are presented, as well as further
investigation into the results.

Task Completion Time.
The two groups’ average times to complete the
questionnaire were calculated and a t-test was performed to
check for statistical significance. The means differed in
favor of the locality+splay placement as shown in Figure 3,

 5

but the results were far from significant: (t(14)=0.81,
p=0.43). Cohen’s d for the two groups is 0.61, which is
considered a medium effect size. This suggests it may be
possible to reach significance with more participants.

Figure 3 – Average task times and confidence intervals (as

error bars) for the two groups.

Window Manipulation Results.
The total mouse dragging distance involved in window
placement operations was captured for all tasks. This
distance will be used as a measure of the amount of mouse
effort required. As shown in Figure 4, the means differed to
favor the space-filling strategy for total distance traversed,
but again the difference was far from significant (t(14)=-
0.32, p=0.75). Cohen’s d for the two groups is 0.24, a
smaller effect size than for the task completion time.

Figure 4 – Average window manipulation distance and
confidence intervals (as error bars) for the two groups.

It is worth noting that one participant in the
locality+context group had a manipulation distance of
17,684 pixels, about 2 standard deviations from the mean of
7725 pixels. If this user were eliminated, the window
manipulation mean would change to favor the

locality+splay strategy, (6303 vs. 6938 pixels). While this
difference is now in the same direction as the time analysis,
the difference is still not significant (t(13)=0.29, p=0.77).

In conclusion, the data collected do not support the original
hypotheses regarding manipulation effort and completion
time. To investigate why, we visualized the window
manipulations.

Visualizing Window Manipulations.
Logs of the window manipulations were translated into
window trace diagrams to show users’ behavior. These
diagrams, along with a post-session questionnaire and a
playback system capable of displaying the window situation
over time, provided information about users’ interaction
with the window placement strategy. In a window trace
diagram, the background represents the display surface. An
open circle represents the center location of where a
window was opened. Its subsequent path (if any) is
represented by a line, and its position when closed (either
by the user or automatically at the end of the session) is
represented by a circle with an ‘X.’

The window traces in Figure 5 were created from
participants using the space-filling window placement
strategy. The top user represents a “successful” user (in
terms of interaction with the window placement strategy).
Successful is defined here as characterized by little window
movement, fewer than 3 movements for the entire session.
Surprisingly, the number of windows in the vicinity of the
top-left of the screen of the successful space-filling strategy
user did not motivate the user to move them. Screenshots
and a playback system showed that many of these windows
were open at the same time, cascaded and heavily
overlapped. The bottom participant in Figure 5, as well as
all other diagrams for the space-filling participants, is
heavily characterized by movement away from the arbitrary
top-left position. We will call this position a “hotspot” in
the window trace diagram. A “hotspot” is defined here as a
100x100 pixel region where more than 3 windows are
placed and then subsequently moved. Identifying such
patterns can demonstrate how a window placement strategy
could be improved.

The window traces in Figure 6 were created from users of
the locality+splay system. The top trace in Figure 6
represents a successful user of the locality+splay system. In
this trace, the entire screen is effectively used during the
browsing activity. The bottom trace in Figure 6 represents
users for whom the window placement system was less
successful. In this case, the window movement is
characterized by a hotspot in the middle-right of the screen.
Another notable behavior in this trace is the movement of
other windows toward the center of the screen, which
suggests a tendency to use only the center of the large
display.

 6

Totals for these characterizations are shown in Figure 7.
The “Other” category indicates that the window manager
was not successful for the user, but it is not yet possible to
characterize the behavior.

Feedback. Fourteen of the 16 participants felt that the
questions were similar to ones they might ask themselves
while browsing code, which argues for the validity of the
directed-browsing technique. All participants except for 2
felt that using the large display made answering the
questions easier. Participants were also asked about how
conveniently they felt windows were placed on the large
display. Half the participants who used the space-filling
strategy described the arbitrary placement behavior at the
top-left of the screen, and said that it was inconvenient. Of
16 participants, 3 mentioned specifically that they would
always prefer that the window of origin and the new
window never overlap, a criticism of the cascading strategy
that is still employed in some cases.

DISCUSSION
The results here suggest that the window placement system
has no effect on code browsing performance. However, the
strategies compared here may very well perform better than
most of those used today. The common cascading strategy

was not used in the study, as it would not have been
competitive in terms of window manipulation; in order to
make use of the large display, every window would need to

Figure 5 – Window trace diagrams for two participants using
space-filling placement strategy.

Figure 7 – Character of placement strategy evident in window
trace diagrams.

Figure 6 – Window trace diagrams for two participants using
locality+splay placement strategy.

 7

be moved from atop its original position into free space.
Whether such a system would have had an effect on task
completion time remains unknown. The space-filling
strategy from the Gnome environment considers all
windows on-screen when determining whether it can place
a window in free space, not simply the current program’s
windows. If an unused documentation, IM, or e-mail
window were left open during the experiment, the space-
filling strategy would have reverted to placement at the
top-left sooner. Given the window manipulation associated
with this hotspot, it seems likely that such a change would
have affected its results negatively.

Some users’ tendency to use only a portion of the display
during the sessions appeared responsible for mouse
movement. These users chose to move the windows to their
area of focus, instead of moving their head to focus on a
different part of the screen. In order to accommodate this
behavior, it may be worth exploring the idea of shifting all
other source browsing windows so that a new window can
be placed inside or near the user’s area of focus. Any
windows shifted outside the focus area may still provide a
useful sense of context. Another potential solution to this
problem is to simply not place windows outside the area of
focus.

