Skipping Streams with XHints

Akhil Gupta

Sudarshan S. Chawathe

Department of Computer Science, University of Maryland, College Park, MD 20742
{akhilg,chaw}@cs.umd.edu

Abstract

When streaming semi-structured data is processed by
a well-designed query processor, parsing constitutes
a significant portion of the running time. Further
improvements in performance therefore require some
method to overcome the high cost of parsing. We
have designed a general-purpose mechanism by which
a producer of streaming data may augment the data
stream with hints that permit a downstream proces-
sor to skip parsing parts of the stream. Inserting
such hints requires additional processing by the pro-
ducer of data; however, the resulting stream is more
valuable to consumers (since they have to perform
less processing) , making such processing worthwhile.
We present a set of hint schemes and describe how
they are used by query engines. We demonstrate the
benefits of our approach using an experimental study
based on a hints-aware XPath query engine. Our re-
sults show that XHints can improve the performance
of XPath query engines by as much as 100%.

1 Introduction

Streaming semi-structured data processing has re-
cently gained immense importance, particularly in
the area of publishing and subscription services. In
most of these applications, the data is generated and
sent by a server to a large number of subscribed
clients in form of a stream. The clients may be inter-
ested in different portions of the data which can be
represented in form of a query (e.g. XPath expres-
sion) and has to be evaluated on the data stream to
obtain the desired portions of data.

A simple architecture for such an application is
a centralized system where the clients submit their
queries to a central data server. The server performs
the necessary query evaluation and sends the appro-
priate portions of the data to each client. Although
this scheme has a low overhead in terms of amount of
data sent across network, it requires a large overlay

of resources at the server side and is not scalable.

An alternative method is to send the data stream to
each client using either unicast or multicast network
methods and leave it to each client to pick the data it
needs. The advantage of this approach is its simplic-
ity, low processing cost at the server and scalability
to a large number of clients. However, it suffers from
the disadvantage of requiring each client to perform
potentially large amount of redundant work. This
problem is exacerbated by the presence of low-power
clients such as PDAs and Web-enabled phones and
requires a mechanism to reduce the computational
load on the client query processors.

It has been observed that even well-implemented
stream processors [2, 20] spend a large fraction (typi-
cally well over 50%) of their CPU resources on parsing
the input stream. As a result, any post-processing op-
timization technique can only provide limited gain in
system performance. Further improvement can only
be attained by reducing the cost of parsing the data.
One possible way of achieving it is by restricting the
parsing to those portions of data stream that contain
the query result. We refer to such data as relevant
data with respect to the query. Clearly, skipping ir-
relevant data does not result in any loss in terms of
the correctness of the output, but does help reduce
the workload of the query processor.

For example, consider the XPath query
/book[discount]/title on the sample XML
data shown in Figure 1. For this particular query, a
book element without a discount child element does
not contain the query result and is irrelevant. Thus,
such elements, e.g. the second book element (lines
21-30), can be skipped by a query engine. Similarly,
within the book element, elements other than the
title element do not affect the query result and can
be skipped by the query engine.

Skipping data requires some form of direct access
to relevant data. Traditionally, this access is usu-
ally provided with the help of indexes. Unfortu-
nately, methods for indexing semi-structured data
(e.g., [6, 7, 10, 19]) are not easily adapted to a stream-

1 <root>
2. <mag>

3. <name>Times</name>

4. </mag>

5. <book>

6. <title>

7 Modern Information Retrieval

8. </title>

9. <discount> 10 </discount>

10. <price> 15 </price>

11. <year> 1972 </year>

12. <edition> 3 </edition>

13. <pub>

14. <name>Addison Wesley</name>

15. <address>

16. 34 Broadway, N.Y. U.S.A

17. </address>

18. </pub>

19. <author> Ricardo Baeza-Yates </author>
20 </book>

21 <book>

22. <title>

23. Database Systems:The Complete Book
24. </title>

25. <price> 60 </price>

26. <edition> 2 </edition>

27. <author> Hector Garcia-Molina </author>
28. <author> Jeffrey D. Ullman </author>
29. <author> Jennifer Widom </author>

30 .</book>

31K/root>

Figure 1: Example XML data

ing environment in which indexing information is re-
quired before the entire stream (which may be un-
bounded) is available. Further, unless the stream
data is available a priori, indexes for streaming appli-
cations must be generated on the fly.

An early example of an index for streaming data
is the stream index (SIX) for XML [11]. This index
augments a stream with pointers to the beginning and
end of each element. These pointers are stored in a
compact binary form and may be used by a query pro-
cessor to skip to the end of elements that are deemed
irrelevant. SIX has a very low overhead and can sig-
nificantly increase the throughput of streaming XML
query processors for simple queries. However, SIX is
of only limited use for more complex queries, such
as those containing closures and predicates. The SIX
index provides offsets to XML elements that matches
a query label. However, the index does not contain

sufficient information to infer if the element satisfies
a predicate or contains a descendant specified in the
query. As a result, the query processor may have to
parse additional data resulting in an overhead.

For example, even in the case of moderately com-
plex query such as //book[price<10]//address,
the query processor may use the SIX index to jump
to the first book element at line 5 in Figure 1. But
as the index does not contain any additional informa-
tion about the data, it has to parse the entire element
even though it does not satisfy the predicate.

Furthermore, SIX has been designed for XML data
that is available off-line for pre-processing. The index
generation requires both the start and the end offsets
of all elements, but in case of streaming data, some
XML elements may not be completely available to
compute these offsets.

We propose a flexible scheme for placing indexing
information in a stream, in the form of annotations or
hints. These hints, called XHints, store information
about the stream data such as the offsets to data
elements and summaries of data values. They can be
inserted in the stream as special elements in the same
format as the data.

XHints are generated at the server end and sent
along with the data stream to the clients. The gener-
ation of XHints does not require access to the entire
data stream. They may be generated using only par-
tially buffered streams, allowing near-real-time pro-
cessing of the data.

Since XHints constitute additional data that must
be sent to clients, they do not result in any savings
in network transmission costs in a unicast network.
In a multicast network, savings may result from the
fact that clients that would otherwise receive distinct
streams now receive the same one. Further, XHints
also imply some additional computation at the server
(albeit simple, as described later). However, these
additional costs at the server may be worthwhile be-
cause not only do they improve the efficiency of the
system as a whole (server and many clients), they
also increase the value of the data provided by the
server to a client (because it is easier for the client to
use it).

Our methods are applicable to any data stream
representing tree-structured data that is serialized
in pre-order. However, for concreteness, we focus
on processing XPath queries on XML in this paper.
Since our methods are based on the idea of skipping
input data without parsing, a downstream query en-
gine (at the client site) may not be able to check the
well-formedness of the portions of stream that are
skipped. However, we assume a trust relationship

between the producer and the consumer of the data
in this regard because in any case, the consumer has
to rely on the correctness and validity of the XHints
inserted by the producer. The system also does not
depend on the character encoding used in the data
stream since the offsets to the elements are defined in
terms of number of characters instead of raw bytes.

We may summarize the main contributions of this
paper as follows:

1. To the best of our knowledge, the methods we
present here are the first that permit a stream
processor to systematically and flexibly skip
parsing parts of semistructured data streams.
Since parsing frequently accounts a large frac-
tion of processing time, methods such as these
are important if throughput is to be improved
beyond the maximum throughput of a parser.

2. We describe a generic framework for XHints that
allows any query engine to process streaming
semistructured data more efficiently. We de-
scribe the application of XHints for an auto-
mated XPath query processor and an iterator
based query engine.

3. We present an experimental study of our meth-
ods, quantifying the costs and benefits of insert-
ing hints in data streams.

The rest of the paper is organized as follows. Sec-
tion 2 describes the architecture of the XHint sys-
tem and the API provided to the query engine. A
detailed description of XHints is presented in sec-
tion 3. The processing and generation of XHints are
described in section 4 and 5 respectively. The appli-
cation of XHints on two query engines is presented in
section 6. Section 7 presents the performance eval-
uation of XHints. The related work is described in
section 8. Finally, the conclusion is presented in sec-
tion 9.

2. System Architecture

Figure 2 depicts the system architecture of a XHint-
enabled query processor. The system consists of three
modules, 1) the XPath query processor, 2) an XHint
processing unit called XHManager and 3) a SAX
XML parser. The solid lines in the diagram repre-
sent the flow of control between the three modules
and the flow of data is shown by dashed lines.

The parser generates SAX events for the input
data, which are sent to the XHManager. The XH-
Manager acts as a proxy between the query processor

and the XML parser. It may handle the SAX event
internally (if it is an XHint) or forward it to the query
engine (if it is a data element) for processing. It is
also responsible for computing the offsets to various
elements in the stream which are used by the parser
to skip data.

XHManager determines the portion of the data
that has to be processed by the parser with the help
of XHints and the query engine. The XHManager as-
sumes that the query engine has a mechanism to iden-
tify the elements specified by the XPath query (in-
cluding any conditions such as predicates) that have
to processed. The query engine also has the responsi-
bility of registering these events with the XHManager
in a list referred as the EventList. The EventList
acts as a medium through which the query engine
provides a list of labels of elements that should not
be skipped in order to maintain the correctness of the
output. As described more in section 3, XHints pro-
vide information such as offsets to various elements to
the XHManager. The XHManager uses this informa-
tion to skip as much data as possible while guarantee-
ing that no SAX event corresponding to the elements
in the EventList is skipped.

The list of essential events changes as the stream
is processed and must be updated accordingly by
the query engine. For example, in case of the query
/book/discount, when the query processor is at the
start of the stream of Figure 1, all SAX events corre-
sponding to the book elements have to be processed.
Thus, the query engine registers this event in the
EventList. After parsing the start tag of the book
element in line 5, the query engine should not skip
any discount element. However, it can skip any
other element including a book element. Thus, the
book SAX event is replaced by the discount SAX
event in the EventList. The book event replaces the
discount event to the EventList when the end tag
of the book element is processed at line 20.

The XHint-enabled query engine process only se-
lective SAX events, called essential SAX events. An
essential SAX event corresponds to an element about
which the XHints do not provide sufficient informa-
tion to infer if it does not contain any of the elements
of the EventList. Thus, an essential event cannot
be skipped by the query engine. All relevant por-
tions of the data stream are essential events though
the converse is not true. Ideally, we would like XHints
to contain sufficient information to restrict essential
SAX events to relevant portions of the stream but
it is not possible due to large data overhead costs.
As a result, the processor might also have to process
irrelevant elements.

XPath Query ~— Control Flow

Engine
SAX EventHandler

<-- DataFlow

SAX XML Parser

A

XML Data Stream with XHints
Figure 2: System Architecture

For example, a query engine with the query /book/
discount on the data of Figure 1 must necessarily
process every book element with a discount child
element. Thus, the SAX event corresponding to the
book element at line 5 in Figure 1 is an essential event
for this query. On the other hand, the book element
at line 21 is not an essential event if the XHints let
the query engine infer that it does contain a discount
element and can be skipped safely.

If the query contains a predicate, as in
/book [price<20]/pub//name, an element contains
query result if only if satisfies the predicate. If an
XHint provides information that the element does
not satisfy the predicate, it is not an essential ele-
ment and can be skipped. In case of the example
query, the book element is not essential if the XHint
provides the information that it does not contain a
price element with value less than 20. If the query
expression has an element label following a closure
axes, the query engine may restrict its attention to
elements containing a descendant with that label. For
example, any child element of the book element is an
essential SAX event for the query /book//name un-
less XHints explicitly provide information that it does
not contain a name element as its descendant.

