
Indexing Techniques for Temporal Text Containment Queries

Sharath Srinivas
University of Maryland, College Park

sharath@cs.umd.edu

ABSTRACT

Many information management systems maintain multiple time stamped versions of
documents. The archives of web pages, version control systems, wikis and backup
mechanisms are examples of such systems. For such temporally versioned document
collections, a search using keywords along the temporal dimension is valuable. This paper
studies the temporal dimension of keyword search in the context of text document
collections. The inverted index, which is an integral part of keyword based IR technique,
requires several extensions for it to support keyword search over temporal document
collections. We propose a number of techniques that explore such extensions. Several
experimental results are also presented to compare the proposed solutions.

INTRODUCTION

In many Information management applications, sequences of document versions updated at
different times exist. Such sequences naturally occur in web pages (where there are updates),
wikis, code repositories and backup mechanisms. In such systems a document is said to be
“ alive ” for a certain period of time until it is updated at which point it becomes an old
version. Figure 1 shows the evolution of a versioned document collection. The three
documents shown in the figure undergo a series of updates. The versions V3, V2, V5 are the
currently alive versions of the documents Doc1, Doc2, Doc3 respectively. All other versions of
the documents are old. Also, versions V2, V1, V4 of documents Doc1, Doc2, Doc3 were alive at
time t = ts.

Figure 1: Evolution of versioned document collections

ts

V1 Doc1

Time

V3

Doc2 V1

Doc3 V1 V5

V2

V2

V2 V3 V4

Alive Versions

 For temporal document collections, a search involving both the text and the time
(temporal text containment query) is valuable. Current Information Retrieval techniques,
which support efficient keyword search over document collections are not well suited to
support a search involving both keywords and the temporal specification. In order to support
search involving both keywords and time two approaches can be taken. The first approach is
to search on the most recent version of the documents. Though time is not a dimension of the
search query in this approach, only currently alive documents are searched. The past versions
of the document are not retrieved, even if they were highly relevant to the query. In the
second approach, different versions of the document are treated as independent documents
and are indexed separately. Though this technique can retrieve any version of a document
that is most relevant to the query, it cannot support queries involving time as one of the search
dimensions.

 The ability to archive and retrieve any version of a document from a collection of
versioned documents is very important. Many information exchange mediums like the web
and the Wiki are ephemeral because of constant updates and a development environment that
is collaborative. Unless an effort is made to archive the temporal data, it might be lost
permanently because of overwrites by newer versions. Archiving of versioned document
collections is an important problem and has received significant attention in the recent times
[1, 2]. Though archiving of temporal data has been a well-studied problem, the equally
important problem of retrieving data from such archives has not been significantly addressed.
The primary requirement of a temporal text containment query technique is that it should be
able to support search along two dimensions: terms and time. Further, it should be able to
retrieve any version of the document that closely matches the user-specified search
dimensions.

The queries over temporal document collections can be classified into the following three
types:

I. Given a set of keywords find all the relevant documents, possibly ranked by their
relevance to the query.

II. Given a set of keywords and a time slice t, find the relevant documents alive during t.
III. Given the keywords and a time range [ts, te), find all the relevant documents that were

alive during this time range.

 Since keywords are the most effective manner for the users to express what they are
looking for in document collections, it is included in all the three query types. The only
difference among the three query classes is the inclusion/ non-inclusion of the time
dimension or in the type of queries along the time dimension (point or range queries).

 For fast retrieval of documents that contain terms in the user query, an index over the
terms in the documents needs to be built. The inverted index [3] is the most widely used
indexing technique in search engines. It is a data structure that efficiently stores for each
distinct term in the document collection, the list of all documents that contain the term. Apart
from this information, the inverted index can store a few other information like the frequency
of occurrence of the terms in a document and also position of the terms inside the
documents. This additional information can help in ranking the search results when there are
more than one result that match the user query. In its simplest form, the inverted index
correspond to a set of documents D = {D1, D2,…, Dn}, where Di represents the document
identifier. If T = {T1, T2,…Tm} represents the set of all distinct terms in D, a B+ tree is built
over T. This B+ tree, which is called the Vocabulary, maps each term to its idf score and an
inverted list of postings. Each posting stores the document identifier and other information
about the term, called its payload. Thus, each posting in the inverted list is of the form < di ,
p>, where p represents the payload corresponding to a term ti in a document di. The structure
of inverted index is as shown in Figure 2.

