Beating the Perils of Non-Convexity: Machine Learning using Tensor Methods

Anima Anandkumar

Joint work with Majid Janzamin and Hanie Sedghi.

U.C. Irvine
Learning with Big Data

Learning is finding needle in a haystack
Learning with Big Data

Learning is finding needle in a haystack

- **High dimensional regime:** as data grows, more variables!
- **Useful information:** low-dimensional structures.
- **Learning with big data:** ill-posed problem.
Learning with Big Data

Learning is finding needle in a haystack

- High dimensional regime: as data grows, more variables!
- Useful information: low-dimensional structures.
- Learning with big data: ill-posed problem.

- Learning with big data: statistically and computationally challenging!
Most learning problems can be cast as optimization.

Unsupervised Learning
- Clustering
 \(k \)-means, hierarchical . . .
- Maximum Likelihood Estimator
 Probabilistic latent variable models

Supervised Learning
- Optimizing a neural network with respect to a loss function
Convex vs. Non-convex Optimization

Progress is only tip of the iceberg..

Images taken from https://www.facebook.com/nonconvex
Convex vs. Non-convex Optimization

Progress is only tip of the iceberg. Real world is mostly non-convex!

Images taken from https://www.facebook.com/nonconvex
Convex vs. Nonconvex Optimization

- Unique optimum: global/local.
- Multiple local optima
Convex vs. Nonconvex Optimization

- Unique optimum: global/local.
- Multiple local optima
- In high dimensions possibly exponential local optima
Convex vs. Nonconvex Optimization

- Unique optimum: global/local.
- Multiple local optima
 - In high dimensions possibly exponential local optima

How to deal with non-convexity?
Outline

1. Introduction

2. Guaranteed Training of Neural Networks

3. Overview of Other Results on Tensors

4. Conclusion
Training Neural Networks

- Tremendous practical impact with deep learning.
- Algorithm: backpropagation.
- Highly non-convex optimization
Toy Example: Failure of Backpropagation

Labeled input samples
Goal: binary classification

Our method: guaranteed risk bounds for training neural networks
Toy Example: Failure of Backpropagation

Labeled input samples
Goal: binary classification

Our method: guaranteed risk bounds for training neural networks
Toy Example: Failure of Backpropagation

Labeled input samples
Goal: binary classification

Our method: guaranteed risk bounds for training neural networks
Backpropagation vs. Our Method

Weights w_2 randomly drawn and fixed

Backprop (quadratic) loss surface

$w_1(1)$ $w_1(2)$
Backpropagation vs. Our Method

Weights w_2 randomly drawn and fixed

Backprop (quadratic) loss surface

Loss surface for our method

$w_1(1)$

$w_1(2)$

$w_1(1)$

$w_1(2)$
Overcoming Hardness of Training

In general, training a neural network is NP hard.

How does knowledge of input distribution help?
Overcoming Hardness of Training

In general, training a neural network is NP hard.

How does knowledge of input distribution help?
Generative vs. Discriminative Models

- Generative models: Encode domain knowledge.
- Discriminative: good classification performance.
- Neural Network is a discriminative model.

Do generative models help in discriminative tasks?
Feature learning: Learn $\phi(\cdot)$ from input data.

How to use $\phi(\cdot)$ to train neural networks?
Feature learning: Learn $\phi(\cdot)$ from input data.

How to use $\phi(\cdot)$ to train neural networks?

Multivariate Moments: Many possibilities, . . .

$$
\mathbb{E}[x \otimes y], \quad \mathbb{E}[x \otimes x \otimes y], \quad \mathbb{E}[\phi(x) \otimes y], \quad . . .
$$
Tensor Notation for Higher Order Moments

- Multi-variate higher order moments form tensors.
- Are there spectral operations on tensors akin to PCA on matrices?

Matrix

- $\mathbb{E}[x \otimes y] \in \mathbb{R}^{d \times d}$ is a second order tensor.
- $\mathbb{E}[x \otimes y]_{i_1, i_2} = \mathbb{E}[x_{i_1} y_{i_2}]$.
- For matrices: $\mathbb{E}[x \otimes y] = \mathbb{E}[xy^\top]$.

