Programming Languages and Analyses

Reliable, Available, and Secure
Software

2 um

PROGRAMMING - UNIVERSITY OF

LANGUAG ES ' MARYLAND

Michael Hicks
University of Maryland,
College Park

Tuesday, September 25, 2012

Software runs the worlid

Tuesday, September 25, 2012

Software runs the worlid

* We (sometimes indirectly) interact with devices
running (lots of) software every day

Tuesday, September 25, 2012

Software runs the worlid

* We (sometimes indirectly) interact with devices
running (lots of) software every day

= Desktops, laptops, routers, smartphones, tablets

Tuesday, September 25, 2012

Software runs the worlid

* We (sometimes indirectly) interact with devices
running (lots of) software every day

= Desktops, laptops, routers, smartphones, tablets

= Coffee makers, TVs, energy meters, medical devices

Tuesday, September 25, 2012

Software runs the worlid

* We (sometimes indirectly) interact with devices
running (lots of) software every day

= Desktops, laptops, routers, smartphones, tablets

= Coffee makers, TVs, energy meters, medical devices

= Cars, aircraft, weapon systems, nuclear centrifuges

Tuesday, September 25, 2012

Software failures are disruptive

Tuesday, September 25, 2012

Software failures are disruptive

* 3/11:Mizuho FG’s ATM system goes down MIZU‘IO
= 5,600 machines offline for 24 hours | —

Tuesday, September 25, 2012

Software failures are disruptive

* 3/11:Mizuho FG’s ATM system goes down MIZlHO
= 5,600 machines offline for 24 hours —

* 8/10:Toyota Prius brakes fail due to software glitch

» Ford also issues patch for similar problem

Tuesday, September 25, 2012

Software failures are disruptive

* 3/11:Mizuho FG’s ATM system goes down MIZU‘IO
= 5,600 machines offline for 24 hours —

* 8/10:Toyota Prius brakes fail due to software glitch

» Ford also issues patch for similar problem

e 6/10: Stuxnet malware

= Exploits flaws in industrial control systems

Tuesday, September 25, 2012

Software failures are disruptive

* 3/11:Mizuho FG’s ATM system goes down MIZU‘IO
= 5,600 machines offline for 24 hours —

* 8/10:Toyota Prius brakes fail due to software glitch

» Ford also issues patch for similar problem

e 6/10: Stuxnet malware

= Exploits flaws in industrial control systems

* 3/08: Heartland exposes |134M credit cards 2w H
=~ Heartland
mﬁ” PAYMENT SYSTEMS"

The Highest Standards | The Most Trusted Transactions

= SQL injection used to install spyware

Tuesday, September 25, 2012

Software failures are disruptive

+ 3/11: Mizuho FG’s ATM system goes down MIZUWHO

= 5,600 machines offline for 24 hours —

* 8/10:Toyota Prius brakes fail due to software glitch

» Ford also issues patch for similar problem

e 6/10: Stuxnet malware

= Exploits flaws in industrial control systems

* 3/08: Heartland exposes |134M credit cards % H
<~ Heartland
l("‘” PAYMENT SYSTEMS™

The Highest Standards | The Most Trusted Transactions

= SQL injection used to install spyware

* 8/07: LAX offline due to faulty network card
= |7,000 planes grounded for eight hours

Tuesday, September 25, 2012

Software failures are disruptive

+ 3/11: Mizuho FG’s ATM system goes down MIZUWHO

= 5,600 machines offline for 24 hours —

* 8/10:Toyota Prius brakes fail due to software glitch

» Ford also issues patch for similar problem

e 6/10: Stuxnet malware

= Exploits flaws in industrial control systems

* 3/08: Heartland exposes |134M credit cards % H
<~ Heartland
l(""l PAYMENT SYSTEMS™

The Highest Standards | The Most Trusted Transactions

= SQL injection used to install spyware

* 8/07: LAX offline due to faulty network card
= |7,000 planes grounded for eight hours

 8/03: Northeast, multi-state blackout

= Race condition in power plant management software cascades

Tuesday, September 25, 2012

Software updates are disruptive too

* Typically require restarting the program
* interrupts active users / processing

* makes services unavailable

Tuesday, September 25, 2012

Software updates are disruptive too

* Typically require restarting the program
* interrupts active users / processing

* makes services unavailable

Twitter is being
upgraded!

It'll have super strength and agility
when it wakes up. Hang tight!

We're upgrading budget.com.

We apologize for any inconvenience and value your business.

Tuesday, September 25, 2012

Software updates are disruptive too

* Typically require restarting the program
* interrupts active users / processing

* makes services unavailable

,STAR.WARS'

U ! f\‘v I\ l)rnf ﬁt T?“‘

0 My SWTOR W Communimy
Twitter is being o Feis Tl Fom e
upgraded!

v|v OH NO, ANOTHER PATCH WITH DOWNTIME!

It'll have super strength and agility
when it wakes up. Hang tight!

We're upgrading budget.com.

We apologize for any inconvenience and value your business.

Tuesday, September 25, 2012

Software updates are disruptive too

* Typically require restarting the program
* interrupts active users / processing

* makes services unavailable

STAR.WARS
Py

A Adobe Reader Updater ————T
T REPTTRYT T

—— _— - - -

Update successful ™\ | ~ . 4

. My SWTOR v CoMMUNITY £, Surrort

Y¥ou must restart your system before using Adobe Reader. Click Restart Now to CH WITH DOWNTIME!
restart automatically, ———

[Restart Now] Close

We'r

We apologize for any inconvenience and value your business. 4

Tuesday, September 25, 2012

Software updates are disruptive too

* Typically require restarting the program
* interrupts active users / processing

* makes services unavailable

»
U = bd Ut Duadle

Software updates are available for your computer.

m Do you want to install them?
Update successful ' |
~— The new software will require that you restart your computer.

-9 =)

O,

Restart Required

You must restart your system before using Adobe Reader c’

h In order to complete the update of your system it needs to
restart automatically,

be restarted.

i‘l Restart your computer to finish installing
~ important updates

Windows can't update important files and services while the
system is using them. Make sure to save your files before
restarting.