The problem of overlap still exists in the locality+splay
placement strategy. One overlap situation occurs at the edge
of the screen. This can be seen when a user requests a
function implementation from a window that is already on
the right edge of the screen. One way to address this
problem is to shift all other windows in order to make space
for the new window. This could be done in combination
with reducing the size of the most distant window to avoid
pushing any windows off-screen. Another situation in
which overlap occurs is in dealing with multiple callers to
the same implementation. A potential solution to this
problem is to place the new window in a column to the left
of the implementation, but where it would overlap least.

FUTURE WORK
The data collected could reveal more information about
participants’ motivations for window placement. The extent
to which participants tended to arrange windows in a way
that reflected underlying program structure, simply sought
available screen space, or respected locality remains open
for analysis. Simpler reasons, such as the placement of a
new window directly atop its hyperlink of origin, may also
be responsible. A more extensive study might also be able
to further characterize browsing styles. The hotspot evident
with the locality+splay system was unexpected and any
future iteration of such a placement strategy should address
it.

The variation that exists in browsing speed between users
suggests that a within-subjects design may be preferable for
any future experiments. Major problems with this approach
would be users’ gaining familiarity with the code and the
browsing environment during the experiment, which would

favor the second system tested. In order to mitigate these
dangers, isomorphic browsing tasks could be identified on
two different pieces of software, and the participants could
be counterbalanced. Alternatively, more users could be
recruited for a between-subjects design.

Other basic questions remain unanswered about how the
user interface serves the software developer who needs to
browse code. A comparison could be run between browsing
in tabbed source code windows (in Eclipse and Visual
Studio) and multiple-window systems. Although other
works have quantified the benefits of large displays over
small displays for office tasks [4], no study has compared
the performance of software developers browsing code on
small and large displays.

CONCLUSION
A window placement strategy was implemented to assist
programmers browsing source code on large displays. In a
study, the users of the system demonstrated a reduced mean
time to complete browsing tasks, but not in a statistically
significant way. Window arrangement effort was slightly
increased on average for the new placement system, but
also not in a significant way. Further analysis revealed
differences in users’ window arrangement tendencies that,
for a study of this size, created variations that overpowered
any window manipulation effects of the placement system.
More study is needed to determine how a window
placement strategy might support the source code browsing
activity.

ACKNOWLEDGEMENTS
The author wishes to thank the project participants for
generously donating their time and mental effort. The
author also wishes to thank François Guimbretière for his
guidance.

REFERENCES
1. Anderson, P. and Zarins, M. The CodeSurfer Software

Understanding Platform. In Proc. of IEEE IWPC’05.
2. Ball, T. and Eick, S.G. Software Visualization in the

Large. IEEE Computer, Vol 29, No. 4, April 1996.
3. Cox, A. and Collard, M. Working Session: Textual

Views of Source Code to Support Comprehenions. In
Proc. of IEEE IWPC’05.

4. Czerwinski, M., Smith, G. et al. Toward Characterizing
the Productivity Benefits of Very Large Displays.
INTERACT ’03.

5. Eick, S.G., Steffen, J.L., and Sumner, E.E. SeeSoft–A
Tool for Visualizing Line Oriented Software Statistics.
In IEEE Trans. on Software Engineering, Vol. 18, N.
11, Nov. 1992.

6. Hassan, A. and Holt, R. Using Development History
Sticky Notes to Understand Software Architecture. In
Proc. of IEEE IWPC’04.

 8

7. Kandogan, E. and Schneiderman, B. Elastic Windows:
A Hierarchical Multi-Window World-Wide Web
Browser. In Proc. of ACM UIST’97. (also in CHI’98)

8. Kiczales, G. et al. Aspect-Oriented Programming. In
Proc. of European Conference on Object-Oriented
Programming, 1997.

9. Koskinen, J. HyperSoft System: Tool Demonstration
and Use Example. In Proc. of IEEE IWPC’05.

10. Raskino, M. Bigger and Better Displays Will Boost
Productivity at Last. Gartner Research. April 1, 2005.

11. Robertson, G. et al. Scalable Fabric: Flexible Task
Management. In ACM Proc. of the working conference
on Advanced visual interfaces ’04.

12. Robillard, M., Coelho, W., and Murphy, G.C. How
effective developers investigate source code: an

exploratory study. In IEEE Trans. on Software
Engineering, Vol. 30, pp. 889-903, 2004.

13. Schneiderman, B. and Kandogan, E. Elastic Windows:
Evaluation of Multi-Window Operations. CHI’97.

14. Shneiderman, B. Designing the User Interface. Addison
Wesley Publishers, 1997.

15. Sim, S.E., Clarke, C.L.A., Holt, R.C., and Cox, A.M.
Browsing and Searching Software Architectures. In
Proc. IEEE ICSM’99.

16. Singer, J., Elves, R., and Storey, M.-A. NavTracks:
Supporting Navigation in Software. In Proc. of IEEE
IWPC’05.

17. Wu, J. and Storey, M.-A. A Multi-Perspective Software
Visualization Environment. In Proc. of CASCON’2000,
November 2000.