Figure 2: Inverted index organization

 The simple B+ tree vocabulary when extended to index temporally versioned document
sequences has a major problem. The B+ tree is built using only the document terms as the
key and thus can only search using keywords. It does not support time as one of the search
dimensions. In Section 3, we propose several solutions to handle this problem. The rest of this
paper is organized as follows, in Section 2, we discuss the related work in the area of full text
indexing, multi-dimensional data indexing and temporal data management. In Section 3, we
present the techniques that we have explored for answering temporal text containment
queries. The experimentation results of the techniques presented in Section 3 are provided in
Section 4. Finally in Section 4, we conclude this paper.

Vocabulary

Tm

t2

T1

Inverted List of
terms

Document Collections

Abc….

T1, < d1, p >
T1, < d2,p >
.
.
.
Tm

B+ tree

Inverted list

 d1, p

 d2, p

2. RELATED WORK

In this section we review the recent work in the area of full text indexing, multidimensional
indexing, temporal databases and temporal storage and retrieval, all of which form the basis
of our work.

2.1. Full Text indexing

In any IR technique, the user issues a query and all documents containing terms in the query
are retrieved. Though all the documents can be sequentially scanned to find terms in the user
query, this technique is very inefficient for large document collections. So, all IR techniques
use some form of indexing to speed up the search. In full text indexing, almost every word in
the document is used as an index term. The most popular full text indexing methods are
inverted index [3, 4] and signature files [5]. The other indexing technique which is widely
used and which is not a full text indexing technique is Latent Semantic indexing (LSI) [6, 7].
In the inverted index, for each term, the list of all documents in which the term was contained
and additional information like the frequency of the occurrence of the word in the document
are stored. The terms are organized as a B+ tree for fast lookup. When a search is performed,
the B+ tree storing the terms is queried with each term in the user query. The size of the
inverted index can be huge for large document collections. Several works like [5] address the
issue of compressing the inverted index. Since most of the space in the inverted index is
utilized for storing document IDs and offsets, integer compression techniques can be used to
restrict the size of the inverted index. In the signature file approach to indexing text, every
word is assigned a bit pattern of size F with m bits set to 1 and others set to 0. The word
signature is calculated using a hash function. The signature of the entire document is
calculated as the logical OR of all the signatures of the words present in the document. Every
query issued by the user is also assigned a signature. The query is processed by matching its
signature against that of the document. False positives can occur if a query signature matches
a document signature, but the word is not in the document. The signature files are less widely
used because of issues in the index size and the false positive rate. Another popular
Information Retrieval technique is the Latent Semantic Indexing (LSI). In most IR
techniques, the terms in the documents and the query terms are literally matched. Such
techniques fail to recognize synonymy (multiple words having the same meaning) and
polysemy (words having multiple meanings). This problem is addressed in LSI, where a
document and a query can have high cosine similarity even if they do not share common
terms. In LSI, a low rank Singular Value Decomposition (SVD) of the document-term matrix
is obtained. The projection into the latent semantic space is chosen such that the
representations in the original space are changed as little as possible when measured by the
sum of the squares of the differences. For a more detailed survey on LSI refer to [6].

2.2. Multidimensional Indexing

Multidimensional indexing structures are data structures that support indexing and retrieval
of objects that have more than dimension. Multidimensional data include points, line
segments, rectangles, and polygons in 2D, 3D or higher. Storage and retrieval of
multidimensional data is important in many business, scientific and engineering application.
Multidimensional access methods can be classified into Point Access Methods (PAM) and
Spatial Access methods (SAM) [8]. PAM is primarily designed to index and search
multidimensional points that do not have any spatial extension. SAM is designed for objects
that have spatial extent like lines, polygons or higher dimensional polyhedron. Some popular
PAM include Grid files [9], Quad-trees [10] and kd- trees [11]. The grid file is a
multidimensional array used as an index to objects that have multiple dimensions. This
method is based on hashing and guarantees that any record can be retrieved by at most two-
disk access. This is done by making use of a grid directory consisting of grid blocks and all
records in a block are stored in the same bucket. The grid itself is maintained in the main
memory and is represented as d one-dimensional arrays called scales. In Quad-trees, every
internal node conceptually represents a square and it has four children. The four children
represent the four quadrants of the square. The quad tree is recursively defined: split the
current data into four quadrant and recursively construct quad-trees for each quadrant. In kd-
trees, at each intermediate node, the k-dimensional space is split into two parts by a (k-1)
dimensional hyperplane. The direction of the split alternates between the k possibilities from
one tree level to the next. The most popular SAM techniques include R trees [12] and R+
trees [13]. In R-trees, a set of hierarchically nested Minimum Bounding Rectangles (MBR) is
maintained. Each node of the R-tree stores a variable number of elements. Each element
stores a way of identifying the child node and a MBR of all the elements inside the child
node. R+ trees are an extension of the R-trees, wherein overlapping of internal node is
avoided by inserting an object into multiple nodes if necessary.