Tensor

- $\mathbb{E}[x \otimes x \otimes y] \in \mathbb{R}^{d \times d \times d}$ is a third order tensor.
- $\mathbb{E}[x \otimes x \otimes y]_{i_1, i_2, i_3} = \mathbb{E}[x_{i_1} x_{i_2} y_{i_3}]$.

- In general, $\mathbb{E}[\phi(x) \otimes y]$ is a tensor.
- What class of $\phi(\cdot)$ useful for training neural networks?
Score Function Transformations

Score function for \(x \in \mathbb{R}^d \) with pdf \(p(\cdot) \):

\[
S_1(x) := -\nabla_x \log p(x)
\]

Input: \(x \in \mathbb{R}^d \) \(\quad S_1(x) \in \mathbb{R}^d \)
Score Function Transformations

Score function for $x \in \mathbb{R}^d$ with pdf $p(\cdot)$:

$$S_1(x) := -\nabla_x \log p(x)$$

Input: $x \in \mathbb{R}^d$, $S_1(x) \in \mathbb{R}^d$
Score Function Transformations

Score function for $x \in \mathbb{R}^d$ with pdf $p(\cdot)$:

$$S_1(x) := -\nabla_x \log p(x)$$

Input: $x \in \mathbb{R}^d$ \quad S_1(x) \in \mathbb{R}^d$
Score Function Transformations

- Score function for $x \in \mathbb{R}^d$ with pdf $p(\cdot)$:

$$S_1(x) := -\nabla_x \log p(x)$$

- m^{th}-order score function:

Input: $x \in \mathbb{R}^d$
$S_1(x) \in \mathbb{R}^d$
Score Function Transformations

- Score function for \(x \in \mathbb{R}^d \) with pdf \(p(\cdot) \):
 \[
 S_1(x) := -\nabla_x \log p(x)
 \]

- \(m^{th} \)-order score function:
 \[
 S_m(x) := (-1)^m \frac{\nabla^{(m)} p(x)}{p(x)}
 \]

Input: \(x \in \mathbb{R}^d \) \(S_1(x) \in \mathbb{R}^d \)
Score Function Transformations

Score function for \(x \in \mathbb{R}^d \) with pdf \(p(\cdot) \):

\[
S_1(x) := -\nabla_x \log p(x)
\]

\(m \)\(^{th}\)-order score function:

\[
S_m(x) := (-1)^m \frac{\nabla^{(m)} p(x)}{p(x)}
\]

Input:
\(x \in \mathbb{R}^d \)

\(S_2(x) \in \mathbb{R}^{d \times d} \)
Score Function Transformations

- Score function for $x \in \mathbb{R}^d$ with pdf $p(\cdot)$:
 $$S_1(x) := - \nabla_x \log p(x)$$

- m^{th}-order score function:
 $$S_m(x) := (-1)^m \frac{\nabla^{(m)} p(x)}{p(x)}$$

Input: $x \in \mathbb{R}^d$

$S_3(x) \in \mathbb{R}^{d\times d\times d}$
\[\mathbb{E}[y|x] = f(x) = a_2^\top \sigma(A_1^\top x + b_1) + b_2 \]
\[\mathbb{E}[y|x] = f(x) = a_2^\top \sigma (A_1^\top x + b_1) + b_2 \]

- Given labeled examples \(\{(x_i, y_i)\} \)

\[\mathbb{E}[y \cdot S_m(x)] = \mathbb{E}\left[\nabla^{(m)} f(x) \right] \]

\[\Downarrow \]
Moments of a Neural Network

\[E[y|x] = f(x) = a_2^\top \sigma(A_1^\top x + b_1) + b_2 \]

- Given labeled examples \(\{(x_i, y_i)\} \)

\[E[y \cdot S_m(x)] = E[\nabla^{(m)} f(x)] \]

\[\Downarrow \]

\[M_1 = E[y \cdot S_1(x)] = \sum_{j \in [k]} \lambda_{1,j} \cdot (A_1)_j \]
Moments of a Neural Network

\[\mathbb{E}[y|x] = f(x) = a_2^\top \sigma(A_1^\top x + b_1) + b_2 \]

- Given labeled examples \(\{(x_i, y_i)\} \)

\[\mathbb{E}[y \cdot S_m(x)] = \mathbb{E}\left[\nabla^{(m)} f(x)\right] \]

\[\downarrow \]

\[M_1 = \mathbb{E}[y \cdot S_1(x)] = \sum_{j \in [k]} \lambda_{1,j} \cdot (A_1)_j \]

