PRINTOUT, the newsletter of the Department of Computer Science of the University of Maryland at College Park, is published sporadically and distributed to faculty, staff, and students in the Department. Opinions expressed in signed articles may be those of the author, but no opinions represent the policy of the Department, or of the College Park Campus, or of the University.

Contributions may be submitted to the editor, and unless they are obscene or seditious they will probably be used, but minor editing may be done. Complaints directed to the newsletter will be investigated and publicized when possible. It is well to keep in mind however that the Department is subordinate to higher levels of administration, not the other way around; and, the Department does not provide computing service to the campus. Complaints in these areas are best directed to other publications.

STAFF

EDITOR
DICK HAMLET

CONTENTS

LABORATORY FOR PATTERN ANALYSIS 3
ON THE SEX OF PROCESSES
 Pamela Zave 7
PROFESSIONAL NEWS 8
PUBLICATIONS, ETC. 10
EDUCATIONALLY SPEAKING
 Bob Noonan 12
FED UP 13
THE REBEL SYSTEM HACKER
 Dick Hamlet 14
1. INTRODUCTION

In 1974, with the blessing of Dr. Joseph Marchello, MPSE Division Provost, and grants from the Control and Automation Program, Engineering Division, National Science Foundation, and the Mathematics and Information Sciences Branch of the Air Force Office of Scientific Research, Professor Laveen Kanal and a group of students, with the assistance of Professor Mills, began the job of transforming a portion of the fourth floor laboratory room into the Laboratory for Pattern Analysis.

A research equipment grant from NSF led to the acquisition of a PDP 11/45 computer and a GT40 refresh display terminal. This month a new grant from the National Institutes of Health was awarded which will permit the purchase of additional peripheral equipment for the PDP 11/45. Together with peripherals to be purchased by the Department of Computer Science, and the UNIX operating system from Bell Telephone Laboratories, the research equipment for the Pattern Analysis Laboratory is finally taking the shape envisioned for it. This report describes the Laboratory, and provides some of the motivation for research in pattern analysis.

Because the pattern recognition courses are not part of the required set of courses, the first question might well be, "What is pattern analysis?" The term may be explained in the context of society's willingness to pump ever-increasing amounts of money into developing methods of data collection without first figuring out what to do with all the masses of raw data gathered. Substantial resources are being devoted to data gathering techniques with the hope of understanding complex environments in various fields of commerce, industry, medicine, defense, space, and the physical and social sciences. Computerized acquisition of data allows more data to be acquired faster than ever before. Timely use of the increasing quantities and types of data being gathered can only be made if meaningful patterns are inferred and extracted from the data, the data are categorized, and the underlying processes generating the data are modeled with succinct descriptive or generative models.

2. PATTERN ANALYSIS AND RECOGNITION

Pattern analysis consists of using whatever is known about the specific problem at hand to guide the gathering of data about the patterns and pattern classes which may exist in the environment, and then subjecting the data to a variety of procedures for inferring deterministic and probabilistic structures that are present in the data analysis. Histogram plots, scatter plots, cluster analysis routines, regression analysis, analysis of variance, discriminant analysis, nonlinear mappings, are examples of procedures used to detect and identify structures and substructures in the data. The purpose is to understand the regularities and peculiarities of a data base.

Pattern recognition covers a growing body of theories and techniques for the development of automatic and interactive systems. An early motivation for work on automatic pattern recognition was to model recognition and intelligence as found in living systems. This led to work on biologically motivated automata, neural models and "adaptive," "self-organizing," and "learning" networks. Much of the work on machine recognition of
patterns has not been biologically motivated but has adopted one of the other of two models, the feature extraction-classification model, or the linguistic model. Figure 1 shows the general feature-extraction-classification model. Table 1 lists some of the many applications of pattern recognition which have been tried using the feature extraction-classification model.

Some computer scientists criticized the feature-extraction-classification model for performing too severe data compression, since it provided only the class designation of a pattern rather than a description that would allow one to generate patterns belonging to a class. They put forth proposals for a linguistic model for pattern description whereby patterns are viewed as sentences in a language defined by a formal grammar. By 1968 these proposals together with the success of syntax-directed compilers had attracted many to research in pattern grammars. The linguistic or syntactic model for pattern recognitions uses a "primitive extractor," which transforms the input data into a string of symbols or some general relational structure. The primitive extractor may itself be a feature extractor classifier. Then a structural pattern analyzer uses a formal grammar to parse the string and thus constructs a description of the pattern.