Remind me in: 10 minutes v {

[Restart Now

We'r

We apologize for any inconvenience and value your business.

Tuesday, September 25, 2012

v!‘.lv

Programming Languages
A vehicle to a solution

* The language facilitates and constrains software’s
implementation

= To make it easy to implement a given design

= While discouraging/disallowing poor coding idioms

* Software tools can play a similar role
= Enforce/encourage good coding practice
= Simplify addition of useful features

= Apply to existing software in existing languages

Tuesday, September 25, 2012

My research

* Tackles problems of software
= reliability: software does what it should
= security: software free from vulnerability

= availability: avoid downtime by updating on the fly

- and avoid delayed use of security-critical patches and upgrades

* Two-pronged approach

= Formalize and prove key idea is correct

= |Implement and evaluate idea on real software

- Using existing software, or write new software in new language
6

Tuesday, September 25, 2012

Roadmap

* Dynamic software updating (DSU)
= Kitsune: Flexible and Efficient DSU for C programs

* Program analysis for security and reliability

= Knowledge-based security: quantitatively tracking
information

 Quick tour of some other work

Tuesday, September 25, 2012

Dynamic Software Updating (DSU)

Dynamic Software Updating (DSU)

* Goal: Update programs while they run

= Avoid interruptions

- Overwhelming number of security breaches due to unpatched software

= Preserve critical program state

Tuesday, September 25, 2012

Dynamic Software Updating (DSU)

* Goal: Update programs while they run

= Avoid interruptions

- Overwhelming number of security breaches due to unpatched software

= Preserve critical program state

* Useful for:
= Non-stop services
- E.g.,, Financial processing, air traffic control, network infrastructure

* Programs with long-lived connections

- E.g.,, OpenSSH and media streaming

= Long-running programs with large in-memory state

- E.g., operating systems, caching servers, in-memory databases

Tuesday, September 25, 2012

Dynamic Software Updating (DSU)

® Run program at the old version

® At some point update to the new version,
preserving and updating existing program state

® existing connections, important data on the stack
and heap, program counter, ...

Tuesday, September 25, 2012

Dynamic Software Updating (DSU)

Update

|

vO process

® Run program at the old version

® At some point update to the new version,
preserving and updating existing program state

® existing connections, important data on the stack
and heap, program counter, ...

Tuesday, September 25, 2012

Dynamic Software Updating (DSU)

vO state, Update

vO process O

® Run program at the old version

® At some point update to the new version,
preserving and updating existing program state

® existing connections, important data on the stack
and heap, program counter, ...

Tuesday, September 25, 2012

Dynamic Software Updating (DSU)

vO state, Update

vO process O

vl code

® Run program at the old version

® At some point update to the new version,
preserving and updating existing program state

® existing connections, important data on the stack
and heap, program counter, ...

Tuesday, September 25, 2012

Dynamic Software Updating (DSU)

vO state. Ypdate transformed state

vO process - >0

vl code

® Run program at the old version

® At some point update to the new version,
preserving and updating existing program state

® existing connections, important data on the stack
and heap, program counter, ...

Tuesday, September 25, 2012

Dynamic Software Updating (DSU)

vQ state transformed state

v0 process © O upd.process

vl code

® Run program at the old version

® At some point update to the new version,
preserving and updating existing program state

® existing connections, important data on the stack
and heap, program counter, ...

Tuesday, September 25, 2012

Many forms of DSU now mainstream

Tuesday, September 25, 2012

Many forms of DSU now mainstream

language run-times

Tuesday, September 25, 2012

Many forms of DSU now mainstream

IS NET Rebel

language run-times app. tools

Tuesday, September 25, 2012

Many forms of DSU now mainstream

Ksplice
Bought by
Oracle in

IS NET Rebel 2011

language run-times app. tools OSes

Tuesday, September 25, 2012

DSU research challenges

* Which mechanisms should we use to update a
running program/service!

= Compilers, binary rewriters, run-time systems,VMes,
process migration, ...

 How do we ensure a dynamic update is correct?
= Formal specifications, static analyses, testing tools, ...

* How do we balance various competing
concerns!

= Flexibility, efficiency, ease-of-use, portability, ...

Tuesday, September 25, 2012

Our research in DSU

* We have thoroughly researched these questions

= We have built DSU implementations for C and Java
[PLDI'06, PLDI'09x2, HotSWUp’ 10, OOPSLA’12]

= We have experience performing dozens of real-world
updates on a wide variety of programs

= We have developed methods for systematic testing

and static analysis to reason about dynamic updates
[POPL'05, TOPLAS'07, POPL08, HotSWUp’10,VSTTE’ 2]

= We have developed and empirically validated a variety
of automatic safety checks for ensuring safety [TSE'| |]

* Next: Kitsune, new DSU system for C [0OpPsLA"I2]

12

Tuesday, September 25, 2012

DSU state of the art: Transparency

* Goal: work on any program, with no changes

* Assessment: Laudable, but highly impractical

= At odds with the reasons people use C

- Control over low-level data representations, explicit resource
management, legacy code, high performance

= Empirical study shows existing transparent update
approaches allow incorrect updates [TSE'| |]

= Not as transparent as they seem
- Often requires refactoring to permit future updates

- and/or requires satisfying a conservative static pointer analysis

Tuesday, September 25, 2012

New approach: Kitsune

* Favors explicithess over transparency

= Kitsune treats DSU is a program feature and helps
developers implement and maintain it as such

* Having the developer orchestrate DSU allows:

= simpler DSU mechanisms ST
2 4

» easier developer reasonin - L (A
Y
9

= full flexibility

Kitsune (fox) - a
= better performance and control shapeshifter according
to Japanese folklore

* Principle: Pay for what you use

= Design carefully builds on lessons from earlier work

Tuesday, September 25, 2012

Results

* Applied Kitsune to six open-source programs
= memcached, redis, icecast, snort: 3-6 mos. of releases

= Jor, vsftpd: 2, and 4, years of releases, respectively

e Performance overhead in the noise

* Update times typically less than 40ms

* Programmer effort manageable

= 50-160 LOC per program (largely one-time effort)
- Program sizes from 5KLOC up to 220KLOC