The XHManager does not depend on the partic-
ulars of the query engine. It only requires that the
query engine correctly update the EventList. The in-
terface for this purpose is composed of the functions
summarized below.

1. int addSAXEvent(String wri, String local-
Name, String PredicateElementLabel, String Op-
erator, String ConstantValue, int AzisType)

This function registers a SAX event with the
XHManager. It returns a unique identifier for
the SAX event. The SAX event is identified by
its URI and the tag label of the element local-

Name. In addition to these identifiers, informa-
tion about the event such as predicate and axes
type is also provided.

2. void removeSAXEvent(int EventID)

This function removes the event corresponding
to the EventID from the EventList.

As mentioned before, in order to update the
EventList using this API, the query engine should
be capable of identifying the essential SAX events as
it processes the data. We later show how it can be
achieved with the help of some actual query engines.

3. XHints

XHints are special XML elements that are used to
store a brief structural summary of a data stream.
This summary is encoded using XML attributes. Al-
though the attributes of an XHint can store a variety
of information, in this paper we focus on only four
kinds of attributes or hints. These four types of hints
are FEnd Hint, Child Hint, Sibling Hint and Descen-
dant Hint. Figure 3 depicts a sample hints-enhanced
data stream, with the XHints marked with .

Each XHint stores information about a portion of
the stream known as its scope. Although the scope
of an XHint can be any arbitrary portion of the data,
we restrict it to the data between the end of the XHint
to the end of its parent element or the start of a sib-
ling data element. This restriction ensures that an
XHint does not contain information about any ele-
ment outside its parent element. As a result, the
system cannot obtain offsets to elements outside the
parent element and skip directly to them. It guar-
antees that either the complete element is skipped or
both its start and end tag are parsed to maintain the
validity of the processed data. Further, the restric-
tion results in nested scopes i.e. the scope of a XHint
of a descendant lies completely within the scope of an
XHint of the ancestor. As we shall see later in sec-
tion 4, this property is crucial for efficient processing
of XHints.

If the scope of the XHint ends at the start of a
sibling data element, a sibling XHint is inserted after
the end of the sibling element to store information
about the remaining portion of the parent element.
Note that none of these two XHints contain informa-
tion about the sibling element present between them.
Thus, it may have to be parsed even though it might
not contain the query result. However, allowing the
scope to end at an sibling element instead of the end
of the parent element permits on-the-fly generation of
XHints for incomplete elements in the data stream.

The XHints store some of the information (such
as descendant information) encoded in order to re-
duce the data overhead. The meta-information about
the encoding is provided to the client in a special
XHint element called META. Like normal XHints,
the META element stores the meta-information as
XML attributes and is inserted at the start of its
scope. However, unlike normal XHints, the scope is
not restricted to the end of its parent element and can
extend to an arbitrary length until the next META
element. The restriction is not needed for this ele-
ment since the information in the META element is
not used to skip data. Its scope is usually determined
by the resources available at the server end to gener-
ate the hints.

The end hint of a node contains the offset from the
end of the XHint to the end of its scope. It is stored
as the value of attribute ¢ ‘end.’’ This hint allows
the parser to directly skip to the end if the node or
any of its part does not contain an essential event.
The value of the end attribute of the XHint at line
3 in Figure 3 gives the offset to the end of the root
element.

The child hint stores the offsets to different child
elements of a node. The offsets to child elements
with label [are stored as the value of an attribute
named [, in the form of a colon-separated list. The
attribute author of the XHint in line 24 in Figure 3
is an example of a child hint. It stores the offsets and
the data digest (described later) of the three author
child elements in a colon-separated list. These offsets
can be used by the query processor to jump directly
to the child elements which may contain the query
result.

Since there is no predetermined bound on the num-
ber of children of an element, the storage of such child
offsets may cause an XHint to become very large.
This situation is undesirable because a downstream
processor needs to parse the entire hint before using
any information (not necessarily the information re-
lated to the numerous children).

Sibling Hints are used to limit the size of an XHint.
A sibling hint of a node contains offsets to sibling
nodes with the same label and is stored as the value
of attribute ¢ ‘sib.’’ The XHint of a parent node is
used to store only the offsets to first ¢ (a parameter)
children with any label. The offsets to the next say n
nodes are stored in the ¢ child node. The (c+ n)*"
node contains the offset to the next n nodes and so
on. In this manner, sibling hints allow storing the
offsets to a large number of children nodes without
making any one particular XHint very large.

XHints can also be used to store information about

the text contained in an element. We store a sum-
mary of the text node in form of a data digest along
with the offset as part of the child and sibling hints.
This additional information is useful for queries with
predicates. A query engine can use the data digest
to pre-evaluate predicates and skip elements that do
not satisfy the predicates. If the text is an alpha-
numeric string, we store the first s characters of the
string. (Typically, s is small, say 3.) If the constant
specified in the predicate does not match the first s
characters of the element, the query processor can
skip the element since it definitely does not satisfy
the predicate.

We use a different scheme to generate the data di-
gest for text nodes with numeric values. The range of
numerical constants occurring for each label in a por-
tion of the data stream is stored in the appropriate
META element in the Hash attribute. The attribute
stores the range as a series of (element label, min-
imum value, mazimum-value). An example of the
Hash attribute appears in line 2 in Figure 3. The
range is then divided into a fixed number of equal-
sized intervals and the interval index of the numeric
text of an element is stored as its data digest.

The Descendant Hint provides information about
the descendants of an element in a concise form us-
ing a bitmap. FEach label occurring in the data is
assigned a unique index. If a particular label occurs
as a descendant of the node, the bit at the index cor-
responding to the label is set. The bitmap is stored
as integer-valued attribute desc in an XHint element.
The mapping from labels to indexes is stored as the
value of the attribute LIndex of the META element,
as a list of label-index pairs as suggested by line 2 of
Figure 3.

The descendant bitmap is useful for processing
queries with closure axes. For such queries, an el-
ement may contain the label specified after the de-
scendant axis in the query as a child of any of the
descendant of the element. The bitmap allows the
XHManager to infer which elements do not contain
the label as the descendant and avoid parsing its child
elements.

4. XHint Processing

In this section, we describe how XHints are used for
processing data more efficiently. In the following dis-
cussion, we assume that the query engine updates the
list of essential events correctly for the XHManager
and focus on the operation of the XHManager. As
noted earlier, the parser generates SAX events based
on the input stream. The XHManager handles such

1 <root>

2.*<META LIndex=’’address O name 1 pub 2
edition 3 discount 4 price 5 year 6
title 7 author 8 mag 9 book 10’
Hash=’’price:15-60 discount:10-10’’/>

3.*<Hint end=’’768’’ desc=’’255’’ mag=’’2"’
book="’67"/>

4. <mag>

5. <title> Times </times>

6. </mag>

7. <book>

8. <Hint end=’’320’’ desc=’’3’’
title=’’2’’ discount=’’46-0""’
price’’92-0’’ edition=’’129-thi’’
pub=’’149’’ author=’’235-Ric’’/>

9. <title>

10. Modern Information Retrieval

11. </title>

12. <discount> 10 </discount>

13. <price> 15 </price>

14. <edition> third </edition>

15. <pub>

16. <name>Addison Wesley</name>

17. <address>

18. 34 Broadway, N.Y. U.S.A

19. </address>

20. </pub>

21. <author> Ricardo Baeza-Yates </author>

22 </book>

23 <book>

24 *<Hint end=’’213’’ desc=’’0’’ title=’’2"’

price=’’34-1’’ edition=’’96-sec’’

author=’’123-Hec:165-Jef:198-Jen’’>

25. <title>

26. Database Systems:

27. </title>

28. <price> 60 </price>

29. <edition>second </edition>

30. <author> Hector Garcia-Molina </author>

31. <author> Jeffrey D. Ullman </author>

32. <author> Jennifer Widom </author>

33 .</book>

3&/root>

sib=’’327""’

The Complete Book

Figure 3: XML data with XHints

events in two ways. If the event represents a data ele-
ment, it is forwarded to the query engine. Otherwise,
the event represents an XHint, and it is processed
by the XHManager itself. Algorithm 1 provides the
pseudo-code for the XHint processing algorithm.

If the XHint element is a META element, the XH-
Manager uses the processMETA procedure to process
the two attributes, Lindex and Hash to obtain the
label-to-index mapping and the range of the numer-
ical values of elements. Otherwise, the XHManager
uses the EventList to process the XHint. The events
registered in the EventList can be broadly classi-
fied into three types: (1) events corresponding to
child elements without any predicates; (2) events cor-
responding to elements associated with predicates;
and (3) events corresponding to descendant elements.
The XHManager uses these three types of events to
determine the offsets to the relevant portions of data.

XHManager uses a stack called OffsetStack to
store and maintain offsets to the data elements. The
offsets are stored in the same order the elements occur
in the stream, with the offset to the element occur-
ring first at the top of the stack. The nested scope
of XHints helps maintain this order implicitly. When
the parser reaches an XHint of an element, the values
already present in the stack have been obtained from
its ancestors and point to positions in the stream be-
yond the scope of the XHint. Thus, the offsets from
the XHint refer to elements that occur before the el-
ements pointed by the offsets in the stack. So, none
of the offsets obtained from the XHint have to be in-
serted in the middle of the stack. Instead, they can
be added to the stack in the increasing order of their
offset value maintaining the proper order.

The initial offset values to various elements are rel-
ative from the end of the XHint they are obtained
from. These have to be updated as the stream is pro-
cessed. Each offset has to be reduced by the number
of characters from the end of the XHint to the po-
sition in stream where the offset is used. A naive
solution to perform this operation is to traverse the
stack after every SAX event and reduce the number
of characters skipped or read from each value. Obvi-
ously such an approach is highly ineflicient and can
severely degrade the throughput of the query proces-
sor.

We use a more efficient way of maintaining the cor-
rect offset values by observing that the parser guaran-
tees that the parser reaches all the positions pointed
by the offsets in the OffsetStack. So, the XHManager
requires an offset only after the parser reaches the
position pointed by the offset stored at the top of it
in the OffsetStack. Thus, we only need the difference

between the two consecutive offsets in the OffsetStack
instead of their absolute values.

We modify the push operator of the OffsetStack
to perform this operation. Every time an offset is
pushed into the OffsetStack, the previous head of the
stack is reduced by its value. It ensures that an en-
try in the stack contains the offset relative to the
position pointed by the value stored above it. For
example, if the OffsetStack is {345} and we have
to insert {213}, the modified push operation results
in {132,213}. On inserting another value, {23}, the
stack contains {132,190,23}.

However, the updated offsets values from the Off-
setStack are not sufficient to jump to the desired posi-
tions in the stream. The modified push operator only
ensures that the offset value is relative to the last po-
sition pointed by an XHint. It does not take into
account the characters the parser might read after
reaching that position. For example, in the example
data in Figure 3, the end hint from line 8 gives the
number of characters in line 9-21 as 320. The child
hint for the pub element gives the offset from line
9 to line 15 as 149. If the XHManager insert these
two offsets in the OffsetStack, the top of the stack is
{...,171,149}. At the end of the XHint, the parser
uses the first offset to jump to line 15. Since the pub
element does not contain an XHint, the parser has
to parse the entire element. At the end of the pub
element, the offset stored at the top of OffsetStack
is 171 which is the offset from line 15 to line 21 but
the parser is currently at the end of line 20. Thus,
additional information is required by the XHint pro-
cessor to correctly estimate the offset to line 21 from
current position.