2.3. Temporal Databases

Temporal databases are databases where time is a first class object. They have a temporal data
model and a temporal version of structured query language (SQL). Traditional relational
databases are sometimes known as snapshot databases because they do not keep the history of
the relations. In contrast, temporal databases make use of temporal attributes to record the
history of the tuples. The tuples are never deleted and they are versioned to maintain their
history. Temporal databases can be classified as Transaction-time databases [14], Valid Time
databases [15] or bitemporal databases. Transaction time is defined as the time when a fact is
stored in the database. In transaction time databases, history of the database activity is

recorded rather than the real world history. Valid time is defined as the time when a fact
becomes valid in real life. The valid time database stores the entire temporal behavior of an
object. Bitemporal data denotes both the valid time and transaction time of the data. A
bitemporal database combines the features of both the transaction and the valid databases. In
a transaction-time database, both the current and the past data needs to be maintained. Thus,
an object deletion is logical in nature, and not physical. (i.e., A tuple delete operation in the
database is treated as an update to the end time of the tuple and not as a physical delete from
the disk.) As a result, the database size grows exponentially in size with new updates to the
relations. In order to retrieve data from such huge archives, very efficient data structures are
necessary. Some of the multi-dimensional data structures discussed in Section 2.3, like quad-
trees, kd-trees and R+ trees are used for this purpose. In valid-time databases, the past states of
an object are not kept. When an object deletion occurs, the corresponding object is physically
deleted from the database. The database and the index sizes of valid time databases are much
more manageable compared to transaction time databases. For a more detailed survey on
temporal databases we refer the reader to [16].

2.4. Temporal Data Retrieval Techniques

With the growing amount of archived data both on the Internet as well as local document
collections, retrieval of time-stamped data from versioned document collections has received
some research attention in the recent years. The pioneer work in this area was done by Anick
and Flynn [17]. In their approach, the current versions of the documents are stored as
complete versions, and backward deltas are stored for the historic versions. The current
versions can be accessed very fast, whereas accessing the previous versions is not very
efficient. The V2 temporal database system [18] developed by Norvag makes use of a
combination of text indices and time indices to perform efficient text containment queries. A
more refined version of the V2 temporal database system with more efficient index space
utilization, called Interval based Temporal Text Index (ITTX) [19] was developed by the
same authors. In ITTX, an implicit assumption that the past data is less frequently queried
compared to the current data is made. Separate indices are maintained for the past and the
current data. The past data stores both the start and the end timestamps. The current data
stores a single timestamp, denoting the start timestamp of the data. Since there is no end
timestamp for current data, access to this data is much faster. When the current data is
updated, it is transferred from the current index to the past index and its end timestamp is
updated. Text search over temporally versioned document collections such as the web has
been studied in [20]. Extensions to the inverted index to support temporal queries are
proposed. Approximate temporal coalescing is used to reduce the size of the inverted index.
In temporal coalescing adjust versions of the inverted index postings that have similar
payloads are merged, while keeping the maximum error bounded. Several optimizations are

made by materialization of the inverted index. Though this technique results in smaller index
sizes, it only provides approximate answers to queries, which might not be desirable in many
applications.

