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Abstract: This paper discusses the performance of the genetic algorithm under an imperfect, albeit static fitness 
function, where the fitness of any solution is modified by the addition of a noise term N(0, σ2).  According to a 
developed definition, which discounts the algorithm-independent effects of noise upon the distribution of fitness 
values, the decrease in performance is found to be o(σ), even though the effect of the noise-related deterioration in 
the structure of the problem is Ω(σ).  It is inferred that while this deterioration creates difficulty for the algorithm in 
finding solutions with a high observed fitness, the solutions it does find are less likely to have a much lower true 
fitness.  In part, this appears to be a consequence of the genetic algorithm’s ability to actively avoid solutions that 
have a high observed fitness as a result of a large noise term. 
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Introduction 

Evolutionary algorithms are believed to be effective at tackling problems where the fitness of 

any given solution cannot be determined exactly.  This belief has been shaped by their successful 

application towards a number of such problems, an example being the generation of C code via 

genetic programming [4], where each solution is a program, whose correctness can be tested only 

on a limited number of cases.  However, studies where the phenomenon of noise-resistance is 

rigorously examined are fewer in number. 

The principles behind evolutionary algorithms in general, and genetic algorithms specifically, 

have some basis upon theories of evolution.  Given this notion, many researchers [2] and users of 

evolutionary algorithms point out that Nature does not deal with perfect fitness functions: quite 

often, chance occurrences can kill strong organisms, while allowing weaker ones to live on, and 

successfully reproduce.  A computational view suggests that by virtue of having access to an 

entire population of solutions, an evolutionary algorithm holds a high amount of knowledge of 

the search space, and this knowledge endows it with noise-resistant properties.  In this vein, [2] 

suggests that increasing the population size can improve the performance of an evolutionary 

algorithm when it is faced with a noisy fitness function.  Along with [1], it explores the effects of 

noise upon the solution of the sphere model by genetic and evolution strategy algorithms, and 

hypothesizes that noise has similar effects on all evolutionary algorithms.  Experimental studies 

have been complemented by theoretical excursions, such as [7], which presents a version of 

Holland’s Schema Theorem, adapted to situations where stochastic effects are present in the 

fitness function. 

The goal of this paper lies in examining the effect of fitness function imperfections upon the 

performance of genetic algorithms.  It is hypothesized that the genetic algorithm will exhibit a 

“graceful” degradation as the quality of the fitness function deteriorates, and is capable of 
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acceptable performance for moderate imperfections in the function.  The paper will present and 

discuss the result of an experiment, which was performed in an effort to provide the words 

“acceptable” and “moderate” with a more concrete meaning.  Furthermore, an attempt will be 

made to infer the causes of the degradation. 

 

Theoretical Considerations 

In order to assess the impact that noise has on the performance of genetic algorithms, an 

appropriate, numerical definition of performance must be specified.  It is tempting to define the 

performance PΠ(g) of a genetic algorithm (or a group of genetic algorithms) on a problem Π to 

be the expected value of the fitness fbest(g) of a best solution found within g generations: 

 

PΠ(g) = E[fbest(g)]         (1) 

 

However, when the fitness function is imperfect, the definition’s utility is questionable.  The 

addition of noise transforms Π into a different problem Θ, which is effectively presented to the 

algorithm.  If (1) is adopted, one cannot, in general, expect any algorithm that has no knowledge 

of Π to have the same performance when it is presented with Θ as when it is presented with Π.  

For this reason, a definition of performance should not be based on algorithm-independent 

effects of noise, which are a direct consequence of the convolution of noise with the fitness 

density distribution of a problem, which is defined as: 

 

φΠ(x) = |{π ∈ Π : π has fitness x}|      (2) 

 

A cumulative density function can also be defined: 
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FΠ(x) = Σ(∀t≤x) [φΠ(t)]        (3) 

 

A reasonable assumption is made that for higher values of x, values of φΠ(x) generally 

decrease as x increases; in other words, better solutions tend to be less common.  For the purpose 

of this discussion, statements about solutions to some problem Π will be conditional on the 

premise that their fitness values are high enough for this assumption to hold.  Two effects of 

noise can now be described.  The first effect, which will be referred to as the relaxation effect, 

causes φΘ(x) to be “flatter” and more elongated than φΠ(x).  As a result, if x and y’ are the fitness 

values of solutions in Π and Θ, respectively, where FΠ(x) = FΘ(y’), then E[y’] > E[x] will hold. 