This information is made available in the form of
number of characters processed by the parser for each
element. We only require this information for ele-
ments which have not been completely parsed yet.
Since there can be at most one such element at each
depth, we use a separate stack called the CharStack
to store the number of characters in the decreasing
order of the depth of the element they correspond to.

At the start of each element, the XHManager in-
serts a 0 at the top of CharStack, which is updated
as its child elements are processed. After processing
the last essential child element, the XHManager uses
this value along with the offset stored at the top of
OffsetStack to jump to the end of the element. In the
example mentioned above, the offset from line 20 to
the start of the end tag of book at line 21 can be ob-
tained by subtracting the number of characters read
inside the book element from the value at the top of
the OffsetStack.

Algorithm 1 XHint Processing

procedure startElement(SAXEvent e)
1: if e is an XHint then
2: processXHint(e);
3: else
4: QueryEngine.startElement(e);
5: end if

procedure endElement (SAXEvent e)

1: if e is an XHint then

2 processXHint(e);

3: else

4: QueryEngine.endElement(e);

5: end if
6: parser.skipData(OffsetStack.pop()-CharStack.pop());

procedure processXHint(SAXEvent e)

1: if e is a META element then
2: processMETAElement(e);

3: return;
4: end if
5: OffsetStack.add(e.getEndHint());
6: for all Events E in EventList do
7: if E is a child Event with label L then
8: if E does not have a predicate then
9: OffsetStack.add(e.getChildHint(L));
10: else if E has an existential predicate with label L
then ,
11: if XHint has a child hint for label L then
12: OffsetStack.add(e.getChildHint(L));
13: end if
14: else if E has a comparison predicate with label L
then ,
15: if the data digest of label L satisfies the predicate
then
16: OffsetStack.add(e.getChildHint(L));
17: end if
18: end if
19: else if E is a descendant Event with label L then
20: if The bit for L is set in the descendant bitmap then
21: OffsetStack.add(e.getComplexChild());
22: end if
23: end if
24: end for

During the processing of an XHint, if an event in
the EventList is of type 1, the relevant elements which
need to be processed by the query engine are the child
elements corresponding to the label. The offset to
these elements can be obtained from the child hint
of the XHint. These offsets allow the parser to jump
directly to these child elements, skipping the rest.
In addition to the offsets to the child elements, the
XHint manager uses the end hint of the XHint to
provide the offset from the last relevant child element
to the end of current element.

Example 1 Consider the query /book/title on the
stream of Figure 3. The result of the query consists
of the title elements in lines 6-8 and 22-24 of the
original XML stream (Figure 1).

318
67 0 7
761 0 761 434
oS Cs (O] CSs (O]
@ (b)
line3 line7

line8

318
7 26 7
434 6 434 6
Cs 0os CS oS CSs
(© (d) (€
line11 line 22

Figure 4: State of OffsetStack (OS) and CharStack(CS) at (a) line 3 (b) line 7 (c¢) line 8 (d) line 11 (e) line

22 for query /book/title

Initially, both the OffsetStack and CharStack are
empty. At the beginning of the stream, the query en-
gine registers the SAX event corresponding to a book
child element with the XHManager. When the XH-
Manager processes the XHint in line 3, the book label
in the EventList indicates that it is the next essen-
tial element that should be processed by the parser.
As a result, the offsets related to the book child from
the XHint are stored in the OffsetStack. The XH-
Manager also stores the offset to the end of the book
for future use. At this point, the state of two stacks
is shown in Figure 4(a). Note that the offset values
have been modified by the special push operator be-
fore inserting.

At the end of the XHint, the XHManager pops the
offset at the top of the stack and uses it to jump di-
rectly to the book element at line 7. The processing
of the SAX event for the book element is delegated
to the query engine. Since the essential element in-
side an book element is a title element, the query
engine on processing the start tag of book element at
line 7 replaces book from the event list of the XH-
Manager with title. An additional entry is added
for the book element to CharStack after updating the
previous value. The state of the stacks is shown in
Figure 4(b).

The next XML element to be parsed is the XHint at
line 8, which is handled by the XHManager internally.
As the event list now contains the title event, the
manager uses the child hint for title to obtain the
offset and store it in the OffsetStack along with the
offset in the end hint and sibling hint. Figure 4(c)
shows the state of the stacks.

At the end of the XHint, the parser uses the offset
at the top of the stack to skip directly to line 9. Af-
ter the query processor outputs the title element,
the CharStack is updated (shown in Figure 4(d)) to
include the number of characters in the element. The
XHManager requests the parser to jump to the end

of the book element at line 22 since there are no more
essential SAX events (title elements). In this case,
the offset at the top of the stack is 318. The offset
to the end of the book tag from the end of title is
calculated by subtracting the length of all children
of the element processed by the parser (line 9-11)
available from CharStack from this offset and jump
straight to line 22. The state of the stacks is depicted
in Figure 4.

When the query engine parses the end tag of book
element, it again updates the XHManager’s event list
by removing the title and adding the book event to
it. Next, it uses the value at the top of the stack to
jump to next book element. The XHManager pro-
cesses the second book element in a similar fashion
using the EventList to skip all child elements of the
book element except the title at line 25 — 26.

This scheme allows the parser to process only 6 el-
ements compared to 20 elements processed by a nor-
mal query engine saving the parsing cost involved.

Note that although XHints do not provide direct
offsets to the result elements, they provide offset in-
formation for all children nodes instead of just one
particular type and can be used to skip data for
other similar queries like /book/author and /book/
discount without requiring any additional process-
ing of the data.

In case of more complex queries with predicates
and queries, the basic algorithm remains the same.
The values in the OffsetStack and the CharStack are
maintained in exactly the same fashion as explained
in Example 1. The only difference arises in the logic
the XHManager uses to decide which offsets are rel-
evant and should be inserted in the OffsetStack. In
the following discussion, we assume that the offsets
obtained from the XHints are updated using the Off-
setStack and CharStack and do not provide the exact

details on how is a particular offset stored by the sys-
tem. Instead, we concentrate on how does XHMan-
ager use the descendant bitmap and data digest to
identify the irrelevant portions in the stream.

In case an event is associated with predicates, the
relevant elements can be identified only after evaluat-
ing the predicate. The XHint Manager uses the data
digest to pre-evaluate the predicate to select the rel-
evant offsets. If a particular element does not satisfy
the predicate, the XHManager can avoid parsing it.

If the predicate is an existential predicate such as
in /book[discount]/title/text (), the presence of
a child hint with the label of the predicate is sufficient
to pre-evaluate the predicate. An element can satisfy
an existential predicate for an element with particular
label [if and only if the XHint of the element contains
a child hint with label [.

Example 2 Consider the query /book[discount]/ti-
tle/text() on the data in Figure 3. The first book ele-
ment satisfies the predicate and its title element be-
longs to the result. However, the second book element
does not satisfy the predicate and can be skipped by
the query processor.

However, a normal query processor is not aware of
this fact and will parse all 20 elements. But XHints
provide information about all the child elements in
form of child hints. This fact can be used by a query
engine to pre-evaluate the existential predicate. If the
XHint of a book element does not contain a child hint
for a discount element, the parser can skip parsing
the remaining element.

The query engine registers an essential event with
the XHint Manager with the tag label title and an
existential predicate with label discount on reaching
the start of the first book element. When the parser
reaches line 8 of the example data, the XHManager
processes the child hints present in the XHint of the
first book element. Since it contains the child hint for
the SAX event in the predicate (discount), the XH-
Manager infers that this element satisfies the predi-
cate, and thus has to be parsed by the query engine.
It uses the offsets from the child hint for the title
element to skip parsing other elements.

On the other hand, on processing the XHint of the
second book element at line 24, the absence of a child
hint for the discount label indicates that this book
element does not satisfy the predicate and thus, is
skipped.

The query processor only parses 8 elements to pro-
cess the entire data by using XHints saving more than
50% in terms of number of SAX events generated.

If the predicate involves a comparison operator, the
XHManager uses the data digest and the range value
stored in the Hash attribute to evaluate the predi-
cate. The XHManager computes the data digest of
the constant value in the predicate and compares it
with the data digest from appropriate child hints to
identify the elements that do not satisfy the predi-
cate.

An element does not satisfy the comparison predi-
cate if the data digest of the constant value does not
match the data digest of the element. If no child el-
ement satisfies the comparison in the pre-evaluation,
the element does not contain the query result and is
skipped by the parser.

Example 3 Consider the query /book[author="R.
Baeza-Yates”]/title/text() on the example data in
Figure 3. The query contains a predicate with a
string comparison operator. If the query engine does
not have prior information about the text of the au-
thor elements, it has to parse the entire book element
in order to evaluate the predicate.

The XHManager helps avoid the overhead of pars-
ing elements that do not satisfy the predicate by us-
ing the descendant digest present in the XHints. At
the start of the second book element on line 23, the
query engine registers the predicate with the XHMan-
ager. The XHint of the element contains the first
three characters of the text in addition to the offsets
to the three author elements. The XHManager uses
this digest to evaluate the predicate a priori. In this
case, since the descendant digest of none of the three
elements does not match the first three character of
the constant in the predicate, XHManager requests
the parser to skip all the child elements and directly
go to the end tag of book element at line 33.

Note that although a difference in the data digest
guarantees that the element does not satisfy the pred-
icate, a match does not necessarily mean that the el-
ement will satisfy the predicate. The processor still
has to parse the element and the element may not
satisfy the predicate. For example, if the constant in
the predicate in the query in the example was “Jeff
Ullman” instead of “R. Baeza—Yates,” the descen-
dant digest for the second author element at line 31
matches with the descendant digest of the constant
although the predicate is not satisfied.

Ideally we would like to provide as much infor-
mation possible in the data digest to minimize the
chances of such false pre-evaluations but there is a
trade-off involved between the benefit obtained from

avoiding false evaluations and the overhead of pro-
cessing it. Although we have not conducted a thor-
ough experimental study to obtain an optimal data
digest scheme, preliminary results lead us to believe
that the current scheme provides a good cost-to-
benefit ratio.

If an essential event in EventList corresponds to
a label (say [) associated with a closure axis, it can
occur as a deeply nested descendant of the current
element. The XHManager cannot skip any part of the
current element unless it has the information that it
does not contain [as its descendant. The XHManager
uses the descendant hint of the XHint to determine it.
If it does, the element can occur as a child of any of
the complex child elements (elements with their own
child elements). As a result, the XHManager stores
the offset to all such child elements so that the query
engine can process them.

Example 4 Consider the query //address on the
data shown in Figure 3. The address label is mapped
to index 0 by the LIndex attribute of the META el-
ement at line 2. Thus, if an element contains a de-
scendant with label address, the 0*" bit of the bitmap
in the descendant hint is set to 1.

The first bit in the descendant bitmap is set for
the XHint of the root tag indicating that it contains
at least one address element as its descendant. As a
result, the query engine leaves all atomic child nodes
(since they cannot have an address element as their
child or descendant) and processes the complex child
nodes (with non-text child nodes). In this case, all
the three child elements of oot are complex.