= \[\begin{bmatrix} \lambda_{11} (A_1)_1 \\ \lambda_{12} (A_1)_2 \end{bmatrix} + \ldots \]
Moments of a Neural Network

\[\mathbb{E}[y|x] = f(x) = a_2^\top \sigma(A_1^\top x + b_1) + b_2 \]

- Given labeled examples \(\{(x_i, y_i)\} \)

\[\mathbb{E}[y \cdot S_m(x)] = \mathbb{E}[\nabla^{(m)} f(x)] \]

\[\downarrow \]

\[M_2 = \mathbb{E}[y \cdot S_2(x)] = \sum_{j \in [k]} \lambda_{2,j} \cdot (A_1)_j \otimes (A_1)_j \]
\[\mathbb{E}[y|x] = f(x) = a_2^\top \sigma(A_1^\top x + b_1) + b_2 \]

- Given labeled examples \(\{(x_i, y_i)\} \)

\[\mathbb{E}[y \cdot S_m(x)] = \mathbb{E}[\nabla^{(m)} f(x)] \]

\[M_2 = \mathbb{E}[y \cdot S_2(x)] = \sum_{j \in [k]} \lambda_{2,j} \cdot (A_1)_j \otimes (A_1)_j \]

= \[\lambda_{11}(A_1)_1 \otimes (A_1)_1 + \lambda_{12}(A_1)_2 \otimes (A_1)_2 \]
Moments of a Neural Network

\[\mathbb{E}[y|x] = f(x) = a_2^\top \sigma(A_1^\top x + b_1) + b_2 \]

- Given labeled examples \(\{(x_i, y_i)\} \)

\[\mathbb{E}[y \cdot S_m(x)] = \mathbb{E}\left[\nabla^{(m)} f(x) \right] \]

\[\downarrow \]

\[M_3 = \mathbb{E}[y \cdot S_3(x)] = \sum_{j \in [k]} \lambda_{3,j} \cdot (A_1)_j \otimes (A_1)_j \otimes (A_1)_j \]
Moments of a Neural Network

\[\mathbb{E}[y|x] = f(x) = a_2^\top \sigma(A_1^\top x + b_1) + b_2 \]

- Given labeled examples \(\{(x_i, y_i)\} \)

\[\mathbb{E}[y \cdot S_m(x)] = \mathbb{E} \left[\nabla^{(m)} f(x) \right] \]

\[\downarrow \]

\[M_3 = \mathbb{E}[y \cdot S_3(x)] = \sum_{j \in [k]} \lambda_{3,j} \cdot (A_1)_{j} \otimes (A_1)_{j} \otimes (A_1)_{j} \]
Moments of a Neural Network

\[E[y|x] = f(x) = a_2^\top \sigma(A_1^\top x + b_1) + b_2 \]

- Given labeled examples \(\{(x_i, y_i)\} \)

\[E[y \cdot S_m(x)] = E[\nabla^{(m)} f(x)] \]

\[\downarrow \]

\[M_3 = E[y \cdot S_3(x)] = \sum_{j \in [k]} \lambda_{3,j} \cdot (A_1)_j \otimes (A_1)_j \otimes (A_1)_j \]

Why tensors are required?

- Matrix decomposition recovers subspace, not actual weights.
- Tensor decomposition uniquely recovers under non-degeneracy.
\[\mathbb{E}[y|x] = f(x) = a_2^\top \sigma(A_1^\top x + b_1) + b_2 \]

- Given labeled examples \(\{(x_i, y_i)\} \)
 \[\mathbb{E}[y \cdot S_m(x)] = \mathbb{E}\left[\nabla^{(m)} f(x)\right] \]

\[M_3 = \mathbb{E}[y \cdot S_3(x)] = \sum_{j \in [k]} \lambda_{3,j} \cdot (A_1)_j \otimes (A_1)_j \otimes (A_1)_j \]

- Guaranteed learning of weights of first layer via tensor decomposition.
- Learning the other parameters via a Fourier technique.
NN-LiFT: Neural Network Learning using Feature Tensors

Input: \(x \in \mathbb{R}^d \)