In the past, much has been made of the apparent difference between the two models. The stress on the distinction between the two models hides many similarities: in practice, in the syntactic model, the extraction of "primitives" can involve statistical classification procedures, and the association of patterns with generative grammars is equivalent to the classification of patterns into categories.

Much of the literature on structural pattern recognition deals with formal string grammars and their multidimensional generalizations. While one of the reasons for introducing linguistic methods was the limited relationships handled in statistical pattern classification, phrase-structure string grammars are also severely limited in the relationships they model. Basically, they deal only with concatenation of primitives and immediate constituent structure.

The definition of the formal linguistic model can be enlarged to include other relationships and other familiar generative mechanisms, such as differential equations and finite-state Markov chains. When a formal model is not explicitly present, the terms "ad-hoc" or "heuristic" are used. The phase "structural pattern recognition" refers to all pattern recognition approaches based on defining primitives and identifying allowable structures in terms of relationships among primitives and substructures that combine primitives. This term represents less a specific set of procedures than an attitude, i.e., that pattern recognition algorithms should be based on the mechanisms that generate and deform patterns.

3. RESEARCH AT THE LABORATORY FOR PATTERN ANALYSIS

As is evident from Table 1, the methodologies of pattern analysis and recognition provide general approaches and specific tools which if appropriately modified and extended, can be applied to a large variety of practical problems. At the Laboratory the areas of application currently being investigated are: error control in data communications, design procedures for automatic and interactive classification of sensor data, such as waveforms and images, computer aided medical diagnosis, pattern analysis of nuclear magnetic resonance spectroscopy patterns, a general waveform parsing system and its application to biomedical wave-
(a) Operational system. (b) An example.

TABLE I.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Input to Pattern Recognition System</th>
<th>Output of Pattern Recognition System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identification and counting of cells</td>
<td>slides of blood samples, micro-sections of tissue</td>
<td>types of cells</td>
</tr>
<tr>
<td>Detection and diagnosis of disease</td>
<td>electrocardiogram waveforms, electroencephalogram waveforms</td>
<td>types of cardiac conditions</td>
</tr>
<tr>
<td>Prosthetic control devices</td>
<td>slides of blood samples</td>
<td>classes of brain conditions</td>
</tr>
<tr>
<td>X-ray diagnosis</td>
<td>myopotentials</td>
<td>various types and proportions of normal and abnormal cells</td>
</tr>
<tr>
<td>Military Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interpretation of aerial reconnaissance imagery</td>
<td>visual, infra-red, radar, multispectral imagery</td>
<td>categories of movements of limbs</td>
</tr>
<tr>
<td>Detection of enemy navy vessels</td>
<td>passive and active sonar waveforms</td>
<td>presence or absence of specific conditions</td>
</tr>
<tr>
<td>Detection of underground nuclear explosions</td>
<td>seismic waveforms</td>
<td></td>
</tr>
<tr>
<td>Commercial and Government Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic detection of flaws—impurities in sheet glass, bottles, paper, textiles, printed circuit boards, integrated circuit masks</td>
<td>scanned image (visible on infra-red, etc.)</td>
<td>acceptable vs. unacceptable, markings, bubbles, flaws, radiation patterns, etc.</td>
</tr>
<tr>
<td>Classification and identification of fingerprints</td>
<td>scanned image</td>
<td></td>
</tr>
<tr>
<td>Traffic pattern study</td>
<td>aerial photographs of highways, intersections, bridges, road sensors</td>
<td>fingerprint descriptions based on Henry system of classification</td>
</tr>
<tr>
<td>Natural resource identification</td>
<td>multispectral imagery</td>
<td></td>
</tr>
<tr>
<td>Identification of crop diseases</td>
<td>time series of economic indicators</td>
<td></td>
</tr>
<tr>
<td>Economic prediction</td>
<td>speech waveform</td>
<td></td>
</tr>
<tr>
<td>Speech recognition—remote manipulation of processes, parcel post sorting, management information systems, voice input to computers</td>
<td>weather data from various land-based, airborne, ocean, and satellite sensors</td>
<td>categories of weather</td>
</tr>
<tr>
<td>Weather forecasting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Character Recognition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank checks</td>
<td>magnetic response waveform, optical scanned image</td>
<td>categories of weather</td>
</tr>
<tr>
<td>Automatic processing of documents—utility bills, credit card charges, sale and inventory documents</td>
<td>optical scanned image</td>
<td>numeric characters, special symbols</td>
</tr>
<tr>
<td>Journal tape reading</td>
<td>optical scanned image</td>
<td>alphabetic characters, special symbols</td>
</tr>
<tr>
<td>Page readers—automatic type setting, input to computers, reading for the blind</td>
<td>optical scanned image</td>
<td></td>
</tr>
<tr>
<td>Label readers</td>
<td>optical scanned image</td>
<td></td>
</tr>
<tr>
<td>Address readers</td>
<td>optical scanned image</td>
<td></td>
</tr>
<tr>
<td>Other readers—license plate readers, telephone traffic counter readers</td>
<td>optical scanned image</td>
<td></td>
</tr>
</tbody>
</table>