An opposite tendency, termed the inflation effect, makes it likely that a solution’s observed 

fitness is greater than its true fitness.  The sloping density assumption suggests that in the 

neighborhood of the observed fitness value y’, the majority of solutions to Π have a fitness that 

is less than y’.  Consequently, if y is the true fitness that corresponds to y’ (i.e., the fitness of the 

corresponding solution in Π), then E[y’] > E[y] will hold. 

Maintaining the definitions for x, y, and y’, and selecting some small, non-negative constant 

ε, the notions of relaxation R(Π,Θ)(f) and inflation I(Π,Θ)(f) can now be provided with a numerical 

definition: 

 

R(Π,Θ)(f) = E[(y’-x) | (f-ε ≤ x ≤ f+ε)]      (4) 

 

I(Π,Θ)(f) = E[(y’-y) | (f-ε ≤ y’ ≤ f+ε)]       (5) 

 

Thus, the following is expected: 
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y ≈ x + R(Π,Θ)(x) – I(Π,Θ)( x + R(Π,Θ)(x) )      (6) 

 

As the results will show, for the solution spaces of the problems that are discussed in this 

paper, R(Π,Θ)(x) < I(Π,Θ)( x + R(Π,Θ)(x) ) is true, implying that y < x is expected.  Therefore, the 

combined algorithm-independent effects of noise are viewed as being harmful. 

Given the aforementioned definitions for relaxation and inflation, it is relatively 

straightforward to express a notion of performance that discounts these algorithm-independent 

effects.  Let E[f] = E[fbest(g)] be the expected fitness value of a best solution found within g 

generations for problem Π.  Likewise, define E[h] = E[hbest(g)] to be the expected true fitness 

value of a best (according to the distorted fitness function) solution found within g generations 

for problem Θ.  Then, the definition of performance can be expressed thus: 

 

P(Π,Θ)(g) = E[h] + I(Π,Θ)( E[f] + R(Π,Θ)(E[f]) ) – R(Π,Θ)(E[f])   (7) 

 

It is possible to show that for an unbiased random search algorithm, which generates a 

number of solutions at random and selects the best one, P(Π,Θ)(g) ≈ P(Π,Π)(g) for all time values g.  

This agrees with the intuitive notion that an unbiased random search is a noise-insensitive, albeit 

not typically very effective algorithm.  Moreover, this property is a corollary of the fact that in 

the average case, an unbiased random search algorithm’s performance in the face of noise is 

dictated strictly by the relaxation and the inflation effects.  Therefore, for difficult problems, 

where the magnitude of these effects cannot be calculated exactly, a random search can be 

employed in approximating them.  The details of this approximation will be covered in the 

following section. 
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Methods 

The well-known 0-1 knapsack problem [3,6] was selected to benchmark the algorithm’s 

performance.  The problem can be formally defined as follows: 

 

There exist n items, where an item i has a value v[i] and a size s[i], where v[i] and s[i] are 

non-negative real numbers.  For a knapsack of capacity C, find a combination (subset) K of 

items, subject to the constraint ∑i∈K s[i] ≤ C, such that the value ∑i∈K v[i] is maximized. 

 

For the purpose of the experiment, two problems – one lightly constrained, and one heavily 

constrained – were randomly generated.  Both problems consist of 50 items, where values and 

sizes are uniformly distributed between 0 and 10.  The first problem’s items have an approximate 

total size stot ≈ 270.61; it was assigned a knapsack capacity of 200.  The second problem’s total 

size and capacity values are 229.36 and 100, respectively. 