\(S_3(x) \in \mathbb{R}^{d \times d \times d} \)
NN-LiFT: Neural Network Learning using Feature Tensors

Input:
\[x \in \mathbb{R}^d \]

\[S_3(x) \in \mathbb{R}^{d \times d \times d} \]

\[\sum_{i=1}^{n} y_i \otimes S_3(x_i) = \frac{1}{n} \sum_{i=1}^{n} y_i \otimes S_3(x_i) \]

Estimating \(M_3 \) using labeled data \(\{(x_i, y_i)\} \)
NN-LiFT: Neural Network Learning using Feature Tensors

Input: \[x \in \mathbb{R}^d \]

Cross-moment:
\[
\frac{1}{n} \sum_{i=1}^{n} y_i \otimes S_3(x_i) = \frac{1}{n} \sum_{i=1}^{n} y_i \otimes S_3(x_i)
\]

Estimating \(M_3 \) using labeled data \(\{(x_i, y_i)\} \)

\(S_3(x) \in \mathbb{R}^{d \times d \times d} \)

CP tensor decomposition

Rank-1 components are the estimates of columns of \(A_1 \)
NN-LiFT: Neural Network Learning using Feature Tensors

Input: \(x \in \mathbb{R}^d \)

\(S_3(x) \in \mathbb{R}^{d \times d \times d} \)

Cross-moment

\[
\frac{1}{n} \sum_{i=1}^{n} y_i \otimes S_3(x_i) = \frac{1}{n} \sum_{i=1}^{n} y_i \otimes S_3(x_i)
\]

Estimating \(M_3 \) using labeled data \(\{(x_i, y_i)\} \)

CP tensor decomposition

Rank-1 components are the estimates of columns of \(A_1 \)

Fourier technique \(\Rightarrow a_2, b_1, b_2 \)
Estimation error bound

- Guaranteed learning of weights of first layer via tensor decomposition.

\[M_3 = \mathbb{E}[y \otimes S_3(x)] = \sum_{j \in [k]} \lambda_{3,j} \cdot (A_1)_j \otimes (A_1)_j \otimes (A_1)_j \]

- Full column rank assumption on weight matrix \(A_1 \)
- Guaranteed tensor decomposition (AGHKT’14, AGJ’14)
Estimation error bound

- Guaranteed learning of weights of first layer via tensor decomposition.

\[
M_3 = \mathbb{E}[y \otimes S_3(x)] = \sum_{j \in [k]} \lambda_{3,j} \cdot (A_1)_j \otimes (A_1)_j \otimes (A_1)_j
\]

- Full column rank assumption on weight matrix \(A_1 \)
- Guaranteed tensor decomposition (AGHKT’14, AGJ’14)
- Learning the other parameters via a Fourier technique.
Estimation error bound

- Guaranteed learning of weights of first layer via tensor decomposition.

\[M_3 = \mathbb{E}[y \otimes S_3(x)] = \sum_{j \in [k]} \lambda_{3,j} \cdot (A_1)_j \otimes (A_1)_j \otimes (A_1)_j \]

- Full column rank assumption on weight matrix \(A_1 \)
- Guaranteed tensor decomposition (AGHKT’14, AGJ’14)
- Learning the other parameters via a Fourier technique.

Theorem (JSA’14)

- number of samples \(n = \text{poly}(d, k) \), we have w.h.p.
 \[|f(x) - \hat{f}(x)|^2 \leq \tilde{O}(1/n). \]
Our Main Result: Risk Bounds

- Approximating arbitrary function $f(x)$ with bounded

$$C_f := \int_{\mathbb{R}^d} \|\omega\|_2 \cdot |F(\omega)| d\omega$$

- n samples, d input dimension, k number of neurons.
Our Main Result: Risk Bounds

- Approximating arbitrary function $f(x)$ with bounded

$$C_f := \int_{\mathbb{R}^d} \|\omega\|_2 \cdot |F(\omega)| d\omega$$

- n samples, d input dimension, k: number of neurons.

Theorem (JSA’14)

- Assume C_f is small.

$$\mathbb{E}[|f(x) - \hat{f}(x)|^2] \leq O(C_f^2/k) + O(1/n).$$

- Polynomial sample complexity n in terms of dimensions d, k.
- Computational complexity same as SGD with enough parallel processors.