PRINTOUT 5
forms, and descriptions of chemical structure diagrams and displayed mathematical expressions to enable their input into computers in a natural form. Other work supported by the laboratory has included studies by Professor A. K. Agrawala and his students of the performance evaluation of computer systems using techniques of pattern analysis, viz., clustering and unsupervised learning of mixtures of probability density functions. Professor Agrawala was recently awarded a grant in this area by NASA.

Part of the laboratory's efforts are directed to the development of experimental tools for pattern analysis research. MIPACS - The Maryland Interactive Pattern Analysis Classification System, and GITSAPE - The Graphical Interactive Time Series Analysis Package are two systems which have been partially implemented and used.

The motivation for MIPACS is brought out by Figure 2, which illustrates the complex nature of the process of designing a pattern recognition system. Jo Ann Parikh, a current Ph.D. student of Professor A. Rosenfeld, recently found MIPACS most useful for her studies of cloud classification.

The strategy being followed in the Laboratory for Pattern Analysis is to capitalize on past research and facilitate future research by systematizing techniques in a Laboratory centered around an interactive computer facility. The research on error control and channel modeling described next illustrates this approach.

Transmission through real communication channels does not produce statistically independent errors; rather the errors occur in clusters with the clusters often being separated by long sequences of error-free data. Real channels are therefore said to have "memory". The analysis and modeling of error patterns of digital data communication channels with memory continues to be important, since only a fraction of the performance predicted by information theory is presently reliable on real channels. The Laboratory's research on modeling channels with memory resulted in a systematic approach for establishing transmission policy by a sampling → modeling → evaluation → code prescription sequence, and demonstrated the feasibility of doing this on an interactive system.

The past and current research in the Laboratory can be summarized under the following categories:

1. Statistical pattern analysis, modeling and classification.

2. Structural pattern analysis.

3. Experimental tools for pattern analysis research.

4. RECENTLY COMPLETED PH.D. DISSERTATIONS

Two Ph.D. dissertations were completed at the Laboratory this semester. The dissertation by A.V.
On the Sex of processes

In the RC 4000 Multiprogramming System [1], processes are arranged in a tree along lines of authority (even over life and death) and responsibility. Struck by the resemblance with family trees, many researchers have described the relationships in terms of "father" and "son". The nonexistent terms would be "parent" and "child".

A biological metaphor is certainly useful in talking about processes. As my scientific instincts overcame my political ones, I set out to discover which metaphor is the most accurate -- in other words, what sex, if any, is a process? The following is report on my research.

The Reproductive Characteristics of Processes

Many processes can be active simultaneously (although their apparent parallel activity may only be simulated by timesharing a single processor). Each active process is like a living person, and can call on monitor procedures to extend its capabilities, just as a tool extends the capabilities of the person using it.

When a process wishes to reproduce, it must use a monitor procedure to do so. The new process is given a subset of the resources of the process which created it. The figure below shows what this means for the resource of primary memory.

At some later time the process which created the new process activates it. It is now a full-fledged active process, and shares the attention of the physical processor(s) equally with all other processes. However, the creating process has the power to de-activate and destroy its creation.

The Reproductive Characteristics of Multicellular Organisms [2]

Mitosis is the form of cell division in which all genetic material is reproduced, and is thus the sole mechanism of asexual reproduction.

Meiosis is the form of cell division in which a diploid cell (having two sets of chromosomes) divides into two haploid cells (each with one set), and is thus the basis for sexual reproduction. The sexual reproduction cycle as observed in animals is illustrated below*.