The experiment employed a rather standard version of the genetic algorithm [5], which was 

implemented by the author in the JavaTM programming language.  A binary encoding was used to 

represent arbitrary solutions to the knapsack problem, since it offers a very natural representation 

– the presence of an item in the knapsack is indicated by a “1” in the corresponding locus of the 

chromosome, while the absence is indicated by a “0”. 

In the algorithm, the initial population of individuals is generated randomly, and for each 

individual, an item is placed into the knapsack with a probability 0.5, thus giving each possible 

solution the same likelihood of being present initially.  Given an existing generation of S 

solutions, the genetic algorithm creates a new generation (of the same size S) in the following 

manner.  After the fitness of every solution is computed by a method, which shall be 

subsequently outlined, two elite (best) solutions are carried over to the next generation.  
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Tournament selection with replacement is then repeatedly applied, with a tournament size st, 

each time choosing two solutions to be potential parents.  After each application, the parents are 

subjected to one-point crossover, with a probability pc.  Each parent (or resulting child) can be 

considered for mutation, with a probability pm.  During mutation, each bit is inverted with 

probability pi. 

The fitness f = ∑i∈K v[i] of any infeasible solution (i.e., any solution where ∑i∈K s[i] > C 

holds) is modified by a penalty function [6] as follows: 

 

f = ∑i∈K v[i] – (∑i∈K v[i])(∑i∈K s[i] – C) ÷ ( min(C, stot – C) )   (8) 

 

A random number generator (RNG) is then used to modify the true value f to an observed 

value f’ by the addition of a normal random variable with a mean of 0 and a standard deviation 

of σ: 

  

f’ = f + N(0, σ2)         (9) 

  

To simulate a problem that has a static, but imperfect fitness function, the observed fitness f’ of 

any given solution is computed only once, as necessary.  After the initial computation, this 

fitness value is hashed by the binary string of the solution, so that it can be retrieved if the fitness 

of this solution is requested again. 

In order to produce results that not only carry greater statistical significance, but also enjoy 

an independence from one specific algorithm setting, the genetic algorithm was applied to the 0-

1 knapsack problems under various parameter sets, as well as different RNG seeds.  All possible 

combinations of parameters were employed, subject to the following constraints: (pc, pm) ∈ 
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{(0.9, 0.1), (0.5, 0.5)}, st ∈ {2, 5}, S ∈ {50, 100}, pi ∈ {0.02}.  In addition, two choices of seed 

values were available both for the RNG that is used by the algorithm to generate the initial 

population, and for the RNG that is used in producing new generations.  In effect, the system 

simulated a collection of 25 = 32 genetic algorithms, each with different parameter settings. 

This set of genetic algorithms was invoked on each problem, for thirteen different noise 

levels.  Each algorithm was allowed to run for 15 generations, and the best observed fitness 

f’best(15), as well as the true fitness fbest(15) of the corresponding solution were recorded.  For 

each noise level, ten invocations were performed, with the noise-producing RNG initialized with 

a distinct seed each time.  Thus, for each of the two problems, and for every noise level, any 

given measurement is an average of 32 × 10 = 320 genetic algorithm runs. 

To assess the algorithm’s performance according to the definition developed earlier in the 

paper, the relaxation and inflation effects were approximated by measuring the performance of a 

simple unbiased random search algorithm on the two problems.  First, this algorithm was applied 

to each problem without noise, until it generated a result that is as close as possible to the 

corresponding noise-free result produced by the genetic algorithm.  The average time (measured 

in the number fitness function evaluations) necessary to achieve these results was 80,425 and 

105,100, respectively.  Subsequently, the algorithm was invoked on the two problems with 

positive levels of noise, but for the same number of evaluations.  As for the genetic algorithm, 

ten invocations were performed at each noise level, with ten distinct noise-producing RNG seed 

values.  Furthermore, for each such seed, thirty-two different seed values were used for the 

random algorithm’s RNG.  Thus, for the random search, each given measurement is also an 

average of 320 trials. 
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Results 