1. Introduction

2. Guaranteed Training of Neural Networks

3. Overview of Other Results on Tensors

4. Conclusion
Tractable Learning for LVMs

GMM

HMM

ICA

Multiview and Topic Models

$h \in [k], \quad h \in [k],

\bar{x}_1 \in \mathbb{R}^{d_1}, \bar{x}_2 \in \mathbb{R}^{d_2}, \ldots, \bar{x}_\ell \in \mathbb{R}^{d_\ell}.

k = \# \text{ components}, \quad \ell = \# \text{ views (e.g., audio, video, text)}.

View 1: $\bar{x}_1 \in \mathbb{R}^{d_1}$
View 2: $\bar{x}_2 \in \mathbb{R}^{d_2}$
View 3: $\bar{x}_3 \in \mathbb{R}^{d_3}$
Randomized Tensor Sketches

- Naive computation scales exponentially in order of the tensor.
- Propose randomized FFT sketches.
- Computational complexity independent of tensor order.
- Linear scaling in input dimension and number of samples.

(1) *Fast and Guaranteed Tensor Decomposition via Sketching* by Yining Wang, Hsiao-Yu Tung, Alex Smola, A., NIPS 2015.

(2) *Tensor Contractions with Extended BLAS Kernels on CPU and GPU* by Y. Shi, UN Niranjan, C. Cecka, A. Mowli, A.
Randomized Tensor Sketches

- Naive computation scales exponentially in order of the tensor.
- Propose randomized FFT sketches.
- Computational complexity independent of tensor order.
- Linear scaling in input dimension and number of samples.

Tensor Contractions with Extended BLAS Kernels on CPU and GPU

- BLAS: Basic Linear Algebraic Subprograms, highly optimized libraries.
- Use extended BLAS to minimize data permutation, I/O calls.

(1) Fast and Guaranteed Tensor Decomposition via Sketching by Yining Wang, Hsiao-Yu Tung, Alex Smola, A., NIPS 2015.

(2) Tensor Contractions with Extended BLAS Kernels on CPU and GPU by Y. Shi, UN Niranjan, C. Cecka, A. Mowli, A.
Preliminary Results on Spark

- In-memory processing of Spark: ideal for iterative tensor methods.
- Alternating Least Squares for Tensor Decomposition.

\[
\min_{w,A,B,C} \left\| T - \sum_{i=1}^{k} \lambda_i A(:,i) \otimes B(:,i) \otimes C(:,i) \right\|_F^2
\]

Update Rows Independently

Results on NYtimes corpus

3 * 10^5 documents, 10^8 words

<table>
<thead>
<tr>
<th></th>
<th>Spark</th>
<th>Map-Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>26mins</td>
<td>4 hrs</td>
<td></td>
</tr>
</tbody>
</table>

(2) Topic Modeling at Lightning Speeds via Tensor Factorization on Spark by F. Huang, A., under preparation.
Convolutional Tensor Decomposition

(a) Convolutional dictionary model

\[x = \sum f_i^* \ast w_i^* \]

(b) Reformulated model

\[x = \bar{F}^* \ast w^* \]

Efficient methods for tensor decomposition with circulant constraints.

Reinforcement Learning (RL) of POMDPs

- Partially observable Markov decision processes.

Proposed Method

- Consider memoryless policies. Episodic learning: indirect exploration.
- First RL method for POMDPs with logarithmic regret bounds.

Logarithmic Regret Bounds for POMDPs using Spectral Methods by K. Azzizade, A. Lazaric, A.

, under preparation.
Summary

- Tensor methods: a powerful paradigm for guaranteed large-scale machine learning.
- First methods to provide provable bounds for training neural networks, many latent variable models (e.g. HMM, LDA), POMDPs!
Summary

- Tensor methods: a powerful paradigm for guaranteed large-scale machine learning.
- First methods to provide provable bounds for training neural networks, many latent variable models (e.g. HMM, LDA), POMDPs!

Outlook

- Training multi-layer neural networks, models with invariances, reinforcement learning using neural networks ...
- Unified framework for tractable non-convex methods with guaranteed convergence to global optima?
My Research Group and Resources

- Podcast/lectures/papers/software available at
 http://newport.eecs.uci.edu/anandkumar/