3. PROPOSED SOLUTIONS

The inverted index is an indexing data structure that is currently an integral part of all full
text search engines. Any extension made to a text search engine to support temporal term
queries clearly requires modifications to the inverted index. In the regular inverted index, a
vocabulary B+ tree is maintained which maps the terms to their inverse document frequency
(idf) score and an inverted list. The idf score is a measure of the informativeness of the term.
The inverted list LT of a term T contains a list of postings of the form <Document ID, term
frequency>. The Document ID is a unique identifier that is associated with a document and
the term frequency is the frequency of occurrence of T in the document identified by
Document ID. It is important to note that for every term T, it has a single idf score, common
to the entire document collection. However, the tf scores are document specific and their
values can vary across different documents in the same collection. In order to find documents
in a ranked order according their relevance to the query a relevance function is necessary.
The relevance function used in most search engines is the tf.idf score. Higher tf.idf score is
considered to imply higher relevance between the query and the document. When the
inverted index is extended to support temporal document collections, it is much more
efficient to decouple the tf and the idf scores. This is similar to the technique used in [20]. At
a snapshot of time, a term has a single idf score and over time its scores might vary. So, the idf
score for a term is essentially a time series. For all the terms in the document collection, we
have to manage a collection of time series data. The index to store the idf scores is shown in
Figure 3.

Fi

Figure 3: The idf index

The idf scores are easy to maintain, as there is not much data volume involved. In this work,
we focus on the more difficult problem of maintaining the tf scores. In the rest of the paper,

time

T2

idf
Index

we use the following notation: T represents the terms of the document, Di represents the
document identifier, t represents the time at which the document di was alive. The terms in the
user queries are represented by Tq.

 We have persued two different approaches to the problem of indexing temporal document
collections. In the first approach, every version of a document is treated as a new document.
So, subsequent versions of the same document get different document identifiers even if the
changes between them were minimal. Consider two different versions of a document, with
document identifiers D1 and D2. A term Ti can occur in both documents D1 and D2. In this
case, the term Ti is indexed twice, once as the term Ti belonging to D1 and the next time as the
term Ti belonging to D2. This approach simplifies the problem of indexing temporal
document collections to a large extent, but the resulting index sizes can be huge. The
Vocabulary Index, Hierarchical Vocabulary-Time Index, Multidimensional Index (kd-tree)
and the Independent Vocabulary and Time Index techniques explained in the next
subsections are consistent with this approach. In the second approach, a document and all its
subsequent updates are treated as a single document with multiple versions. In this case, the
document D and all its versions v1, v2,…vn are represented as D.v1, D.v2, … , D.vn. If the
frequency fi of a term Ti is same in consecutive versions of the same document, the term is
added to the index just once with a start time (the time at which term first occurred in
document with frequency fi) and the current time as the end time. When the frequency of the
term changes from fi to some other value, say fj, its end time corresponding to fi is updated
and a new entry corresponding to the frequency value fj is added to the index. The term vs
time representation of this approach is Figure 4. This corresponds to a single document and
all its revisions. The techniques explained in subsections 3.5. and 3.6. fall under this
category.

Figure 4: Time Vs Term representation

3.1. Vocabulary Index

In the naïve approach, a vocabulary V containing all the distinct terms in the versioned
document set is maintained. For each distinct term Ti in the vocabulary V an inverted list of its
postings is maintained. Each posting stores the document Di in which the term was present,
the time ti at which the document Di was alive and the frequency fi of the occurrence of the
term. Further, the postings for a term are sorted in the order of the frequency of occurrence
of the term. The vocabulary V is organized as a B+ tree, for fast lookup of the terms. The
organization is as shown in Figure 5.

Figure 5: Vocabulary Index
 For type I queries the Vocabulary index can be used to find the posting list corresponding
to terms in the query. For type II and III queries, after finding the postings list corresponding
to a term. The list it has to be filtered to remove the documents that were not alive during the
time slice or the interval. The result of all these three query types on the vocabulary index is
already sorted on the frequency of occurrence of the term. Though the vocabulary index is
highly efficient for keyword-only queries, for queries that involve both keywords and time,
they are inefficient, as the posting list has to be linearly searched to find the postings alive
during the time mentioned in the query. This requires bringing all the postings from the disk
to the memory, which incurs a significant cost. The naïve algorithm to perform a type III
query over the vocabulary index is shown in Figure 6.