When the processor reaches the first book element
at line 7, it again checks the descendant bitmap of
the XHint at line 8. As the appropriate bit is set on
indicating that this book element contains an address
element, the XHManager skips to the complex child
elements. In this case, the only complex child element
is the pub at line 15 which is parsed to obtain the
address element.

In case of the second book element at line 23, these
descendant hint of the second book element has the
value 0 indicating that it does not contain any de-
scendant. As it also does not have a child hint for a
address label, the query processor jumps directly to
the end of the element at line 33.

The total number of elements parse by the query
engine using XHints are 11 compared to 20 elements
parsed by a normal query processor.

10

5. XHint Generation

As with traditional indexes, the benefit of an XHint
varies based on the kind of XHint, the characteristics
of the input stream (e.g., relative sizes of elements),
and the intended use of the stream (query mix, access
patterns, etc.). In general, we may use such informa-
tion to guide the selection of XHints to be inserted.
This task is analogous to the index selection task for
traditional indexes. However, when such information
is not available or, equivalently, when the expected
uses of a stream vary widely, a reasonable policy is
to insert hints that are likely to benefit a large class
of applications. Again, this policy is analogous to
the commonly used policy of building indexes on pri-
mary key attributes for traditional databases. In our
current implementation, we use the following policy:
We insert XHints for only elements that have at least
two children. Intuitively, this policy is motivated by
the observation that an XHint for an element fewer
than two children does not reduce the number of SAX
events generated by the parser.

The offsets stored in the XHint for an element are
affected by the lengths of the XHints of that ele-
ment’s descendants. For example, the offset of an
element’s end tag is changed by every XHint inserted
in the subtree rooted at that element. If the entire
the data stream is available, a simple solution is to
construct a DOM tree for the stream and generate
XHints in a bottom-up manner. However, this ap-
proach is not suitable for streaming data when only
a limited amount of the data is available (limited by,
say, buffer capacity and timing constraints).

In such a streaming environment, we split the
stream into chunks and generate the XHints one
chunk at a time. When the hint generator encoun-
ters the end of an element, it uses the information
about that element’s descendant’s (which have been
encountered earlier) to generate its XHint. These
XHints are buffered along with the element itself.
When the buffer is filled, its contents (original data
along with the inserted XHints) is output to down-
stream components. The META element containing
meta-information about the XHints is added at the
start of each data chunk. The information from the
META element such as the label to bitmap index
mapping is relevant only for processing of that par-
ticular data chunk and may change from one data
chunk to the next.

Since the buffer size is fixed, the end tag of some el-
ements may not be reached before the buffer is filled.
Similarly, some of the elements in the beginning of
the buffer may not have start tags. The XHints for

such elements contain only partial information about
its contents and descendants.

The end hint of an element e whose end tag is not
present in the buffer holds the offset to the start of
the last child element encountered instead of the end
(which has not yet been encountered). In turn, if the
end tag of the last child element too has not been
reached, the end hint of the child element points to
its last child element. If e has no child elements and
only contains text, the end hint stores the offset to
the end of text. The other types of hints for e contain
information about only the subtree rooted at e that
was encountered before the buffer was filled.

Additional XHints are also inserted for elements
whose start tags are not present in the current buffer.
The position where the XHint is inserted depends on
whether the element has an incomplete child element
(whose start tag is also absent) or not. If it contains
an incomplete child element, the XHint is added im-
mediately after the end of it, otherwise the XHint is
added at the top of the part of the element in the
buffer.

XHints with partial information about the element
result in multiple XHints for a single element. The
end hint of a partial XHint provides the offset to one
of the child elements instead of the end of the ele-
ment. The scope of the each partial XHint is defined
from the end of the XHint to the start of the child
hint. In that case, the partial XHint does not provide
information about the child element (since it is out
of its scope) and as a result, has to be processed even
though it might not contain query result. However,
the XHint inserted at the end of the child element
provides information about the remaining portion of
the element.

6. Using XHints

In order to use XHints efficiently, the query engine
must identify essential SAX events at each stage in
query processing and update the EventList accord-
ingly. We use two query engines to illustrate this
mechanism. Our focus is on XSQ [20], an automaton-
based streaming XPath query processor. We have
implemented the mechanisms described here to gen-
erate a hints-aware version of XSQ, called XSQ-H.
However, in order to better illustrate the mechanism
for using Xhints, we also describe how XHints may
be used by an XQuery engine that is based on the
standard iterator model: Tukwila [14].

11

6.1 XHints and XSQ

XSQ evaluates an XPath query on streaming data by
generating an automaton called a Hierarchical Push-
down Transducer (HPDT) from a query. A HPDT
is a collection of smaller finite state machines called
Buffered Push-Down Transducers (BPDT) that are
arranged in a hierarchical manner. Each BPDT has
its own buffer, which is used to store potential query
results. Figure 5 depicts the HPDT for the query
/book [price<20]//author.

The transitions, represented by arcs, are associated
with a SAX event and an action. The action ma-
nipulates the buffer associated with the BPDT by
uploading its content to the parent BPDT (UPLOAD),
add (ENQUEUE) data, clear (FLUSH) the content or out-
put it as query result (OUTPUT). If the SAX event
generated by the XML parser matches a SAX event
defined on an arc from the current state, the HPDT
makes the transition to the new state and executes
the action defined with it.

Note that if a SAX event does not match any arc
from the set of current states, the HPDT does not
perform any transition or action and maintains the
same configuration it was in before processing the
event. In other words, the absence of such SAX event
would not affect the query processing and thus, can
be ignored safely by the XML parser.

This observation provides us with a simple mecha-
nism to identify the essential events using the current
states of HPDT. The essential events are those events
that result in a transition in the HPDT and are easily
identified by the SAX events defined of the arcs from
the current state.

XSQ-H is an XHint compatible version of XSQ that
performs the additional task of identifying the essen-
tial SAX events and updating the EventList of the
XHManager.

Although the HPDT contains sufficient informa-
tion to identify the essential events, the information
may not be immediately available to XSQ-H from
the current state. For example, in Figure 5, the arc
from state {201} with the price does not contain the
constant value of the predicate. This information is
instead present on the arc from state {202}. How-
ever, this information is required to pre-evaluate the
predicate and identify the essential price elements
when the system is in state {201}.

In addition to the constant value, the system also
requires information about the operator of the pred-
icate. The HPDT contains two arcs for every pred-
icate (e.g. arcs from the state {202} for the predi-
cate [price<20] from Figure 5), one corresponding
to the transition when the predicate is true and the

BPDT 0.0
</root>

AFLUSHY

<~

» </book>

</book> LUSH}
{CLEAR}

BPDT 1.1
(20)

ricertext()>
I [text<20]

<book>

</price>

</price>

</author
{FLUSH} {FLUSH}
author> /
</authgr> BPDT 2.2 BPDT 2.3
(vroRD) | <”F oo
<author:text()> </ author'text()>
{ENQUEUE value text} {OUTPUT vaiue text)

Figure 5: HPDT for /book[price<20]//author

other when it is false. As a result, the arcs in the
HPDT are unchanged even if a predicate is replaced
by its negation. However, the system has to make
distinction between the case when the query contains
a predicate and when it contains its negation instead
in order to correctly identify the essential events.

The HPDT has to be pre-processed in order to
provide the required information to XSQ-H. The in-
formation about the constant value in the predicate
(e.g. price) is provided to the appropriate state (e.g.
{201}) by simply traversing the automaton and prop-
agating the constant values back. The information
required to identify the arc that corresponds to the
transition when the predicate is true can be obtained
by observing that a true evaluation of a predicate im-
plies that the data may contain the query result with-
out any additional evaluations of the predicate. Thus,
the state reachable from the arc corresponding to a
true evaluation of the predicate has an acyclic path to
an arc with the action OUTPUT. The arc corresponding
to the false evaluation would have no such path since
that would imply the automaton can produce query
result by reaching the arc with the OUTPUT action
without satisfying the predicate. A simple breadth-
first search can be employed to determine the arc with
this path in the automaton.

Example 5 Consider the query /book[price<20]
//author/text () on the XML data of Figure 3. The

HPDT for the query is shown in Figure 5. Initially,
the set of current states is {001}. The arcs from this
set of states correspond to the end tag of the root
element and the start tag of book element. Thus, the
essential events are the end of the root element and
the start of book element, and they are added to the
EventList. The XHManager processes the XHint in
line 2 to obtain the offsets to these two SAX events.
At the end of the XHint, the offset to the first book
element is used to skip directly to line 7. When
XSQ-H processes the start tag of the book element,
the HPDT makes a transition from state 001 to 201.
The state 201 has outgoing arcs with labels author,
price, and book. The closure axes of the author la-
bel is identified by the arc labeled // from the state
201. The predicate constant and the operator associ-
ated with price element are stored in the arcs from
state 202. XSQ-H uses this information stored in the
HPDT to add an event corresponding to an author
element and a predicate for the price to the event
list. When the XHManager processes the XHint
in line 8, the EventList consists of two events cor-
responding to author and price element. As the
system can infer that the element does not contain
any descendant with label author (from the descen-
dant hint), it does not require to parse complex child
elements. The offsets to the two essential elements,
price and author, are provided by their respective
child hints. The XHManager uses the first offset to
jump to the price element. As this element satis-
fies the predicate, the set of current states changes to
{201,203}. The XHManager skips to the next essen-
tial element, author element on line 21. The actions
defined on the state 603 output the text of the author
element as the query result. In case of the second
book element, the XHManager uses the XHint in line
24 to determine that the price element does not sat-
isfy the predicate, and to infer that the book element
does not contain any essential events. It therefore
jumps directly to the end of that element, to line 33.

XSQ-H generates only 9 SAX events for processing
the entire data as compared to 20 SAX events that
would be generated by XSQ, resulting in a saving of
more than 50%.

6.2 XHints and Tukwila

Tukwila [14] is an iterator-based streaming XQuery
engine that processes XQuery expressions in a man-
ner similar to standard relational query processing.
The query optimizer uses basic operators to build
and optimize a query plan for the query, which is

12

FOR $b IN datastream/root/book,

$p IN $b/pub

$d IN $b/disc

$a IN $b//author

$n IN $p/name

WHERE $d < 20

RETURN <publisher>
<name> { $n } </name>
<author> { $a } </name>

</publisher>

Figure 6: Example XQuery

passed on to the execution engine. Figure 7 depicts
the query plan for the XQuery of Figure 6. It also
shows the output subtree at different stages.

The execution plan uses a special operator called
X-scan which is responsible for reading, parsing, and
matching XML data with the regular expressions in
the query. It assigns appropriate bindings to each
XQuery variable and forwards them to remaining op-
erators, where they are combined and restructured.
The predicates declared in the WHERE clause are eval-
uated using a selection operator. The element op-
erator constructs an element tag around a specified
number of XML elements. The output operator is
responsible for replicating the subtree value of the
current binding to the query’s output. The X-scan
operator consists of a series of finite state machines
that are driven by the input stream to produce the
bindings for the XQuery variables. It converts all the
XPath expressions (which are restricted forms of reg-
ular expressions) in the XQuery into state machines.
Figure 8 depicts the state machines for the XPath
expressions for the XQuery of Figure 6. Initially, the
machine corresponding to the document root (M)
is in the active mode. Whenever a machine reaches
its accept state, it produces a binding for the vari-
able associated with it. The machine then activates
the dependent machines, which remain active while
X-scan is scanning the value of this binding.