For the random search algorithm (RS), the observed fitness curves of Figure 1 increase 

relative to the noise level σ, indicating the presence of the relaxation effect.  True fitness, on the 

other hand, decreases as σ increases, as a result of a more powerful inflation effect.  Similar 

trends are noted for the genetic algorithm (GA), but with a significant difference – for higher 

levels of noise, the observed fitness values of solutions that are returned by the genetic algorithm 

become progressively lower, relative to the corresponding fitness values that are discovered by 

the random search.  In other words, as the noise level increases, the genetic algorithm’s progress 

towards the upper tail of the fitness density distribution φΘ(x) is impeded.  In fact, the ∆f’best(15) 

curves of Figure 2 indicate that this progress decreases at a rate that is somewhat greater than 

linear in σ.  Thus, it appears that the genetic algorithm is affected by the noise-related  

 

 

 Figure 1: True and observed fitness values for best solutions found to Problem 1 (P1) and Problem 2 (P2). 
 

 

Figure 2: The differences ∆fbest(15) and ∆f’best(15) between the genetic algorithm and the random search. 
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deterioration of the structure of the fitness landscape.  On the other hand, from the definition that 

is adopted in this paper, it follows that the ∆fbest(15) curves show the relative performance of the 

genetic algorithm (with values close to 0 corresponding to noise-free performance), which  

decreases at a rate that is much slower than linear in σ, and in fact, may be approaching a 

constant value. 

 

Discussion and Conclusions 

One possible explanation for the seeming contradiction between the ∆fbest(15) and ∆f’best(15) 

curves is that at the observed fitness values, which the genetic algorithm reaches (such as 228.25 

and 194.69 for Problems 1 and 2, respectively, at σ = 24), the inflation effect is considerably 

smaller than at corresponding higher fitness values (251.11 and 220.16 at σ = 24) reached by the 

random search algorithm.  In order to test for this possibility, the inflation effect was 

experimentally measured for each problem at σ = 24, by running the random search algorithm 

until it reached a value that is close to the observed fitness value given by the genetic algorithm 

for σ = 24, and subtracting the corresponding true fitness value.  For Problem 1, I(Π1,Θ1)(251.11) 

≈ 80.70, while I(Π1,Θ1)(228.25) ≈ 67.27, and for Problem 2, I(Π2,Θ2)(220.16) ≈ 89.11, while 

I(Π2,Θ2)(194.69) ≈ 71.77.  This suggests that the primary reason for the genetic algorithm’s robust 

performance in spite of its relative inability to take a full advantage of the relaxation effect is 

indeed statistical in nature – while for higher levels of noise, the observed fitness values of 

discovered solutions lie farther away from the upper tail of the fitness density distribution, these 

solutions are expected to be less misleading. 

At the same time, the reduced inflation effect does not account for the full extent of the 

robustness, since the difference between f’best(15) and fbest(15) is 62.92 for Problem 1 and 67.71 

for Problem 2.  Thus, it is apparent that the genetic algorithm has some ability to differentiate 
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between solutions that have a high observed fitness due to a large noise term, and solutions 

whose high observed fitness corresponds to a high true fitness.  The author believes that this is an 

interesting phenomenon, both from a theoretical and a practical point of view, and that it 

deserves further study, which could be the subject of future work.  Presently, a hypothesis is 

made that if a solution’s observed fitness carries a particularly large noise term, then it tends to 

appear as a “spike” in the space of surrounding solutions, according to some notion of distance 

that is used by the genetic algorithm, and is less likely to be reached. 

A final observation is that for both the heavily constrained and the lightly constrained 

problem, results are qualitatively similar, although the performance curve for the lightly 

constrained problem appears to have greater random variation.   This fact gives hope to the idea 

of building a generalized theory for predicting how an evolutionary algorithm will be affected by 

noise, although experimentation with other problems will be necessary for the endeavor.  Future 

research could also involve building more complex models of fitness function imperfections that 

can be present in various situations, and assessing the impact of such imperfections upon 

evolutionary algorithms. 
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