 Input:
 Term: Tq
 Time range: (ts, te)
 Procedure:
1 From the vocabulary index V, find

the posting list P corresponding to
Tq

2 For each entry pi = (D, t, f) in P
3 if (ts < t) AND (t < te)
4 Add pi to Result

B+ tree

T2 T1

Vocabulary

D1, t1 , f1 Inverted list

D2, t2 , f2

D1, t1 , f1

D2, t2 , f2

Tn

Figure 6: Algorithm for Type III query over the vocabulary index

3.2. Hierarchical Vocabulary-Time Index

The problem with Vocabulary index is that it is not efficient for queries involving both time
and keywords. Since time was not a part of the index, all the elements in the posting list had
to be linearly searched for the time values mentioned in the query. In order to solve this
problem using the Hierarchical Vocabulary-Time (HVT) Index an index is built both on the
time as well as the keywords. This approach is similar to the two level AP-Index proposed by
Gunadhi and Segev [21]. The structure of the HVT index is shown in Figure 7. In the HVT
Index, first a B+ tree on the terms in the documents is built. Each leaf entry Ti of the B+ tree
points to an append-only tree indexed on the time called a time index. The leaf entry of the
time index points to a posting list (<Document ID, frequency>) sorted on the frequencies.

Figure 7: Hierarchical Vocabulary-Time Index

 For type I queries, the vocabulary index can be queried to find the time index that
corresponds to a term. The posting list of all the leaves in that time index are then merged
and then sorted on the frequency of occurrence of the terms. For type II queries, the
vocabulary index is first queried to find the time index corresponding to the term and then
the time index is queried on the time slice given in the query. This returns the results sorted
on the frequency of occurrence of the term. For type III queries, involving keyword and a
time range [ts, te) the same procedure like before is followed, but the only change is that the
posting lists corresponding to ti > ts and ti < te are merged and then sorted on frequency fi.
The algorithm to perform Type III queries on HVT index is shown in Figure 8.

……… tn t2 t1

…Tn T2 T1

Vocab
Index

Time Index

Time Index

 D1, f1

 D2, f2

 Input:
 Term: Tq
 Time range: (ts, te)
 Procedure:
1 From the vocabulary index V, find

the Time Index TI corresponding to
Tq

2 If exists(TI)
3 From TI find the entries t such

that t > ts and t < te
4 For each such entry ti
 Result = Result + posting list

corresponding to ti
5 Sort Result on the frequency f

Figure 8: Type III queries on HVT Index

 The HVT Index is very efficient for type II and III queries because an index on the time
exists. However, for type I query the results are not sorted on the frequency and this sorting
operation acts as a bottleneck.

3.3. Multi-Dimensional Index

In the multi-dimensional index approach, the <term, time> pair (<T, t> pair) obtained after
breaking the document into its terms is organized as nodes of a kd-tree. Further the nodes
point to a posting list of <Document ID, frequency> pairs sorted on the frequency. The
distribution of the <T, t> pair on a plane is shown in Figure 9. The organization of this pair as
a kd-tree is shown in Figure 10. Each node of the kd-tree is associated with rectangle in the 2-
dimensional space. The terms represent the horizontal axis of this 2-d rectangle and the time
represents the vertical axis. When a new <T, t> pair is inserted into a node of the kd-tree (or
equivalently into a rectangle), the rectangle is split by a horizontal or a vertical splitting line
that passes through that point. In order to choose the cutting dimension, the time and the term
axis are alternated. In the example in Figure 10, the root is split on the term axis. All nodes to
the left of the root have term value less than the root node and all nodes on the right have
higher term values. In the next level of the tree the nodes are split on the time dimension.
This way the cutting dimension need not be explicitly stored anywhere and can be
determined implicitly as the tree is being traversed.

Figure 9: A distribution of the (term, time) pair on a plane

Figure 10: A kd-Tree for the (term, time) distribution in Figure 7

 For type I queries involving only keywords, all nodes to the left of a parent node split on
the term dimension has term values less than the parent and all nodes on the right have
greater term values. While traversing through the kd-tree only the alternate levels of the tree
that are split on the terms are used for traversal and the levels split on the time dimension are
not used at all. For type II queries, the levels of the tree split on time and the term dimensions
are both used for traversal. For type III queries that involve a time range, the posting list of all
matching nodes have to be merged and sorted according to the frequency of occurrence of
the term. The run time of the multidimensional index created using kd-trees is O(log n)
assuming that the elements are inserted in a random order. However, in our application, the
new terms added to the index are in monotonically increasing time order. Thus, the kd-tree
index becomes severely unbalanced and the performance is several orders of magnitude
slower compared to the balanced kd-tree. The experimentation results in section 4 provide
more insights on the compatibility of kd-trees for temporal term data.