= 27-200 LOC of xfgen specs across all releases

- xfgen is our DSL for writing state transformer functions

Tuesday, September 25, 2012

Kitsune: whole-program updates

driver

Tuesday, September 25, 2012

Kitsune: whole-program updates

driver

|. Load first version

main()

ver 1

Tuesday, September 25, 2012

Kitsune: whole-program updates

driver

|. Load first version

2. Run it

@ main()

ver 1

Tuesday, September 25, 2012

Kitsune: whole-program updates

driver

state

|. Load first version

2. Run it

@ main()

ver 1

Tuesday, September 25, 2012

Kitsune: whole-program updates

driver

state

|. Load first version

2. Run it

main()

ver 1

3. Call back to driver when update ready

Tuesday, September 25, 2012

Kitsune: whole-program updates

driver

state

|. Load first version

2. Run it

main()

ver 1

main()

ver 2

3. Call back to driver when update ready
4. Load second version

Tuesday, September 25, 2012

Kitsune: whole-program updates

driver

state

|. Load first version

2. Run it

main()

ver 1

@ main()

ver 2

3. Call back to driver when update ready
4. Load second version

Tuesday, September 25, 2012

Kitsune: whole-program updates

driver main() @ main()

ver 1 ver 2

|. Load first version

2. Run it

3. Call back to driver when update ready
4. Load second version

5. Migrate and transform state

Tuesday, September 25, 2012

Kitsune: whole-program updates

driver @ main()

ver 2

|. Load first version

2. Run it

3. Call back to driver when update ready
4. Load second version

5. Migrate and transform state

6. Free up old resources

Tuesday, September 25, 2012

Kitsune: whole-program updates

driver @ main()

ver 2

. Load first version

Run it

. Call back to driver when update ready
Load second version

. Migrate and transform state

Free up old resources

. Continue with new version

NoOuUhAwN —

Tuesday, September 25, 2012

Kitsune build process

v / .S0

$/

gcc
-shared

|\ AN
b —»/ Kitc D ./ gcec -c
c [C T 4PIC
-fvis...=
Kit-rt.a
Summary:

* For each source file

* replace gcc -c with composition of kitc and gcc
* Add -shared flag to linker and include kit-rt.a
*Allows us to update the entire program at once

Tuesday, September 25, 2012

Programmer obligations

* To implement DSU as a program feature, Kitsune
requires the programmer to:

= Choose update points: where updates may take place

= Code for data migration: ldentify the state to be
transformed, and where it should be received in the

new code

= Code for control migration: Ensure execution reaches
the right event loop when the new version restarts

Tuesday, September 25, 2012

Example single-threaded server

-

typedef int data;

data *mapping;

int | _fd;

void client_loop() {
int cl_fd =get _conn(l_fd);
while (1) {

// ... process client requests

}

}

int main() {
mapping = malloc(...);
| fd = setup conn();
while (1) {
client_loop();
}
}

before modification

~

Tuesday, September 25, 2012

Example single-threaded server

-

typedef int data;

data *mapping;

int | _fd;

void client_loop() {
int cl fd = get conn(l_fd);
while (1) {

// ... process client requests
b}

int main() {

while (1) {

client_loop();

J
J

mapping = malloc(...);
| fd = setup _conn();

_ after modification for Kitsune

Tuesday, September 25, 2012

Example single-threaded server

typedef int data; [. Choose update points
data *mapping; One per long running loop
int |_fd;

void client_loop() {

int cl fd = get conn(l_fd);
while (1) {

// ... process client requests
b}

int main() {

while (1) {

client_loop();

J
J

mapping = malloc(...);
| fd = setup _conn();

N after modification for Kitsune

Tuesday, September 25, 2012

Example single-threaded server

. |. Choose update points
typedefint data One per Iorlr runn;'n loo
data *mapping; P 8 g 100p
int|_fd;

void client_loop() {
int cl fd = get conn(l_fd);

while (1) {
// ... process client requests while (1) {
,} } , kitsune_update("main");
int main() {

client_loop();

J
J

mapping = malloc(...);
| fd = setup _conn();

N after modification for Kitsune

Tuesday, September 25, 2012

Example single-threaded server

typedef int data; |. Choose update points I
data *mapping. One per long running loop
int | _fd;
void client_loop() {
int cl fd = get conn(l_fd);
while (1) {

kitsune update("client");
// ... process client requests

bl

int main() {

while (1) {
kitsune_update("main");
client_loop();
}
}

mapping = malloc(...);
| fd = setup _conn();

N after modification for Kitsune

Tuesday, September 25, 2012

Example single-threaded server

typedef int data;
data *mapping;
int | _fd;

void client_loop() {

while (1) {

bl

int main() {

N

int cl fd = get conn(l_fd);

kitsune update("client");
// ... process client requests

mapping = malloc(...);
| fd = setup _conn();

2.Add data migration code

Globals migrated by default
Initiate at start of main()

while (1) {
kitsune_update("main");
client_loop();
}
}

after modification for Kitsune

Tuesday, September 25, 2012

Example single-threaded server

2.Add data migration code

Globals migrated by default
Initiate at start of main()

typedef int data;

data *mapping; // automigrated

int |_fd; // automigrated
void client_loop() {

int cl fd = get conn(l_fd);
while (1) {
kitsune _update("client");
// ... process client requests
b}
int main() {
kitsune_do_automigrate();

while (1) {
kitsune_update("main");
client_loop();
}
}

mapping = malloc(...);
| fd = setup _conn();

N after modification for Kitsune

Tuesday, September 25, 2012

Example single-threaded server

3.Add control migration code

typedef int data;

data *mapping; // automigrated

int |_fd; // automigrated
void client_loop() {

int cl fd = get conn(l_fd);
while (1) {
kitsune _update("client");
// ... process client requests
b}
int main() {
kitsune_do_automigrate();

Avoid reinitialization
Redirect control to update point

while (1) {
kitsune_update("main");
client_loop();
}
}

mapping = malloc(...);
| fd = setup _conn();