In absence of any prior information about the input
data, the X-scan operator must parse every element
in the stream. XHints can be used to reduce this
parsing cost by replacing an X-scan operator with
an XHint-compatible operator called XH-scan. The
XH-scan operator uses the state machines to iden-
tify the essential SAX events while parsing the data.
These events are identified using the labels of the arcs
from the current states of the active state machines.
When an active state machine makes a transition to a
new state, labels on that state’s outgoing arcs are the

13

{_book!

,/*/\J}/x <book>
(name; {authop <name>.....
U
b p d n a Result’ EEEEELEN
0 (e author)
Lo ~~Element X /77
Lpame) R <book>,2 | p d n’a

U Element - - -~~~ "~
b p d n a <author>,1 EEN
LT T *ame;

- Outputg, -

? b p dn a
bop AN A Eemen [[[[[|
[T T) 4 emed

\Output

T $n=Addison Wesley
$4<20 p d n a
$d=10 [T [[T |

_scan”~ $b=/root/book

Xsean g = $bipub

$d = $h/disc

$n = $p/name

$a = $b//author

XML Data Stream

Figure 7: Query Plan for the Example XQuery

M4

@ name

N,

Q

M2

| Cdiscount @

M3

Figure 8: State Machines for the Example XQuery

labels (element names) of the essential SAX events.
Some of the transitions defined by the state machines
may correspond to an predicate evaluation, which is
performed by a selection operator in the query plan.
In order to allow the XHManager to pre-evaluate such
a predicate, the XH-scan operator is enhanced with
information from the predicate’s selection operator
using simple query plan rewriting rules. The essen-
tial SAX events are registered with the XHManager
which uses XHints to skip other irrelevant elements.

Example 6 Consider the execution of the XQuery of
Figure 6 on the streaming XML data of Figure 3. The
state machines representing the XPath expression are
depicted in Figure 8. The processing of XHints by
these state machines is very similar to the processing
done by XSQ-H. The essential SAX events are de-
fined by the labels on the arcs from the current state.
Additional information about these SAX events, such

Database | Size Text | Number of | Average | Max. | Average | Xerces Expat
Name (MB) | Size Elements Depth | Depth Tag Parsing | Parsing
(MB) (K) Length | Time (s) | Time (s)
SwissProt | 109 37.1 2,977 3.56 5 6.58 23.7 5.81
DBLP 119 56.7 | 3,332 2.90 6 5.81 27.6 7.53
PSD 716 105.2 | 21,305 5.15 7 6.33 170.2 66.40

Table 1: Test Datasets

as the type of axes (child or descendant), along with
predicates, can be stored with the label on the arcs.

The essential events correspond to the labels on
the arcs from the current states of the activated ma-
chines. Initially, the state machine M corresponding
to the /root/book is activated. At the start of the
document processing, the machine Mj is in state 1.
After parsing the topmost root element, it reaches
state 2. This state has an arc with the label book,
which is the essential SAX event at this point. The
XHint at line 3 provides the offset (67) to the first
book element in the data which can be used to avoid
parsing the mag element. When the first book element
is parsed at line 7, the machine M| reaches its accept
state 3. At this stage, it binds the variable $b with
the book element and activates the three dependent
machines My, My and Ms for the expressions $b/pub,
$b/discount, and $b//author$ respectively. Now,
the essential events correspond to the pub, discount
and author labels. The arc of M> also contains the
information (due to query plan rewriting) that the
SAX event for the discount is required for a predi-
cate evaluation and XH-scan accordingly registers the
event by using the XHManager API function with ap-
propriate parameters.

The XHManager obtains offsets to these elements
from the XHint at line 8 and avoids parsing non-
essential elements such as title and price.

7. Experimental Evaluation

We studied the throughput of XSQ-H using different
kinds of hints and compared it with that of other
systems, which do not use hints for query processing.
We also studied the effect of query characteristics on
throughput. Further, we investigated the effect of the
buffer capacity in the XHint-generation phase on the
throughput in the query-evaluation phase. Finally,
we study the trade-off between the cost of generating
hints and the throughput gain.

14

7.1 Experimental Setup

Our implementation of XSQ-H uses Java 1.4 and
Xerces 2.4.0 (as the XML parser). We made a minor
modification to Xerces to allow XSQ-H to instruct
Xerces to skip a specified amount of data while pars-
ing. We conducted the experiments on a PC-class
machine with an Intel Pentium III processor and 1
GB of main memory, running the Red Hat 7.2 distri-
bution of GNU/Linux (kernel 2.4.9). The maximum
amount of memory available to Java Virtual Machine
was set to 512 MB. The characteristics of the three
real datasets used for our experiments are summa-
rized in Table 1.

7.2 Throughput

The throughput gain provided by XHints depends on
the stored hints as well as its scope. A XHint with
richer information about the data allows the XHMan-
ager to skip more data and improve the throughput
gain. Similarly, an XHint with a larger scope should
provide a higher throughput since it allows the XH-
Manager to skip more data.

In the first set of experiments, we measured the
throughput gain achieved by XSQ-H on data with
different kinds of XHints along these two axes. The
effect of additional information provided by the de-
scendant hints and XHints with partial scopes is eval-
uated using four kinds of XHints : (1) XHints gen-
erated offline without descendant hints (XHint-NS);
(2) XHints generated in a streaming manner with
end, child, and sibling hints (XHint-S); (3) XHints
generated offline with descendant hints (XHint-NSB);
and (4) XHints with descendant hints generated in a
streaming manner (XHint-SB).

We compared XSQ-H with XSQ 1.0 [20] and
XMLTK 1.0.1 [2], a streaming query engine imple-
mented in C++. However, for queries with pred-
icates, we compare only XSQ-H and XSQ because
XMLTK 1.0.1 does not support such queries.

The throughput of an XPath query engine depends
greatly on the parser. Engines such as XMLTK have
a higher throughput than XSQ and XSQ-H since the

14 5300

i

12

XML

1

0.8

0.6

Normalized Throughput

0.4

0.2

I
RN

PO

EALARARARARAN

g
| NNNNNNNNANNNNNNNNNNNY

[AARRRRRRRRRR

2 > N IS 2|
0 Q ¥ 0 ® 0
Oueries on SwissProt
Ql: //Author
Q2: /Entry/Features
Q3: /Entry[Org=Muridae] /Ref [Med1ine=9225337]/Cite/text ()
Q4: /Entry/Ref [Med1ineID=9225337]/Cite/text ()
Q5: /Entry/Ref/Cite/text()
Q6: //Entry/Features//DOMAIN//Descr/text ()
Q7: /Entry/Mod

Figure 9: Throughput on SwissProt (1)

parser of XMLTK is faster than the parser of XSQ
and XSQ-H. Thus, the difference in the parser perfor-
mance effects the comparison between the through-
put of these systems. In order to remove this effect,
we normalize the throughput of a system with the
throughput of its parser. The throughput of a system
is divided by the throughput of the parser used by
the system to obtain Normalized Throughput. This
metric is used to evaluate the performance of all the
systems.

We measured throughput for 14 sample queries on
each of the three test datasets. The queries were se-
lected to represent the wide range of XPath queries
including complex queries with both predicates and
closures. The sample queries for the SwissProt are
shown in Figures 9 and 10. The queries used on other
two datasets are shown in Figures 11, 12 and Fig-
ures 13, 14 respectively. The buffer capacity used for
streaming hint generation (for XHint-S and XHint-
SB) was set to 50 KB.

We ran each query ten times and calculated the
95% confidence interval to evaluate the statistical sig-
nificance of the results obtained. In all the measure-
ments, the interval width was less than 1% of the
measurement implying a high confidence in the ex-
periment results. However we do not show the con-
fidence interval in the result plots due to its small
value. In addition to the small value, the confidence
intervals of the throughput measurement of different
systems do not overlap indicating that the compari-
son between different systems is statistically valid.

The results for the SwissProt dataset are summa-
rized in Figures 9 and 10. For simple queries, such as
Q2 and Q5 in Figure 9, XSQ-H performs better than
XSQ for all four types of XHints by as much as 100%.

15

T T
XHint-NS ——
XHint-S

XHint-NSB
XHint-SB

—

Normalized Throughput

Q3

Oueries on SwissProt

Q1: /Entry

Q2: /Entry[0rgl /Ref [MedlineID]/Cite/text ()
Q3: /Entry/Ref [MedlineID]/Cite/text ()

Q4: //CARBOHYD/text ()

Q5: //Entry[Org=Eukaryotal //MUTAGEN

Q6: /Entry[0rg=DISULFID]//Author/text ()
Q7: //Noresult

Figure 10: Throughput on SwissProt (2)

However, XHint-NS and XHint-S perform marginally
better than their counterparts that include the de-
scendant hint. This difference in the gain is expected
since XSQ-H does not use the descendant hint for pro-
cessing such queries and the overhead of processing
additional data in case of XHint-NSB and XHint-SB
results in the slight performance degradation. The
benefit of the descendant bitmaps can be observed
for closure-containing queries such as Q1 and Q6 in
Figure 9. For such queries, XHint-NS and XHint-S do
not provide sufficient information for XSQ-H to skip
substantial amounts of data, and the additional cost
of parsing XHints lowers throughput. This informa-
tion is provided in form of the descendant bitmap by
XHint-NSB and XHint-SB, allowing the query pro-
cessor to reduce the parsing cost. In case of Q6,
the throughput of XSQ-H increases approximately
2.5 times compared to XSQ.

The benefit of the descendant bitmap is particu-
larly large for queries that include labels that do not
occur in the stream, as exemplified by Q7 in Fig-
ure 10. In case of XHint-NSB and XHint-SB, the
descendant hint at the top level is used by XSQ-H
to infer that the tag label NoResult does not occur
at all in the data stream and skip the entire data
resulting in a very high throughput not possible in
case of XHint-NS, XHint-S or XSQ with no XHints.
The other extreme, of a query that returns the entire
stream, is exemplified by Q1 in Figure 10. (Entry is
the top-level element.) In such a case, no data can
be skipped and XHints do not provide any benefits
to overcome their overheads.