3.4. Independent Vocabulary and Time Indices

The Independent Vocabulary and Time (IVT) index addresses some of the issues
encountered in the previously discussed techniques. In the IVT index approach separate
indices are maintained for both the term and the time dimension. The terms in the document
are organized as a B+ tree in the vocabulary index. The leaves of the tree point to a posting
list of <Document-ID, frequency> pair sorted on the frequency. The time values are organized
as a self-balancing splay tree [22]. The advantage of maintaining time values as a splay tree is
that even though the values being inserted into the tree are monotonically increasing, the tree
remains balanced and provides an amortized running time of O(log n). The leaves ti of the
Time Index point to a posting list of document IDs. These document IDs represent the
documents that were alive at time t = ti. The structure of the IVT index is as shown in Figure
11.

Figure 11: Independent Vocabulary and Time indices.

 For type I queries, since time is not a part of the search, only the Vocabulary index is used
to answer the queries. Further, the <Document ID, frequency > list corresponding to a term is
pre-sorted on the frequency. Thus, search with a term on the Vocabulary index will retrieve
documents in the increasing order of the frequency of the terms, irrespective of the time at
which the documents were alive. For type II queries, both the Vocabulary index and the
Time index have to be used to answer the queries. First, the Vocabulary Index is queried to
find the term in the query. This returns the posting list corresponding to the term. However,
it is possible that some documents in this retrieved list were not alive at the time mentioned in
the query. So, the Time Index is queried with the time mentioned in the query. This returns
the set of documents that were alive at that time. Finally, the results from the two indices are
joined on the document ID attribute to obtain the final result. The algorithm to perform type
III queries over the IVT index is shown in Figure 12. In step one, the term is searched in the
vocabulary index. The list of all documents in which the term was present is retrieved and it is
already sorted on the frequency of occurrence of the term. In the second step, the time index

D1 f1

D2 f2

. .

D1

D2

.

t1 ….… Tn T2
T1

Vocab
Index

Time
Index

is searched to find all documents alive during the queried time. Further, step one and two are
completely independent of each other and can be parallelized for speedup.

 Input:
 Term: Tq
 Time range: (ts, te)
 Procedure:

1 From the vocabulary index V, retrieve
the list L of documents containing the
term.

2 From the Time index find the list of
documents D = {D1, D2, … Di} alive
between ts and te

3 Result = Join L and D on the document ID
attribute.

Figure 12: Type III queries on the IVT index

3.5. Multidimensional Index (R+ trees)

In this approach, the <term, time, frequency> (<T, t, f>) triplet is organized as the nodes of a
R+ tree. Further, the nodes point to a list of document version numbers. The organization of
the triplet is shown in Figure 13.

Figure 13: Organization of <time, term, frequency> triplet

 In our approach, the nodes of the R+ tree correspond to a 2-dimensional rectangle. Each
non-leaf node of the R+ tree contains entries of the form <pointer, MBB), where pointer is the
address of the child node and MBB is the Minimum Bounding Box of all entries in the child
node. The leaf nodes are of the form <pointer, object>, where pointer refers to the database

object, and object is the <T, t, f> triplet. The R+ tree for the organization in Figure 13 is
shown in Figure 14. The objects that span across more than one MBB are stored on several
different nodes. The way search is performed for all the three query types on the R+ tree is
very similar. For every rectangle in a node, it has to be verified if it overlaps the search query.
If it overlaps, the corresponding child node has to be searched also. The whole tree is
searched recursively until all nodes that overlap with the search query have been traversed.
When a leaf node whose start and end times overlaps with the query is reached, the object is
added to the result list. The performance of R+ trees index over temporal text is sub-optimal
as the data values vary independently of the time. The data values are not clustered and this
results in more MBBs and hence much bigger R+ trees, resulting in poor performance as
shown in the experimentation section.

Figure 14: R+ tree for a set of <T, f, t> triplets

3.6. Vocabulary and Interval Index

 This approach is similar to the IVT index discussed in Section 3.4. In this approach,
separate indices are maintained for both the terms and the time values. The <terms,
frequency> pair are organized as a B+ tree in the vocabulary index. The leaves of the tree
point to a posting list of Document ID.Version. The time values are organized as an interval
tree [23]. This interval tree stores elementary intervals of the form <tstart ,tend>. The elementary
intervals point to the <Document ID.version> list, which is the list of all document and its
versions that were active between time tstart and tend. The interval tree is nothing but a binary
tree where every node N contains entries of the form N.value and two pointers N.left and
N.right. All the nodes to the left of N have values less than N.value and all the nodes to the
right of N have greater than that of N. The elementary intervals with tend values less than
N.value are stored in the left subtree of N and those with tstart greater than N.value are stored
in the right subtree of N. The intervals with tstart value less than equal to the N.value and tend
value greater than equal to the N.value are stored in the node N. A set of intervals and their
corresponding interval tree is shown in Figure 15. The interval tree can be used to find
documents alive during a queried time slice tq or a time range (tqs, tqe). For a more details on
point and range search algorithms on the interval trees refer to [23].