N after modification for Kitsune

Tuesday, September 25, 2012

Example single-threaded server

3.Add control migration code

typedef int data;

data *mapping; // automigrated

int |_fd; // automigrated
void client_loop() {

int cl fd = get conn(l_fd);
while (1) {

kitsune _update("client");

// ... process client requests

;o
int main() {
kitsune_do_automigrate();
if ('kitsune_is_updating()) {
mapping = malloc(...);
|_fd = setup_conn();

}

N after modification for Kitsune

Avoid reinitialization
Redirect control to update point

while (1) {
kitsune_update("main");
client_loop();
}
}

Tuesday, September 25, 2012

Example single-threaded server

N

typedef int data;

data *mapping; // automigrated

int |_fd; // automigrated
void client_loop() {

int cl fd =get conn(l _fd);
while (1) {

kitsune _update("client");

// ... process client requests

bl
int main() {
kitsune_do_automigrate();
if ('kitsune_is_updating()) {
mapping = malloc(...);
|_fd = setup_conn();

}

3.Add control migration code

Avoid reinitialization
Redirect control to update point

if (kitsune_is_updating_from
(“client”)) {
client _loop();

}
while (1) {
kitsune_update("main");
client_loop();
}
}

after modification for Kitsune

Tuesday, September 25, 2012

Example single-threaded server

4 We also support migration of locals
typedef int data; Generalizes to multi-threaded programs
data *mapping; // automigrate

int |_fd; // automigrated
void client_loop() {

, if (kitsune_is_updating_from
int cl_fd = get _conn(l_fd);

(“client”)) {

while (1) { client loop();
kitsune update("client"); !
// ... process client requests while (1) {
.} } | kitsune_update("main");
int main() {

client_loop();

J
J

kitsune_do_automigrate();

if ('kitsune_is_updating()) {
mapping = malloc(...);
|_fd = setup_conn();

}

. after modification for Kitsune Y

Tuesday, September 25, 2012

Migrating and transforming state

* State may need to be transformed to work with
the new program

= Transformation piggybacks on top of migration

typedef int data; typedef char *data;
old yp yp

data *mapping; data *mapping; new

21

Tuesday, September 25, 2012

Migrating and transforming state

* State may need to be transformed to work with
the new program

= Transformation piggybacks on top of migration

typedef int data; typedef char *data;
data *mapping; data *mapping;

old new

For each value x of type data in the running program
and its corresponding location p in the new program
do

Xform *p = malloc(N);
snprintf(*p,N,”%d”,x);
end

21

Tuesday, September 25, 2012

Migrating and transforming state

* State may need to be transformed to work with
the new program

= Transformation piggybacks on top of migration

typedef int data; typedef char *data;
old yp yp

data *mapping; data *mapping; new

new::mapsz = old::mapsz;
new::mapping = malloc(new::mapsz*sizeof(char*));
for (int i=0;i<new::mapsz;i++) {
old::data x = old::mappingl[i];
Xform new::data *p = &new::mapping[i];
*p = malloc(N);
snprintf(*p,N,”%d”,x);
/

21

Tuesday, September 25, 2012

Migrating and transforming state

* State may need to be transformed to work with
the new program

= Transformation piggybacks on top of migration

typedef int data; typedef char *data;
old . - . - new
data *mapping; data *mapping;
Xfgen tool

* Require programmer to write relevant xform
code using high-level specs

Xform |® Automate generation of transformation code

*requires some additional type annotations

21

Tuesday, September 25, 2012

Migrating and transforming state

* State may need to be transformed to work with
the new program

= Transformation piggybacks on top of migration

typedef int data; typedef char *data;
old yp yp

data *mapping; data *mapping; new

typedef data — typedef data: {

Xform $out = malloc(N);
snprintf($out, N,“%d”, $in);

}

21

Tuesday, September 25, 2012

Using Kitsune and xfgen

(old)

B

Kitc
.C

s

Xf

xfgen

gcc -C
-C -fPIC
-fvis...=

s
>

.

v

|\
st.c || rt.a FP»

gcc
-shared

22

Tuesday, September 25, 2012

Using Kitsune and xfgen

(old)

B

Kitc
.C

s

Xf

xfgen

gcc -c
-C -fPIC
-fvis...=

s
>

.

s

|\
st.c || rt.a FP»

gcc
-shared

* Transformation specs in per-update .xf file
* Linked in with new version and invoked by
kitsune_do_automigrate() and MIGRATE_LOCAL()

22

Tuesday, September 25, 2012

Kitsune benchmarks: changes required

23

Tuesday, September 25, 2012

Kitsune benchmarks: changes required

Program # Vers LoC
vsftpd 14 (1.1.0-2.0.6) 12,202
redis 5 (2.0.0-2.04) 13,387
Tor 13 (0.2.1.18-0.2.1.30) 76,090
memcached” 3 (1.2.2-1.2.4) 4,181
icecast” 5 (2.2.0-2.3.1) 15,759
snort” 4 (2.9.2-2.9.2.3) 214,703

* Multi-threaded

23

Tuesday, September 25, 2012

Kitsune benchmarks: changes required

Program # Vers LoC

vsftpd 14 (1.1.0-2.0.6) 12,202

redis 5 (2.0.0-2.0.4) 13,387

Tor 13 (0.2.1.18-0.2.1.30) 76,090

memcached” 3 (1.2.2-1.2.4) 4,181

icecast” 5 (2.2.0-2.3.1) 15,759

snort™ 4 (2.9.2-2.9.2.3) 214,703

*Multi-threaded
Program Upd Ctrl Data E_x Oth) v—>v t—>t X xfLoC
vsftpd 6 26 1748 6+14 28+8 83+30 9 21 30 101
redis 1 2 3 43 8 57 0 4 4 37
Tor 1 39 37+6 19 57 153+6 16 15 31 189
memcached”™ 4 9 13 20 66 112 12 10 22 27
icecast™ 1141 2243 1449 32+3 39 118+16 25 50 75 200
snort™ 2 90+18 110+2 158 66 426+20 111 64 175 197