* Many plants exhibit a more complex sexual reproductive cycle, which seems to have little to do with processes.
fertilized once by a drone who is disem-
bowed by the act (the system programmer),
and then creates progeny of both sexes,
through a pupa stage. This model has the
particularly attractive feature that the
daughters of the operating system are cap-
able of haploid reproduction, but with
progeny only useless systems programme rs.
The second flaw is that the article is
grinding an axe, but achieves only a poor
effect. In its haste to conclude that the
female terms should be used for processes,
it pictures a situation in which the all-
powerful male user of the operating system
controls his stable of female slaves, oc-
casionally deigning to allow one of them
to reproduce when he tires of his existing
harem. Thus the real effect is to promul-
gate the sexist position rather than to
correct it.

Besides, as you are well aware, we
don't accept papers by women.

MCP

Reference

Medina, Ohio, 1877.

News

The Society for Industrial and
Applied Mathematics (SIAM) has
elected WERNER C. RHEINBOLDT
president. His term begins in Jan-
uary, 1977. He has also been ap-
pointed Acting Vice President for
Publications, and Chairman of the
Publications Committee of SIAM.

ROBERT NOONAN will join the faculty
of the College of William and Mary
in Williamsburg, Virginia in Fall,
1976. VIRGIL GLIGOR from the Uni-
versity of California, Berkeley,
will come to Maryland in the Fall.

JACK MINKER has been appointed to
the Computer Science Board, an
organization of department chair-
persons which coordinates university
and college computer science activi-
ties, including the Computer Science
Conference.

The Graduate Record Examinations
Board has announced that a computer
science advanced test will be added
to the GRE, offered the first time
in October, 1976. RICHARD AUSTING
is Chairman of the committee de-
veloping the examination.

MARVIN ZELKOWITZ has been appointed
Newsletter editor of the IEEE Com-
puter Society Technical Committee
on Software Engineering. He will be
an invited speaker at the Second
International Software Engineering
Conference in October.

LAKEEN KANAL has been elected to the
Board of Governors of the IEEE In-
formation Theory Group for 1976-78.
He delivered an invited address,
"Hierarchical Classifier Design
using MIPACS" at the meeting of
the Classification Society of North
America at the University of Roches-
ter in May.
Publications, Etc.

Chu, Y. HIGH LEVEL LANGUAGE COMPUTER ARCHITECTURE, Academic Press, Inc. 1975. (Editor and an author)

Rosenfeld, A. "Models for Line Detection" (with L.S. Davis and A.K. Agrawala), IEEE TRANS. ON SYST MS, MAN AND CYBERNETICS SMC-6 (1976) 127-133,

Rosenfeld, A. "A Note on Thinning" (with L.S. Davis), IEEE TRANS. ON SYSTEMS, MAN, AND CYBERNETICS SMC-6 (1976) 226-228.

FedUp

Q: What do you get when you put 8-1/2 piles of PRINTOUT and 3-3/8 piles of PRINTOUT together?

A: True.

(Unsigned) A Friend

Sir:

In regard to your sequence
Fishman, Milgram, Cook, Yeh,..., the next five members are Kulkarni, Wilson, McSkimin, Turner, Lemmer. Beyond that no one can say at present.

JM

To the computer people:

Why is it that half the time I can't get any timesharing service on the 1106?

Disgruntled User

Because there is no timesharing service on Univac 1100 machines! -Ed.

Dearly beloved,

What are the guitar chords for "The B220 Doesn't Give a Damn" in PRINTOUT 2, #182?

Peter, Paul, & Moses

D, A?, and G; sorry about their omission. -Ed.

REFERENCES

THE REBEL SYSTEM HACKER

I'm a good old system hacker, that's just what I am. And
for this UNIVAC here I do not give a damn. I
hate its grungy op codes, and modifiers, too, and I
hate the damned assembler with its E and with its U.

I hate this UNIVAC here, with its software built of trash.
And I hate the damn executive, 'cause all it does is crash.
I hate half-duplex "service," "timesharing" with a catch:
The "commands" are just control cards: leftovers from batch.

I hate the Center system staff; they never fix a glitch.
And I hate the campus users' group, 'cause all they do is bitch.
And I don't want explanations about why it failed again:
It's obvious what's wrong with it, it's not a SYSTEM10.

I hate this UNIVAC here, each library and PROC.
Code is sprawling everywhere, it's nothing but a crock.
All written in assembler, unfit for human eyes,
And the documents describing it are riddled through with lies.

When things go past a certain point, fixes come too late.
But system hackers never die; we lie low and wait.
A new machine has got to come, and we will hack again...
Unless... Oh no! It's UNIVAC, the damned 1110!

-- Dick Hamlet