Figure 15: A set of intervals and their corresponding Interval tree

The procedure to perform all the three query types over the Vocabulary and Interval index is
similar. In Figure 16, we show type III queries over the Vocabulary and the Interval Index.

 Input:
 Term: Tq
 Time range: (ts, te)
 Procedure:

1 From the vocabulary index V, retrieve
the list LV of document versions
containing the term.

2 From the Interval index find the list of
document versions DV alive between ts
and te

3 Result = Join LV and DV on the document
ID.version attribute.

Figure 16: Type III queries on the VINT index

4. EXPERIMENTAL EVALUATION

We conducted a set of experiments on real world datasets to compare the solutions proposed
in the previous section. Since all the solutions that we have proposed are exact techniques,
they produce similar precision and recall values. For the purpose of comparison, we mainly
focus on the index size and the retrieval times.

4.1. Data and system setup

The techniques proposed in this paper were implemented using Java JDK 1.5. The
experiments were run on a Xeon 3 GHz machine with 2GB of RAM. The numbers reported
were averaged over 10 runs. All the data and the indices were stored using the Berkley DB
open source database system [24].

 For the data, we made use of revision histories from the English Wikipedia. The Wikipedia
provides access to all the revision histories for a wiki article. There are some popular wiki
articles that involve a lot of edits and modifications. There are also topics for which the edits
are much less frequent and involve minor changes. We constructed two datasets from each of
these two categories. Dataset 1 corresponded to 1000 versions of a wiki page for which there
were frequent and major modifications spanning over a period of sixteen days. The average
number of terms in this wiki page (excluding stop words) was 4341. Dataset 2 corresponded
to 1000 versions of a wiki page for which the changes were minor and span over a year. The
average term count for this wiki page was 2136. We built a query workload using a few
keywords that were present in the wiki pages and also a randomly sampled time slice/range
from within the duration spanned by two datasets.

4.2. Index sizes

Our first set of experiments examine the index sizes of the techniques proposed in the
previous section. The index size for both our datasets is summarized in Table 1.

Technique
Index size for

Dataset 1 (in MB)
Index size for

Dataset 2 (in MB)

Vocabulary Index 28.6 16.2

HVT Index 67.4 33.7

kd tree Index 46.8 31.5

IVT Index 72.3 36.7

R+ tree Index 65.7 21.6

VINT Index 60.1 20.6

Table 1: Index sizes for the two datasets

The vocabulary index had the least size for both the datasets as it only indexed the term
values. The IVT index had the maximum size as both the time and the term information are
both indexed independently. The R+ tree and the Vocabulary index approaches, which

associate time spans with the terms, are much smaller compared to the corresponding
techniques that associate timestamps with terms. However, the size improvement was much
more prominent for Dataset 2 compared to Dataset 1. This is because Dataset 2 had entries
with minor modifications across versions. Thus, the terms have much longer time spans and
the number of index entries is less. The growth in the index size for the VINT index is shown
in Figure 14. For dataset 1, where the modifications between versions is much more
prominent, the index size grows near exponentially. For the dataset 2, where modifications
between versions are subtle, the growth in the index size is less than exponential.

Figure 14: Growth in index size for the VINT index

4.3. Query Execution time

 In order to compare the query execution times, we executed the three query types on our
two datasets. The terms to search were randomly chosen from arbitrary versions of the
document. For type II and III queries, a time slice/range was randomly generated from the
duration spanned by the dataset. Figure 14 shows the search time for the type I query over
the dataset. The performance was similar for the Vocabulary index, HVT index and the VIT
index. Since, all these three techniques had separate indices for the vocabulary, the
performance for the search involving only keywords was better compared to the performance
of the other techniques. The VINT index had the best performance, as the size of the
vocabulary index was the smallest for this technique.