23

Tuesday, September 25, 2012

Performance overhead

Program Orig Gigr) Kitsune Ginseng UpStare
64-bit, 4x 2.4Ghz E7450 (6 core), 24GB mem, RHEL 5.7

vsftpd 2.0.6” 6.55s (0.04s) +0.75% - -
memchd 1.2.4 59.30s 3.25s) +0.51% — —
redis 2.0.4 46.83s (0.40s) -0.31% — —
icecast 2.3.1 10.11s 2.27s) -2.18% — —

32-bit, 1 X3.6Ghz Pentium D (2 core), 2GB mem, Ubuntu 10.10
vsftpd 2.0.3* 5.96s (0.01s) +2.35% +113% +41.6%
vsftpd 2.0.37 14.03s (0.02s) +0.29% +147% +6.64%
memchd 1.2.4 | 101.40s 0.35s) -0.49% +18.4% -
redis 2.0.4 43.88s (0.16s) -1.21% — -
icecast 2.3.1 35.71s (0.68s) +1.18% -0.28% —

*CD+LS benchmark, Tfile download benchmark
* 2| runs each, median, sigr reported

* Overall:-2.18% to 2.35% overhead (in the noise)

* (No performance measurements for snort yet)

Tuesday, September 25, 2012

Update times

Program Med. (siqr) Min Max
64-bit, 4 X 2.4Ghz E7450 (6 core), 24GB mem, RHEL 5.7

vsitpd —2.0.6 2.99ms (0.04ms) 2.62 3.09
memcached —1.2.4 2.50ms (0.05ms) 2.27 2.68
redis —2.0.4 39.70ms (0.98ms) 36.14 82.66
1cecast —2.3.1 | 990.89ms 0.95ms) 451.73 992.71
icecast-nsp —2.3.1 | 187.89ms (1.77ms) 87.14 191.32
tor —0.2.1.30 11.81ms (0.12ms) 11.65 13.83

32-bit, 1 X3.6Ghz Pentium D (2 core), 2GB mem, Ubuntu 10.10
vsitpd —2.0.3 2.62ms (0.03ms) 2.52 2.71
memcached —1.2.4 2.44ms (0.08ms) 2.27 3.12
redis —2.0.4 38.83ms (0.64ms) 37.69 41.80
icecast —2.3.1 | 885.39ms (7.47ms) 859.00 908.87
tor —0.2.1.30 10.43ms (0.46ms) 10.08 12.98

e < 40ms in all cases but icecast

= |cecast includes 1s sleeps;icecast-nsp removes these .

Tuesday, September 25, 2012

Key idea #1: Update points

26

Tuesday, September 25, 2012

Key idea #1: Update points

* Competing approach: update anywhere

= (when code to be changed not running)
= Used by Ksplice, K42 (OS), OPUS

26

Tuesday, September 25, 2012

Key idea #1: Update points

* Competing approach: update anywhere
= (when code to be changed not running)
= Used by Ksplice, K42 (OS), OPUS

* Benefits of update points

= Simplifies reasoning for programmers

- Particularly for multithreaded programs
= May accelerate update times
- As opposed to waiting for updated code to become inactive

= Simplifies updating mechanism

26

Tuesday, September 25, 2012

Key idea #2: Whole program updates

27

Tuesday, September 25, 2012

Key idea #2: Whole program updates

* Competing approach

= Program keeps running the current code, and subsequent
function calls to new versions

= Used by Ginseng, POLUS, OPUS, Ksplice, K42

27

Tuesday, September 25, 2012

Key idea #2: Whole program updates

* Competing approach

= Program keeps running the current code, and subsequent
function calls to new versions

= Used by Ginseng, POLUS, OPUS, Ksplice, K42

* Benefits of whole-program updates:

= Can update active code (e.g., long-running loops) in an
arbitrary manner

- very important in practice
= Explicit control migration simplifies reasoning, maintenance

= More efficient implementation

- No need to insert levels of indirection, use trampolines, etc.

- No need to compile datastructures differently
27

Tuesday, September 25, 2012

Ongoing work

28

Tuesday, September 25, 2012

Ongoing work

* Means to specify and verify the correctness of
dynamic software updates [vsTTE12]

= Reuse specifications for each version individually

= Explicate acceptable backward-incompatible behaviors

28

Tuesday, September 25, 2012

Ongoing work

* Means to specify and verify the correctness of
dynamic software updates [vsTTE12]

= Reuse specifications for each version individually

= Explicate acceptable backward-incompatible behaviors

* Means to automatically generate state
transformations from dynamic analysis [oopsia'12]

= E.g.,automatically correct leaks in running heap

28

Tuesday, September 25, 2012

Ongoing work

* Means to specify and verify the correctness of
dynamic software updates [vsTTE12]

= Reuse specifications for each version individually

= Explicate acceptable backward-incompatible behaviors

* Means to automatically generate state
transformations from dynamic analysis [oopsia'12]

= E.g.,automatically correct leaks in running heap

* Adapt Kitsune methodology to Java

= Contrast to our earlier VM-based approach [PLDI'09]

28

Tuesday, September 25, 2012

Ongoing work

* Means to specify and verify the correctness of
dynamic software updates [vsTTE12]

= Reuse specifications for each version individually

= Explicate acceptable backward-incompatible behaviors

* Means to automatically generate state
transformations from dynamic analysis [oopsia'12]

= E.g.,automatically correct leaks in running heap

* Adapt Kitsune methodology to Java

= Contrast to our earlier VM-based approach [PLDI'09]

* Implement lazy state transformation for Kitsune

28

Tuesday, September 25, 2012

DSU project team

* Former students / post-docs

Manuel Oriol, post-doc 2005-06, @University of York (UK) and ABB
Gareth Stoyle, Ph.D. (Cambridge) 2007, @UBS (UK)

lulian Neamtiu, Ph.D. 2008, @UC Riverside

Suriya Subramanian, Ph.D. (UT Austin) 201 |, @Intel

Stephen Magill, post-doc 2010-11, @IDA/CCS (Gov. lab)