The data digests used in XHint-SB and XHint-NSB
improve the throughput of XSQ-H for queries with
predicates, such as Q3 in Figure 9 and Q2 in Fig-

Normalized Throughput
-
@
OO

¥ ¥
¥
i1
q 3
N =i S 2 T T
1 9 N SN B XHint-N§ ——
g |y B XHint-3 ===
E (N S =Rz = XHint-NSB m—
2 N N 3 N = XHint-NS E==2
05 2 5 S £ S 2 b 15 XM)I_(S%
0 IS R | NI £
Q1 Q2 Q3 Q4 Q5 Q6 Q7 3 5
Queries on dblp E o1k E gl i
Ql: //ee/text() 3 gy §:§
Q2: //editor/text () E E £ E i E
Q3: /inproceedings[author]/title/text() 2 o5k § I = E 3
Q4: //articlelyear=1997]//cdrom/text () S & § é; & &
Q5: /article/title/text () NEA S §E i &
. i S 2R 2 E g
Q6: /phdthesis/school/text () o B S =ZgIES =2 3 gt 3
QT: /mastersthesis[url]/title/text () Q1 Q2 Q3 Q4 Q5 Q6 Q7

Queries on psd7003
Q1: /Database/text()
Q2: /ProteinEntry/header/text ()
. . Q3: /ProteinEntry/sequence/text ()
Figure 11: Throughput on DBLP (1) 04 J/ososein/mame/tont ()
Q5: //organism/formal/text ()

: " XHint-N§ —— Q6: //author/text()
XHiNCNSE QT7: //title/text()
25 XHint-38 &=z
XSE ==
XMLTR E22

Figure 13: Throughput on PSD (1)

Normalized Throughput
-
@
T

OO

I
I]

NLLOLOOOOOYY

I

IEOOCOCOOAONNONON

I

Lel
=
Q
N
Q
@
Lol
i
fel
s
Lol
=3
Pel
Sl

LOOOCOOOAAONOOOYY

NOCOCCO0ON
LYY

Queries on dblp
Ql: //url/text()
Q2: /inproceedings [url]/title/text ()
Q3: /inproceedings/booktitle/text ()
Q4: /proceedings/title/text ()
Q5: /phdthesis[year=1993]/title/text ()
Q6: /phdthesis/title/text ()
QT7: /mastersthesis/title/text()

2 T
Figure 12: Throughput on DBLP (2) Al XQEE%%E?
ure 10. The pre-evaluation of the predicate allows § o 3 E 1
parser to skip more data in case of XHint-SB and z . ¥ : §~
XHint-NSB, resulting in higher throughput. S os- :_ s ‘F , E :, 1
The throughput results for the DBLP dataset are ‘é E*E * e
summarized in Figures 11 and 12. As with the Swis- 0 r— EE YR 55 o
sProt dataset, XSQ-H outperforms XSQ by a signif-)./ /neader[accession=15510%] fuid/text O

icant margin for the sample queries. However, we Q2: //featurelseq-spec=2]/status/text()
Q3: /ProteinEntry/summary[type=’’complete’’]/length/text ()

observe relatlvely smaller differences in the perfor— Q4: //reference[contents=annotation] /refinfo//author/text ()
mance of XSQ-H for different kinds of hints in case Q5: //organism/common/text ()
Q6: /ProteinEntry/reference/accinfo/accession/text ()

of simple queries, such as Q6 and Q7 in Figure 12. o
XHint-NS has the highest throughput, followed by
XHint-S, XHint-NSB, and XHint-SB, in that order.

The higher throughputs of hints generated offline is Figure 14: Throughput on PSD (2)
expected as for the SwissProt dataset. Further, as

was the case with the SwissProt dataset, the perfor-

mance degradation due to the limited buffer used for

streaming generation of hints is small. The descen-

dant hints in XHint-NSB and XHint-SB result in ad-

//feature[seq-spec=1]/status/text ()

16

45

T T
XHint-N§ ——

XHint-S i
XHint-NSB m—

XHint-SB E==2
XMLTK and XSQ E==3 |

40

35

30

25

20

15

.
1S5)

Number of SAX Events (00000’s)

o o

Q4
Oueries on SwissProt

Q5

Q1: //Author

Q2: /Entry/Features

Q3: /Entry[Org=Muridae] /Ref [Med1line=9225337]/Cite/text ()
Q4: /Entry/Ref [MedlineID=9225337]/Cite/text ()

Q5: /Entry/Ref/Cite/text ()

Q6: //Entry/Features//DOMAIN//Descr/text ()

Q7: /Entry/Mod

Figure 15: SAX Events processed on SwissProt (1)

' XHint—N‘S
XHint-S
XHint-NSB

XHint-SB E==3
XMLTK and XSQ E==2

== |
—

Number of SAX Events (00000°s)

-NSB)

Queries on SwissProt

73
(Xhint-SB)

Q1: /Entry

Q2: /Entry[Orgl /Ref [MedlineID] /Cite/text ()
Q3: /Entry/Ref [MedlineID]/Cite/text ()

Q4: //CARBOHYD/text ()

Q5: //Entry[Org=Eukaryotal //MUTAGEN

Q6: /Entry[Org=DISULFID]//Author/text()
Q7: //Noresult

Figure 16: SAX Events processed on SwissProt (2)

ditional computation for XSQ-H, but do not provide
any additional benefit for simple queries. However
the slight degradation in the performance of XSQ-
H in case of XHint-NSB and XHint-SB is justified
by the performance gain provided by the descendant
hints for queries containing closure, as exemplified
by Q1 and Q4 in Figure 11. The results for the PSD
dataset, which is much larger than the other two test
datasets, are qualitatively similar for the results on
the SwissProt and DBLP datasets, as summarized by
Figures 13 and 14.

SAX Event Processing Above, we quantified
the benefits of XHints by measuring the through-
put improvements resulting from hints. However, the
two base systems used in the comparison, XSQ and
XMLTK, differ considerably in their design. In par-
ticular, XSQ uses an automaton to manage complex

17

interactions with buffered data, while XMLTK uses
a simpler design that does not use buffers. These
system design choices are based on different goals:
XMLTK supports a smaller subset of XPath (queries
that can be answered without buffering) than XSQ,
but is able to do so more efficiently due to the simpler
design. The additional logic for processing complex
queries in XSQ results in a lower throughput. In or-
der to better isolate the benefits of XHints from the
differences due to system design, we studied the num-
ber of SAX events processed by the XHint-enabled
system, as a fraction of the total number of SAX
events. (Systems that do not use hints must pro-
cess all SAX events.) SAX events are known to be
a significant part of query processing overhead for
streaming systems [13, 20].

The results on the SAX events processed for the
SwissProt database are summarized in Figures 15
and 16. We note that XHints result in a significant
reduction in the number of SAX events that must be
processed. As expected, for queries with closures,
XHint-SB and XHint-NSB provide a larger reduc-
tion than XHint-NS and XHint-S, due to the descen-
dant hints in the former pair. Due to the extremely
small value, the number of SAX events processed for
query Q7 in Figure 16 by XSQ-H for XHint-NSB and
XHint-SB (4 and 73 respectively) are shown sepa-
rately. The data digest also reduces the number of
SAX events processed, as can be observed for Q3 in
Figure 15.

Results for the DBLP (and PSD) datasets are qual-
itatively similar, and are summarized by Figures 17
and 18 (respectively, Figures 19 and 20). The number
of SAX events generated by XSQ-H for different types
of XHints is approximately same for queries with only
child axes as it can be seen for Q5 and Q3 in Figure 17
and Figure 18, respectively. Similar observation can
be made for queries like Q2 and Q3 in Figure 19 on
the PSD database. In case of queries with closures
like Q4 in Figure 17 and Q6 in Figure 19, the descen-
dant hint (in XHint-NSB and XHint-SB) reduces the
number of SAX elements processed significantly. The
number of SAX events for such queries are so small
that they cannot be represented graphically. We have
instead shown the value itself along with the XHint
it corresponds to.

7.3 Query Characteristics

We now outline the results of our experiments study-
ing the effects of various query characteristics on the
gain provided by XHints. We have used XMLTK
1.0.1 and XSQ 1.0 for the comparing the performance

45

40

35

30

25

20

Number of SAX Events (00000’s)

Q1:
Q2:
Q3:
Q4:
Q5:
Q6:
QT:

Figure 17: SAX Events processed on DBLP (1)

45

40

35

30

25

20

Number of SAX Events (00000’s)

T T
XHint-N§ ——

XHint-S i

XHint-NSB m—

XHint-SB &==3
XMLTK and XSQ ==

Queries on dblp
//ee/text ()
//editor/text ()
/inproceedings [author]/title/text ()
//article[year=1997]//cdrom/text ()
/article/title/text()
/phdthesis/school/text ()
/mastersthesis[url]/title/text()

Figure 18: SAX Events processed on DBLP (2)

350

300

250

200

150

100

Number of SAX Events (00000’s)

Figure 19: SAX Events processed on PSD (1)

T T
XHint-NS ——
XHint-S i
XHint-NSB mmmm
XHint-SB =23
XMLTK and XSQ 4

217(NSE4 45(NS;
on b B
S| 11(NSB; B
6062(SH (2,231%(%)8 89(5“3) 5%(5?))

Q4 Q5 Q6 Q7
Queries on dblp

//url/text ()
/inproceedings[urll/title/text ()
/inproceedings/booktitle/text ()
/proceedings/title/text ()
/phdthesis[year=1993]/title/text ()
/phdthesis/title/text ()
/mastersthesis/title/text ()

T T
XHint-N§ ——
XHint-S
XHint-NSB s _|

int-SB E==3
XMLTK and XSQ =1

o

COOLOOOO00

OO0

a
g
G
2
g
2
2
2
g
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2!

s

o @ @ ot o e o
Queries on psd7003

/Database/text ()
/ProteinEntry/header/text ()
/ProteinEntry/sequence/text ()
//protein/name/text ()
//organism/formal/text ()
//author/text ()
//title/text ()

18

350 T

i
-NSB

L XHint:
300 XHint
XMLTK and

S
t-SB
XSQ

250

200

150

100

Number of SAX Events (00000’s)

N N
N N
N N
N N
IS I
N N
N N
| =
N N
N N
N N
N N
N N
N N
IS I
N N
N N
N N
IS |
N N
N N
IS N
N N
N N
N I
N N
N |
N N
IS I
N N
N N
| =
& §
N N
Q Q

2 Q3 Q4 Q5 Q6
Queries on psd7003

1

Q1: //header[accession=I55192]/uid/text()

Q2: //feature[seq-spec=2]/status/text ()

Q3: /ProteinEntry/summary[type=’’complete’’]/length/text()
Q4: //reference/refinfo//author/text ()

Q5: //organism/common/text ()

Q6: /ProteinEntry/reference/accinfo/accession/text()

Q7: //feature[seq-spec=1]/status/text ()

Figure 20: SAX Events processed on PSD (2)

T
160 X_MTEQ
XHint-NS m—
14 XHint-S B3
XHint-NSB
<ol XHint-SB i
g 1r ke ‘i? L
£ i 2 £
Eoosl ke s £
g o % i
5 ¥ & 4
g 06 n K ke ¥
5 7 ¥ ¥ ¥
S Y k)
04 Y ST o7
' Y ¥ E
. ¥ Y B
02 IS 527 SN 57
'- ¥ ¥
0 i 1| SZZIS 27
Q1 Q4 Q5 Q6
Oueries on SwissProt
Q1: /Entry
Q2: /Entry/text()
Q3: /Entry/Features
: ntry/Features
4 /Entry/Feat /DOMAIN
Q5: /Entry/Features/DOMAIN/Descr/text ()
Figure 21: Effect of query length on throughput
of XSQ-H.

Query Length We define the length of an XPath
query to be the number of location steps in the query.
The effect of increasing query length on throughput
for the SwissProt dataset is summarized by Figure 21.
We observe that the throughput of XSQ-H increases
with query length. This result is intuitive because
longer queries usually typically produce smaller query
results and allow XSQ-H skip larger amount of data
resulting in a higher throughput. XHint-NS and
XHint-S provide a slightly better throughput com-
pared to XHints with descendant hints (XHint-NSB
and XHint-SB) since the queries do not contain clo-
sure and the descendant hints constitute an extra pro-
cessing overhead.