Figure 14: Type I queries over the two datasets

The performance for type II and III queries is shown in Figure 15 and 16 respectively. For
queries involving both time and the terms, the VI index slows down considerably as there is
no index on the time attribute. The techniques that index both the time and the term values
perform better than techniques that index only the terms. The query execution time is higher
for type III queries compared to type II queries. Also, the KD tree and the R+ tree approaches
were slower due to the large index sizes.

Figure 15: Type II queries over the two datasets

Figure 16: Type III queries over the two datasets

5. Conclusion

There is a growing importance for temporal text containment queries over versioned
document sequences. The traditional information retrieval techniques, which provide efficient
keyword based search, have to be extended to support search using both keywords and time.
In order for the extensions to be practical, they need to be to be efficient with respect their
space utilization and also their query execution times. In this work, we have examined various
techniques for answering temporal text containment queries. We have also performed tests
with two different datasets to closely examine the performance of the proposed techniques.

REFERENCES

1. Masanès, J., Web Archiving: Issues and Methods. Web Archiving, Springer, 2006: p. 1-53.

2. Song, S. and J. JaJa, A New Technique for Archiving Temporal Web Information, in

UMIACS Technical Report, University of Maryland Institute for Advanced Computer

Studies. 2008.

3. Zobel, J. and A. Moffat, Inverted Files for Text Search Engines. ACM Computing Surveys,

2006.

4. Zobel, J., A. Moffat, and K. Ramamohanarao, Inverted files versus signature files for text

indexing. ACM Transactions on Database Systems (TODS), 1998.

5. Anh, V.N. and A. Moffat, Inverted Index Compression Using Word-Aligned Binary Codes.

Information Retrieval, Kluwer Academic Publishers. 8: p. 151-166.

6. Deerwester, S., et al., Indexing by Latent Semantic Analysis. Journal of the American

Society for Information Science, 1990.

7. Papadimitriou, C., et al., Latent Semantic Indexing: A Probabilistic Analysis. Journal of

Computer and System Sciences– Elsevier, 2000.

8. Gaede and O. Gunther, Multidimensional Access Methods. ACM Computing Surveys, 1997.

9. Nievergelt, J., H. Hinterberger, and K.C. Sevcik, The Grid File: An Adaptable, Symmetric

Multi-Key File Structure. European Cooperation in informatics on Trends in information

Processing Systems, 1981.

10. Samet, H., The Quadtree and Related Hierarchical Data Structures. ACM Comput. Survey,

1984.

11. Robinson, J.T., The KDB-tree: a search structure for large multidimensional dynamic

indexes. Proceedings of the ACM SIGMOD international conference, 1981.

12. Guttman, A., R-Trees: A Dynamic Index Structure for Spatial Searching. ACM SIGMOD

International Conference on Management of Data, 1984.

13. Sellis, T., N. Roussopoulos, and C. Faloutsos, The R+-Tree: A dynamic index for multi-

dimensional objects. VLDB, 1987.

14. Date, C.J., H. Darwen, and N. Lorentzos, emporal Data & the Relational Model. Morgan

Kaufmann, 2002.

15. Snodgrass, R. and I. Ahn, A taxonomy of time databases. ACM SIGMOD international

conference on Management of data, 1985.

16. Salzberg, B. and V.J. Tsotras, Comparison of Access Methods for Time-Evolving Data.

ACM Comput. Survey, 1999. 31(2): p. 158-221.

17. Anick, P.G. and R.A. Flynn, Versioning a full-text information retrieval system. ACM

SIGIR Conference on Research and Development in Information Retrieval, 1992: p. 98-111.

18. Nørvåg, K., The design, implementation, and performance of the V2 temporal document

database system. Information & Software Technology, 2004. 46(9): p. 557-574.

19. Nørvåg, K., Space-Efficient Support for Temporal Text Indexing in a Document Archive

Context. Europen Conference on Digital Libraries, 2003.

20. Berberich, K., et al., FluxCapacitor: efficient time-travel text search. VLDB, 2007.

21. Gunadhi, H. and A. Segev, Efficient indexing methods for temporal relations. Transactions

on Knowledge and Data Engineering, 1993: p. 496-509.

22. Cole, R., et al., On the Dynamic Finger Conjecture for Splay Trees. SIAM Journal on

Computing, 2000: p. 1-43.

23. Cormen, T.H., et al., Introduction to Algorithms. MIT Press and McGraw-Hill, 2001.

24. BerkleyDB: Open Source database, www.oracle.com/technology/products/berkeley-

db/index.html