Chris Hayden, Ph.D. 2012, @WVashington Post Labs

e Current students

Karla Saur (3rd year), Ted Smith (undergrad), Luis Pina (3rd year, visiting)

* Profs/researchers

Kathryn McKinley, Prof @UT, MSR; Jeff Foster, Prof @Maryland;

Nate Foster, Prof @Cornell; Peter Sewell, Prof @Cambridge; Gavin Bierman,
@MSR Cambridge
29

Tuesday, September 25, 2012

Roadmap

* Dynamic software updating (DSU)
= Kitsune: Flexible and Efficient DSU for C programs

* Program analysis for security and reliability

= Knowledge-based security: quantitatively tracking
information

 Quick tour of some other work

30

Tuesday, September 25, 2012

Program analysis to improve quality

* Software is ubiquitous, and critically important

= Yet it is often unreliable and insecure

* So:build tools to analyze software automatically

= Static analysis applied before running the program
- Examples: Type checkers/inferencers, tools like FindBugs
- Pros: Complete coverage (considers all runs), no run-time overhead

- Cons: problems are undecidable, so often false alarms

= Dynamic analysis observes actual executions

- Pros:Very precise, no false alarms

- Cons: Less coverage, instrumentation adds run-time overhead,
discovered problems hard to remediate in deployment

31

Tuesday, September 25, 2012

Hybrid analysis: best of both worlds

* Dynamic analysis, optimized by static analysis
= Eliminate redundant checks; no false alarms

= [Ex: concurrency error checking [POPL’ 0], atomicity enforcement [TX'06]

* Dynamic analysis, proved correct statically

= Prove that necessary checks take place for all possible executions

= Ex: Fable/SELinks for security checking [Oakland’08, SIGMOD’09]

 Static analysis, made more precise by dynamic analysis
» Added contextual information reduces false alarms

= Ex: Synthesis of DSU state transformers [OOPSLA’12], Knowledge-based
security [CSF' ||, PLAS 12], Rubydust [POPL' | |,STOP'I]

32

Tuesday, September 25, 2012

Hybrid analysis: best of both worlds

Knowledge-based
security

33

Tuesday, September 25, 2012

No privacy: They have your data

advertisers

queryl/filter
Photography

page + ads

you

E—

facebook

your data

This is the status quo

Tuesday, September 25, 2012

Alternative: Maintain your own data

Photography

querier

you

Tuesday, September 25, 2012

Alternative: Maintain your own data

The question then becomes:
Which queries should you answer
and which should you refuse?

Photography

querier

you

Tuesday, September 25, 2012

Query I: Useful and non-revealing

out =24 < Age < 30 J
& Female? NN
& Engaged? *

querier

* real query used by a Facebook advertiser you

Tuesday, September 25, 2012

Query 2: Reveals too much!

out =
(gender,
zip-code,
birth-date) *

* - gender, zip-code, birth-date can be used to uniquely identify 87% of Americans

Tuesday, September 25, 2012

When to accept, when to reject

* Maintain a representation of the querier’s belief about secret’s possible values
* Each query result revises the belief; reject if actual secret becomes too likely

* Cannot let rejection defeat our protection.

time

Tuesday, September 25, 2012

When to accept, when to reject

* Maintain a representation of the querier’s belief about secret’s possible values
* Each query result revises the belief; reject if actual secret becomes too likely

* Cannot let rejection defeat our protection.

time

Tuesday, September 25, 2012

When to accept, when to reject

* Maintain a representation of the querier’s belief about secret’s possible values
* Each query result revises the belief; reject if actual secret becomes too likely

* Cannot let rejection defeat our protection.

Belief £

probability
distribution

time

Tuesday, September 25, 2012

When to accept, when to reject

* Maintain a representation of the querier’s belief about secret’s possible values
* Each query result revises the belief; reject if actual secret becomes too likely

* Cannot let rejection defeat our protection.

time

Tuesday, September 25, 2012

When to accept, when to reject

* Maintain a representation of the querier’s belief about secret’s possible values
* Each query result revises the belief; reject if actual secret becomes too likely

* Cannot let rejection defeat our protection.

time

Tuesday, September 25, 2012

When to accept, when to reject

* Maintain a representation of the querier’s belief about secret’s possible values
* Each query result revises the belief; reject if actual secret becomes too likely

* Cannot let rejection defeat our protection.

Bayesian
reasoning

to revise
belief

time

Tuesday, September 25, 2012

When to accept, when to reject

* Maintain a representation of the querier’s belief about secret’s possible values
* Each query result revises the belief; reject if actual secret becomes too likely

* Cannot let rejection defeat our protection.

OK (answer)

time

Tuesday, September 25, 2012

When to accept, when to reject

* Maintain a representation of the querier’s belief about secret’s possible values
* Each query result revises the belief; reject if actual secret becomes too likely

* Cannot let rejection defeat our protection.

OK (answer)

time

Tuesday, September 25, 2012

When to accept, when to reject

* Maintain a representation of the querier’s belief about secret’s possible values
* Each query result revises the belief; reject if actual secret becomes too likely

* Cannot let rejection defeat our protection.

OK (answer)

Tuesday, September 25, 2012

When to accept, when to reject

* Maintain a representation of the querier’s belief about secret’s possible values
* Each query result revises the belief; reject if actual secret becomes too likely

* Cannot let rejection defeat our protection.

OK (answer) Reject

Tuesday, September 25, 2012

When to accept, when to reject

* Maintain a representation of the querier’s belief about secret’s possible values
* Each query result revises the belief; reject if actual secret becomes too likely

* Cannot let rejection defeat our protection.

OK (answer)

Tuesday, September 25, 2012

When to accept, when to reject

* Maintain a representation of the querier’s belief about secret’s possible values
* Each query result revises the belief; reject if actual secret becomes too likely

* Cannot let rejection defeat our protection.

OK (answer)

Tuesday, September 25, 2012

When to accept, when to reject

* Maintain a representation of the querier’s belief about secret’s possible values
* Each query result revises the belief; reject if actual secret becomes too likely

* Cannot let rejection defeat our protection.