Descendant Axes Since evaluating the descen-
dant axis entails a subtree traversal, it is reasonable
to expect a lower throughput as the number of loca-

14

XHint-NSB === |
Hint-SB

12

0.8

Ty
RSRRRRNRNR

0.6

T
A ERRETERURE IR

Normalized Throughput
TS,

ASIIITIRIRIIRIR IR IR

0.4

Ty
N Ty

SRR TR R R

0.2

A T
TR Y

R RS

o Q6

Oueries on SwissProt

Q1 Q7

Q1: //Entry/Features/DOMAIN/Descr/text ()
Q2: /Entry//Features/DOMAIN/Descr/text ()
Q3: /Entry/Features//DOMAIN/Descr/text ()
Q4: /Entry/Features/DOMAIN//Descr/text ()
Q5: //Entry//Features//DOMAIN//Descr/text ()
QG6: //Entry/Features//DOMAIN//Descr/text ()
QT: //Entry/Features/DOMAIN//Descr/text ()
Figure 22: Effect of descendant axes on throughput

N XS% —_—
XHint-N:
XHint-S m—

int-NSB
XHint-SB ===

14
XHint-|

12

1

0.8

0.6

Normalized Throughput

0.4

0.2

N e
AANTRAETV ARV
KOO0 RN XL
ANVIRVAR AR VAW

POOCCOGOCOC0OC0COGOA0C000OOTNNNY]
ATTARAIR R IIAMARY
LOCAOCOGC0OCOC0C000000C0GNNT

AMAARMARI AR AR

5
ES
£
K3
£
B3
3
k3
£

Z
z
Z
Z
z
Z
Z
Z
Z
Z
Z
z
Z
Z
z
Z
Z
Z
Z
Z
Z
Z
2l

0

Oueries on SwissProt

Q1: /Entry[DISULFID]/Ref/Author/text()

Q2: /Entry [Org=Eurkaryotal /Features/MUTAGEN

Q3: /Entry [REPEAT] /PROPEP

Q4: /Entry[0rgl /Ref [MedlineID]/Cite/text ()

Q5: /Entry[Org=Muridae] /Ref [Med1ineID=9225337]/Cite/text ()
Q6: /Entry/Ref [MedlineID]/Cite/text()

Figure 23: Effect of predicates on throughput

tion steps using the axes rises. The effect of vary-
ing the number and position of descendant axes for
queries on the SwissProt dataset is summarized by
Figure 22. As expected, the throughput of XHint-
S and XHint-NS is low for queries with descendant
axes. Exceptions are the results for queries Q3 and
Q4. This result is explained by noting that the de-
scendant axes in these queries are deep (to the right)
in the query, entailing traversals of smaller subtrees
than those necessary when the descendant axis is
higher (to the left) in the query. In contrast to XHint-
S and XHint-NS, the XHint-SB and XHint-NSB pro-
vide consistently high throughput. The throughput is
slightly higher for queries with a closure axis deeper
in the expression (such as Q4). A deeper descen-
dant axis allows XSQ-H to ignore a larger number of
elements as compared to queries containing the de-
scendant axis closer to the first location step (such as

Q1 and Q5).

19

Gain

0.5

0 L L L L
20 40 60 80

100

Buffer Size (KB)
Q1: /Entry/Features/DOMAIN/Descr/text()
Q2: /Entry[0rgl /Ref [MedlineID]/Cite/text ()
Q3: /Entry//Descr/text ()
Q4: //Entry[0rgl/Descr//text ()

Figure 24: Throughput gain for different buffer sizes

Multiple Predicates Figure 23 summarizes the
results of some experiments studying the effect of
predicates on throughput. As expected, the data di-
gests used by XHint-SB and XHint-NSB allow XSQ-
H to pre-evaluate predicates and reduce the number
of SAX events that must be processed. As a re-
sult, these two XHint schemes yield a higher through-
put than XHint-S and XHint-NS. However, XHint-
SB and XHint-NSB do not outperform the other two
schemes for query Q1. This result is explained by
noting that the labels in the predicate of Q1 does
not occur frequently in the dataset. Therefore, the
number of SAX events skipped using the data digest
is small and does not yield enough benefits to over-
come the overhead of processing the additional hint
information.

Buffer size The range of information in an XHint
depends on the size of the buffer used during XHint-
generation at the data source. In general, a larger
buffer permits XHints that range over larger amounts
of data, allowing the XHManager to potentially skip
more data. Thus, it is natural to expect perfor-
mance to degrade as the buffer size is reduced. For
any buffer size, it is easy to construct synthetic sce-
narios in which XHints perform poorly. From a
practical standpoint, the important question here is
the relation between upstream buffer size and down-
stream throughput for realistic datasets and queries.
In particular, we are interested in determining the
buffer sizes that determine a good performance point.
For this purpose we generated XHints for SwissProt
dataset with different buffer sizes and measured the
throughput on the resulting streams. We have used
XHint-SB in the experiment instead of XHint-S since

Q1: //red

Q2: /scheme/color/red

Q3: /scheme [code=2]/color/red
Q4: /scheme[code=2]//color/red

Queries used on Synthetic Datasets

T
1 XSQ-H/IXSQ ——
2 XSQ-H/IXSQ -+~
3 XSQ-H/XSQ -3~ 4
4 XSQ-H/XS N

A
—x—

XMLT

T
T
S 28

X 2 XSQ-H/XMLTK

Throughput Gain

Il Il
To1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Selectivity (SAX Events)

Figure 25: Effect of Query Selectivity

the previous experiments have demonstrated that
XHint-SB perform well for all queries with little over-
head as compared to XHint-S which do not perform
well for queries with closures. The results are sum-
marized by Figure 24. The main conclusion we draw
from this experiment is that a very small buffer suf-
fices to provide significant benefits for XHints for this

dataset. We obtained similar results for the other
datasets.
Selectivity It is natural to expect XHints to yield

greater benefit for queries that are highly selective
for the input data stream. We define selectivity in
the usual manner, as the ratio of the number of
SAX events in the query result to the total num-
ber of SAX events. In order to measure the effect
of query selectivity on throughput, we generated ten
synthetic datasets containing elements with red and
blue as labels. All the datasets were similar in their
characteristics except in the proportion of the ele-
ments with the label red. We ran the four queries
depicted in Table 2 on each dataset and measured
the throughput for different values of the selectivity.
Figure 25 displays the throughput gain of XHint-HB
compared to XSQ and XMTLK for different values
of selectivity. Throughput gain of XHint-HB com-
pared to another system is defined as the ratio of the
throughput of XHint-HB to the throughput of that
system. As XMLTK does not support predicates,
XHint-HB is compared with XMLTK for only the
first two queries. As expected, XHint-HB provides
a high throughput gain for low selectivity compared
to XSQ and XMLTK, with a graceful degradation
in performance as selectivity increases. Although we

20

have not shown any results for other XHint schemes,
they also follow the same behavior with change in
selectivity. Although the actual gain differs depend-
ing on the scheme, the gain decays gracefully with
increase in selectivity.

7.4 XHint Generation

Hint-Generation Throughput We measure
hint-generation throughout as the number of el-
ements processed per second. We studied hint-
generation throughput for the test datasets using
buffers of different sizes. The results are summarized
in Figure 26. We observe that as the buffer size is
increased, throughput increases initially, but gradu-
ally falls after reaching a peak at around buffer size
of 60 KB. When the buffer used during hint gener-
ation is small, the data stream is split into a larger
number of chunks, resulting in the insertion of a large
number of XHints, which in turn could lead to a low
throughput. On the other hand, large buffer sizes
suffer from the overhead of storing more information
in XHints which require additional computation of
offsets to various elements.

Size Overhead The insertion of XHints into a
data stream increases the size of the stream that must
be read by downstream processors. We measured this
overhead in terms of the percentage increase in the
data due to addition of XHints for datasets of differ-
ent sizes. We used one real dataset (PSD) and two
randomly generated dataset (RANDI and RAND2)
for our evaluation. We generated XHints with de-
scendant bitmaps in a streaming fashion for different
dataset sizes. The size of the buffer used to generate
the XHints was fixed at 50 KB. We chose XHint-SB
to demonstrate the upper bound on the data over-
head since it contains the maximum information out
of the four types of XHints and thus, incurs the high-
est data overhead.

As Figure 27 indicates, the percentage overhead in
the data decreases with increase in the dataset size.
Small sized datasets have a low number of elements
and the XHint constitute a significant portion of the
data in terms of size. As the size of the data increases,
the number of XHints needed to store offset summary
of the data does not increase in the same proportion
as the data elements since the atomic and text nodes
of the data do not contain XHints. As a result, the
percentage overhead of inserting XHints decreases as
the data size increases.

Nodes Processed per second (000's)

Figure 26: Throughput of XHint Generation

Percentage Increase

8.2

8.1

79

78

SwissProt ——
DBLI

,,,,,,,,,

PSD -

77t

76
75
74

731

7.2

65

60 -

55 -

50 -

45

40

35 -

30 -

25

50 100 150
Buffer Size (KB)

200

PSD ——
RAND1 - x -
RAND2 ---

0

300 400 500 600 700
Database Size (MB)

100 200

Figure 27: Increase in data size

900

21

8. Related Work

The idea of augmenting a data stream to assist query
processing was first proposed as punctuations [21].
Punctuations are designed to assist blocking oper-
ators read the entire data before emitting an out-
put. The punctuations are in the form of predicates
that are not seen in the stream following the punctu-
ation. It allow a query processor to infer the absence
of certain elements in the data and output the re-
sult early. A binary-encoded index called SIX [11]
stores the offsets to the beginning and end of elements
in the stream. A query processor can use these off-
sets to skip processing data in much the same way as
our XHint-NS scheme. The main difference between
XHints and SIX is that XHints store a much greater
variety of information, permitting skipping data in a
greater number of situations.

The MatchMaker system [16] addresses a similar
problem of matching an incoming data stream to a
large number of queries. Unlike conventional query
processing problem where the number of queries is
small compared to the size of data, the system pro-
cesses a large repository of queries on relatively small
data. The system stores the query patterns in an
index that supports efficient lookup for queries satis-
fying a particular pattern. It uses this index to tag
each XML node with the queries that it satisfies.

Several query engines have been presented for
streaming XML data. The XML Streaming Machine
(XSM) system [18] translates an XQuery expression
into a network of transducers that correspond to basic
subexpressions of XQuery and reduces the network
to a single XSM by repeatedly merging transduc-
ers. The final XSM is optimized with respect to time
and space using both data and query characteristics.
XSQ [20] and XPush [13] use an automaton-based ap-
proach to process streaming XML data. XSQ builds
a hierarchal automaton called HPDT from a given
XQuery expression and returns the portions of a large
streaming XML document that match the query. On
the other hand, XPush processes a given set of XPath
filters with predicates on a stream of XML documents
to compute which filters are satisfied by each docu-
ment. It builds a lazy deterministic finite automaton
with each state representing a set of predicates. This
state machine stimulates the execution of the work-
load of the XPath filters on a XML document and
returns a set of XPath ids satisfied by the document.

There are several methods for indexing semistruc-
tured data in a non-streaming environment.
Dataguides [10] provide a concise structural sum-
mary of semistructured database by storing all

label-paths occurring in the database. The data
structure can be incrementally updated and provides
a dynamic schema of the underlying database.
A Template Index or T-Index [19] consists of an
automaton corresponding to a data-path template
and list of nodes in the database that satisfy the
path expression. The automaton accepts data paths
belonging to the set defined by the template and
returns pointers to the relevant nodes. Indexr Fab-
ric [7] uses a similar principle by storing data paths
in indexes encoded as strings. The index is highly
optimized for string search and provides offsets to
the data nodes stored in a relational database.

The XML Indexing and Storage System
(XISS) [17] indexes and stores XML data using
a numbering scheme. FEach element is identified
by a tuple that can be used to determine the
ancestor-descendant relationship between two nodes
efficiently. The system also stores indexes (imple-
mented as BT-trees) for searching documents with
a given name or attribute. The indexes along with
the numbering allow efficient processing of regular
path expressions on an XML database. A complex
query is decomposed into simpler expressions and
joining algorithms are employed to merge the results.
An A(k)-index [15] is based on the concept of
k-bisimilarity and maintains, for each node, a record
of incoming paths to a node of length at most k
(local structure). The system assumes that long
complex path queries are rare and reduces the index
size by grouping nodes into equivalence classes based
on local structure.

An adaptive indexing scheme for non-streaming
XML data is presented in APEX [6]. The index con-
sists of two structures. A graph is used to store the
structural summary of the data and a hash tree stores
label-paths. Each node in the hash tree is a hash table
with entries pointing to a node of either the graph or
the hash tree. The hash tree is useful for determining
the nodes in the graph for a given label path and for
updating the index. APEX stores indexes for only the
most frequently used paths, which can be updated in-
crementally depending on changes in the query work-
load. It would be interesting to use this idea and
study how query workload can be used to estimate
the utility of an XHint in terms of the speedup it pro-
vides and insert only the most useful XHints based
on this estimate. More recently, another dynamic
index called ViST was proposed [22]. It represents
XML databases and queries as structure-encoded se-
quences, reducing the query-evaluation problem to
the problem of matching subsequences. Unlike other
indexes like XISS, ViST processes the query as whole

without decomposing it into sub-queries, saving on
expensive join operations required to merge the sub-
query results. An adaptive version of A(k)-indexes,
called D(k)-indexes [5], provides an updating mech-
anism storing only the most useful path indexes de-
pending on the query workload. The D(k)-Index is
also based on k-bisimilarity and constructs equiva-
lence classes of nodes based on local structural infor-
mation. Instead of a global value for the similarity
parameter k, a D(k)-index uses different values for
different equivalence classes, depending on the query
workload.

The XPath accelerator [12] provides an index that
handles all XPath axes, in contrast to the methods
mentioned above, which use regular expressions. It
uses four major axes, ancestor, descendant, following,
and preceding, to divide the XML document into four
regions. The pre-order and push-order rank of a node
is used to encode the information about the region to
which it belongs. Standard database indexes such as
B-Trees and R-Trees are used to index the position
of the node.

A number of systems have been developed to ad-
dress the closely related problem of filtering XML
documents based on XPath queries. An indez-
filters [3] uses an idea very similar to XHints to skip
irrelevant data. It constructs an inverted index on the
XML data tagging each element with a unique iden-
tifier. The identifier contains information that can
be used to efficiently infer ancestor and descendant
relationships between elements. The union of multi-
ple XML queries is represented as a prefix tree. Each
node of the tree contains a list of indexed positions
of elements that match the node label. The index-
filter algorithm uses the prefix tree with the index
to identify elements that may not satisfy any query
expression and skips them, thus avoiding the cost of
parsing. The index-Filter requires access to the com-
plete XML dataset in order to generate identifiers
and cannot be used in a streaming environment. It
also needs a sorting phase which may prove expensive
for large XML databases. The information stored in
these indexes is more restricted than that in XHints.
For example, it excludes information about the data
stored in elements that can be used to avoid unnec-
essary processing in case of queries with predicates.

XFilter [1] and YFilter [8, 9] process multiple
queries on XML documents using finite automatons.
XFilter uses finite-state automata and an inverted
index to match XML documents with queries. The
XFilter engine translates each XPath expression into
a separate finite-state automaton. An inverted in-
dex is built over the states of these automata, essen-

22

tially producing a hash table over the element labels.
This index allows the system to simultaneously exe-
cute all the automata and identify the set of queries
relevant to a data element. YFilter improves on this
scheme by exploiting the commonality among XPath
expressions. It combines all the XPath query expres-
sions into a single non-deterministic automaton and
merges common query prefixes into a single state,
thus avoiding redundant processing. An XTrie [4]
indexes substrings of XPath expressions that contain
only the parent-child operator. The index consists
of a table and a trie. The indexing scheme is used
to filter the documents by first detecting the occur-
rence of matching substrings using the trie and then
obtaining the matched queries from the table. Some
additional run-time information is used to avoid re-
dundant matching of the query with the document.

9. Conclusion

Semistructured data is often serialized as text and
presented in a streaming form (e.g., news feeds pre-
sented as streaming XML). In many situations, it is
impracticable or undesirable to instantiate this data
(e.g., due to high data rates of the source or resource
constraints at the client, which may be a small, mo-
bile device). In these situations, query processing re-
quires that the stream of serialized data be parsed on-
the-fly, and parsing consumes a large fraction of the
processing time. Therefore, further improvements in
query-processing efficiency require methods that re-
duce the parsing costs. We proposed an a indexing
framework in which an XML stream is augmented
with indexing information (XHints) at or near the
source. Although this task requires additional pro-
cessing at the source of the stream, it results in lower
processing costs at the stream’s consumers, or other
downstream processors. This transfer of processing
costs is beneficial because not only may the source
have access to significantly greater computing re-
sources than the consumer (server vs. handheld) but
a large number of consumers can benefit from the
indexing at the server (e.g., one server that streams
data to hundreds of handheld units).

XHints may be regarded as indexes that are in-
terspersed with the data in the stream. Specifically,
XHints store four kinds of hints (offsets): end, child,
sibling, and descendant. We described how query
processors may take advantage of these hints, using
XSQ (which uses an automaton-based approach) and
Tukwila (which uses the standard iterator-based ap-
proach) as specific examples. We quantified the costs
and benefits of XHints using an experimental study

23

on real and synthetic datasets using our implementa-
tion of a XHint-enabled version of XSQ. Our results
indicate that XHints that are generated on-the-fly by
the data source using very little buffer space provide
significant benefits to downstream query processors.

The hints described in this paper are inserted in
a manner oblivious of the query load. Although our
experiments indicate that such hints are beneficial,
even greater benefits may be realized by tuning the
hints to the query load (when such information is
available). In continuing work, we are studying this
hint-selection problem, which is essentially the index-
selection problem for streaming data.

References

[1] M. Altinel and M. J. Franklin. Efficient filtering of
XML documents for selective dissemination of infor-
mation. In Proceedings of the International Confer-
ence on Very Large Data Bases (VLDB), pages 53—
64, September 2000.

I. Avila-Campillo, T. J. Green, A. Gupta,
M. Onizuka, D. Raven, and D. Suciu. XMLTK: An
XML toolkit for scalable XML stream processing. In
Proceedings of Programming Language Technologies
for XML (PLAN-X), October 2002.

N. Bruno, L. Gravano, N. Koudas, and D. Srivas-
tava. Navigation vs. index-based XML multi-query
processing. In Proceedings of the International Con-
ference on Data Engineering (ICDE), March 2003.

C. Y. Chan, P. Felber, M. N. Garofalakis, and
R. Rastogi. Efficient filtering of XML documents
with XPath expressions. In Proceedings of the Inter-
national Conference on Data Engineering (ICDE),
pages 235-244, February 2002.

Q. Chen, A. Lim, and K. W. Ong. D(k)-index:
An adaptive structural summary for the graph-
structured data. In Proceedings of the ACM SIG-

MOD International Conference on Management of
Data (SIGMOD), pages 134-144, June 2003.

C. Chung, J. Min, and K. Shim. APEX: An adaptive
path index for XML data. In Proceedings of the ACM
SIGMOD International Conference on Management
of Data (SIGMOD), pages 121-132, June 2002.

B. Cooper, N. Sample, M. J. Franklin, G. R. Hjal-
tason, and M. Shadmon. A fast index for semistruc-
tured data. In Proceedings of the International Con-
ference on Very Large Data Bases (VLDB), pages
341-350, August 2001.

Y. Diao, M. Altinel, M. J. Franklin, H. Zang, and
P. Fischer. Path sharing and predicate evaluation
for high-performance XML filtering. ACM Transac-
tions on Database Systems (TODS), 28(4), Decem-
ber 2003.

2]

3]

(4]

[5]

(6]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

Y. Diao, P. Fischer, and M. J. Franklin. YFilter:
Efficient and scalable filtering of XML documents. In
Proceedings of the International Conference on Data
Engineering (ICDE), pages 341-344, February 2002.

R. Goldman and J. Widom. Dataguides: Enabling
query formulation and optimization in semistruc-
tured databases. In Proceedings of the International
Conference on Very Large Data Bases (VLDB),
pages 436—445, August 1997.

T. J. Green, G. Miklau, M. Onizuka, and D. Su-
ciu. Processing XML streams with deterministic au-
tomata. In Proceedings of the International Confer-
ence on Database Theory (ICDT), pages 173-189,
January 2003.

T. Grust. Accelerating XPath location steps. In Pro-
ceedings of the ACM SIGMOD International Con-
ference on Management of Data (SIGMOD), pages
109-120, June 2002.

A. Gupta and D. Suciu. Stream processing of XPath
queries with predicates. In Proceedings of the ACM
SIGMOD International Conference on Management
of Data (SIGMOD), pages 419-430, June 2003.

Z. Ives, A. Halevy, and D. Weld. An XML query en-
gine for network-bound data. In The VLDB Journal
(VLDBJ), 2003.

R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes.
Exploiting local similarity for indexing paths in
graph-structured data. In Proceedings of the Inter-
national Conference on Data Engineering (ICDE),
pages 129-140, March 2002.

L. V. Lakshmanan and S. Parthasarathy. On effi-
cient matching of streaming XML documents and
queries. In Proceedings of the International Con-
ference on Extending Database Technology (EDBT),
pages 142-160, March 2002.

Q. Li and B. Moon. Indexing and querying XML
data for regular path expressions. In The VLDB
Journal (VLDBJ), pages 361-370, 2001.

B. Ludéascher, P. Mukhopadhayn, and Y. Papakon-
stantinou. A transducer-based XML query proces-
sor. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), pages 227-238,
August 2002.

T. Milo and D. Suciu. Index structures for path ex-
pression. In Proceedings of the International Con-
ference on Database Theory (ICDT), pages 277-295,
January 1999.

F. Peng and S. S. Chawathe. XPath queries on
streaming data. In Proceedings of the ACM SIG-

MOD International Conference on Management of
Data (SIGMOD), pages 431-442, June 2003.

P. Tucker, D. Maier, T. Sheard, and L. Fegaras.
Punctuating continous data streams. Technical re-

port, OGI School of Science and Engineering at
OHSU, 1999.

24

[22] H. Wang, S. Park, W. Fan, and P. S. Yu. ViST: A

dynamic index method for querying XML data struc-
tures. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data (SIG-
MOD), pages 110-121, June 2003.