OK (answer)

Tuesday, September 25, 2012

Meet Bob

Bob (born September 24, 1980)
bday = 267
byear = 1980 secret

0 < bday < 364
1956 =< byear < 1992 Assumption: this is accurate
each equally likely

1956
bday

0 364

Tuesday, September 25, 2012

1992 - -
1 1
P
E (. bday-query1
: today := 260;
Lo if bday < today && bday < (today + 7)
? 3 then out := 1
: 3 else out := 0
1956 o
0 i i 364
1992 ¢ L
1956
0 250 267 364

Tuesday, September 25, 2012

bday-query1

today := 260;
if bday < today && bday < (today + 7)
then out ;=1
Problem else out :=0
Policy: Is this acceptable?
)

1992 ¢

1956

>
0 259 267 364

Tuesday, September 25, 2012

Idea: policy as knowledge threshold

- Answer a query if, for querier’s revised belief,
Pr[my secret] <t
- Call t the knowledge threshold

- Choice of t depends on the risk of revelation

Tuesday, September 25, 2012

Bob’s policies

1956

Bob (born September 24, 1980)
bday = 267
byear = 1980 secret

0 < bday < 364
1956 < byear < 1992
each equally likely

Policy
Pr[bday] < 0.2
O] Pr[bday,byear] < 0.05

Currently
Pr[bday] = 1/365
Pr[bday,byear] = 1/(365*37)

bday
364

Tuesday, September 25, 2012

Pr{bday = 267] ...

Back to the query ...

A

1992 - :
1 1
1 1
E P bday-query1
: 3 today := 260;
Vo if bday < today && bday < (today + 7)
- - then out ;= 1
R 3 else out :=0
1956 v
0 E i 364
1992 | L
= — O)
1956
0 259 267 364

Tuesday, September 25, 2012

bday-query1

_ today := 260;
Potentially if bday < today && bday < (today + 7)
Pr[bday] = 1/358 < 0.2 then out = 1
Pr[bday,byear] = 1/(358*37) < 0.05 else out -= 0

1992 ¢

1956

>
0 259 267 364

Tuesday, September 25, 2012

NeXt day 000

1992 ¢ :
E bday-query2
: today := 261;
: if bday < today && bday < (today + 7)
: then out := 1
: else out := 0
1956 E
0 259 i 267 i 364"
1992 E I
; i = 1)
1956 i
0 267 - Pr[bday] = 1 So reject?

Tuesday, September 25, 2012

Querier’s perspective

Assume querier knows policy

if bday # 267 if bday = 267
A
1992 roso 4
1956 1956
0 250 268 364 0 267
will get answer will get reject

Tuesday, September 25, 2012

Rejection problem

 Policy: Pr[bday = 267 |out=0] <t
* Rejection, intended to protect secret, reveals secret!

Tuesday, September 25, 2012

Rejection revised

 Policy: Pr[bday = 267 |out=0] <t

» Solution?
» Decide policy independently of secret

» Revised policy

 for every possible output o,
* for every possible bday b,
* Prlbday =b |out=0] <t

* So the real bday in particular

Tuesday, September 25, 2012

bday-query1

today := 260;

if bday < today && bday < (today + 7)
then out := 1
else out .= 0

accept

initial belief

Tuesday, September 25, 2012

(after bday-query1)

bday-query2

today = 261;

if bday < today && bday < (today + 7)
then out := 1
else out :=0

reject

(regardless of what bday actually is)

Tuesday, September 25, 2012

(after bday-query1)

bday-query3

today := 266;

if bday < today && bday < (today + 7)
then out := 1
else out .= 0

accept

This is acceptable since it is five days after the last accept, keeping the probability within t = 0.2;
l.e., Pr[266 < bday < 270] = 1/5 if out =1, Pr[bday] = 1/353 otherwise

Tuesday, September 25, 2012

Implementation

* Our query analysis in the style of abstract
interpretation

= We developed a novel probabilistic polyhedral domain

= Scales far better than monte carlo sampling

* Precisely analyzes a particular sequence of
queries, rather than all possible sequences

= Far less conservative than considering all possible
sequences of queries

53

Tuesday, September 25, 2012

lllustration of improved scalability

0 < bday < 364
1956 < byear < 1992

each equally likely

bday1 small

0 < bday < 364
1910 < byear < 2010

each equally likely

bday 1 large

max belief

max belief

0.8
0.6
0.4
0.2

0.8
0.6
0.4
0.2

prob-scheme x prob-poly-set +
XF I><) I>< ; I>< [|
+ - Tx
4 8 12 16
running time [s]

y +;< I>< [I>< [[[I><]

-I-HIIH- | | | | | | |]
4 8 12 16 20 24 28 32 36

running time [s]

54

Tuesday, September 25, 2012

lllustration of improved scalability

0 < bday < 364
= 1956 < byear < 1992

each equally likely

bday1 small

max belief

Our approach
best precision

time indep. of state size

0 < bday < 364
= 1910 < byear < 2010

each equally likely

bday 1 large

max belief

08 r
0.6 r
04 r
0.2

0.8
0.6
0.4
0.2

prob-scheme x prob-poly-set +
X <t X X I>< % IX
0 4 8 12 16
running time [s]
—>I< x+;< X I>< IX
0 4 8 12 16 20 24 28 32 36
running time [s]
54

Tuesday, September 25, 2012

lllustration of improved scalability

prob-scheme x prob-poly-set +
1 F >I< - I>< X IX « IX | _
o 087) |
0 < bday < 364 =
= 1956Sb;gar31992 2 067 7
each equally likely c>é 04 + i
& x
bday1 small 0.2 t T
0 @ﬂlll . . :@
Sampling 0 4 8 12 16
same precision running time (5
OOM
much slower -
1 Fx x+x X X " —O
0 < bday < 364 “— 0.8 .
= 1910 < byear < 2010 2
each equally likely o 067 T
bday 1 large g 04 |
E o2t |
O _I @: | | | | | | | 7 :

0 4 8 12 16 20 24 28 32 36
running time [s]

54

Tuesday, September 25, 2012

Related work

* Significant work on database-oriented privacy,
e.g., differential privacy. Key differences:

= Trusts third party data provider to run safe aggregate
queries. VWe work with individual data directly

= DP’s powerful adversary severely compromises utility,
particularly for queries specific to individuals

= Does not perform on-the-fly query analysis

* Also work on quantifying information flow
= Tracks “bits leaked” but not relevant policies

= Considers all possible query streams; too conservative

55

Tuesday, September 25, 2012

Current activities

* Application to secure multiparty computation
[PLAS’12]

= Two parties p/, p2 have secrets s/, s2 and compute
compute f(sl,s2) = x, revealing only x to each

= How much does x reveal about s/ and s2!?
* Time-indexed data: protect predictive features

= Cooperative computations over coalition sensor
networks

= Ensuring anonymity of location traces [ccs'12]

* General direction: Privacy as a right

56

Tuesday, September 25, 2012

Collaborators (on analyses/tools)

* Former students / post-docs

= Nikhil Swamy, Ph.D. 2008, @MSR Redmond

= Polyvios Pratikakis, Ph.D. 2008, @FORTH Labs (Crete, Greece)
= Avik Chaudhuri, post-doc 2009-10, @Adobe Research

= Saurabh Srivastava, Ph.D. 2010, @Berkeley (ClFellow post-doc)
= Martin Ma, Ph.D. 201 I, @Amazon

= Nataliya Guts, post-doc 201 |-12, @Google

* Current students/post-docs

= KhooYit Phang (7th year), Piotr Mardziel (4th year), Aseem Rastogi (4th year),
Matt Hammer (post-doc)

* Profs/researchers

= Jeff Foster (Maryland); Jonathan Katz (Maryland); Mudhakar Srivatsa (IBMT.|.
Watson); Miguel Castro et al. (MSR Cambridge); Daan Leijen (MSR Redmond)

57

Tuesday, September 25, 2012

Other research

®no SCORE: Agile Research Group Management | October 2010 | Communications of the ACM

° @ =+ | C|http://cacm.acm.org/magazines/2010/10/99484-score-agile-research-group-managemetr eader C] (Q' Score: Agile Res \
o St e m S n etwo r (I n & M Slashdot (55) LtU NPR BBC mibTV FSCTV espn SN TSG Weather FB BBlog Phils EFF wtk WAOB ExpProb Creat
TRUSTED INSIGHTS FOR COMPUTING'S LEADING PROFESSIONALS ACM.org Join ACM About Communications ACM Resources Alerts & Feeds ‘

SIGN IN

COMMUNICATIONS Search
re S e a rc h . 'HEAC M HOME | CURRENTISSUE | NEWS | BLOGS | OPINION | RESEARCH PRACTICE | CAREERS MAGAZINE ARCH

Home / Magazine Archive / October 2010 (Vol. 53, No. 10) / SCORE: Agile Research Group Management / Full Text

= Pavlos Papageorgiou (Ph.D, =

SCORE: Agile Research Group Management

2008), Passive-Aggressive

€E——— — — — — ——

Communications of the ACM, Vol. 53 No. 10, Pages 30-31
10.1145/1831407.1831421

M t with MGRP
casurement wi I 1 IECAEIC I
SIGCOMM’09 Ceste amACHN

Working with and mentoring Ph.D. students is the central activity R LA

in running an academic research group. At the start of our careers SIGN IN
= Justin McCann (Ph.D., 2012),

SIGN IN for Full Access

as assistant professors, we took a fairly typical approach to
managing student interactions: once or twice per week, we met

with each of our students in prescheduled sessions of

approximately half-hour or hour-long duration. However, this ARICIE N
approach started breaking down as we gained more students and Introduction
. our other responsibilities increased: our time became fragmented SCORE
A utom at’n Pe r O rm a n Ce and inefficiently used; hard-earned lessons were not shared Why It Works for Us
g effectively among students; and our group lacked any real cohesion Can SCORE Work for You?
References

or identity. In September 2006, we learned about Scrum,’ an
"agile" software development methodology, and realized we might LG

L] L] []
D ’agn O S ’S 'n N e two rke d Credit: iStockPhoto.com be able to solve some of the problems we were having by adapting Logtucies

it to our research group.

In this Viewpoint, we briefly describe the resulting process, which we call SCORE (SCrum fOr REsearch). We MORE NEWS & OPINIONS
S s te ' ' ' s have been using SCORE for several years, and have discovered it has many benefits, some we intended and Intel Researchers Put Wi-Fi
y some that surprised us. While every situation is different, we hope others may learn from our approach, in Inside—The Processor, That Is
idea if not in form, and that we might inspire further discussion of research group management strategies. A frsTechnica
longer version of this Viewpoint, with more information and space for feedback, is available at the SCORE 'Girls Can’t Program in Their

Web page.? Heads" Gender and Games in

° the Computing Classroom
Alan Turing's Other Universal
® g SCORE Machine

L. Martin Campbel-Kelly
The major feature of SCORE is its meeting structure, which consists of two parts:]
A

Regular all-hands status meetings. Several times a week (late mornings on Tuesdays, Wednesdays, and ACM RESOURCES -

for academic research -
[CACM’10]

M

58

Tuesday, September 25, 2012

Maryland Cybersecurity Center (MC2)

« MC2 Director (since Oct 201 1)

= Two new CMSC faculty (Shi and Feamster)

= Fifteen corporate partners (SAIC, NGC, Sourcefire, ...)
= First MC2 Symposium, May 201 |

= Google Cybersecurity Seminars

= ACES honors program, Prof. Masters, new courses

* Several new research initiatives underway

= Privacy as a right
Y 5 Maryland

= Anti-censorship Cybersecurity
Center

59

Tuesday, September 25, 2012

Summary: Building better software

* Along with colleagues and students, | am working
to understand how to construct software that is
available, reliable, and secure;i.e., software that

= never crashes
= adapts to changing circumstances and requirements
= properly protects data

= nevertheless provides useful and efficient services

and analyses, utilizing theory @ l ‘ l\ /l

and implementation, are a
powerful mechanism to this end ANGUAGE % MARYLAND

60

* Programming languages, tools,

Tuesday, September 25, 2012

