Stuff I did in the Spring while not Replying to Email (aka "advances in structured prediction")

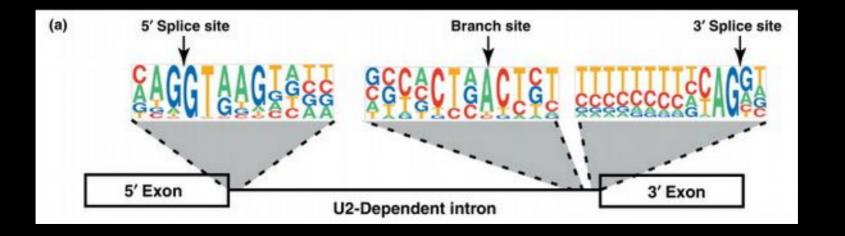
Hal Daumé III | University of Maryland | me@hal3.name | @haldaume3

Examples of structured joint iction

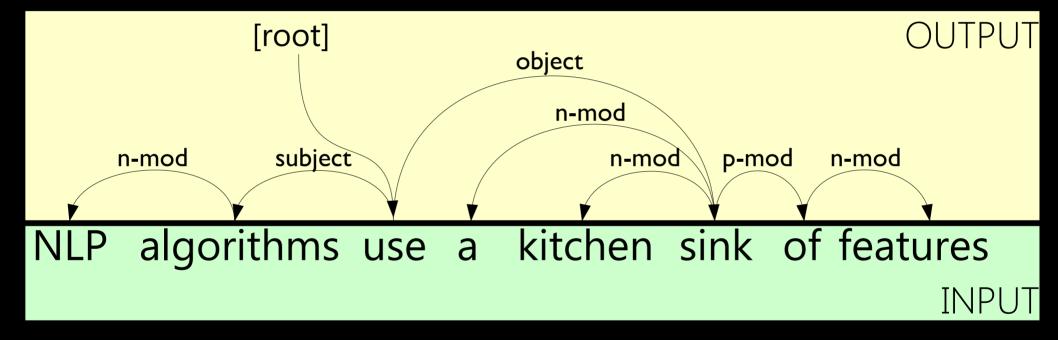
Sequence labeling

x = the monster ate the sandwichy = DtNnVbDtNn

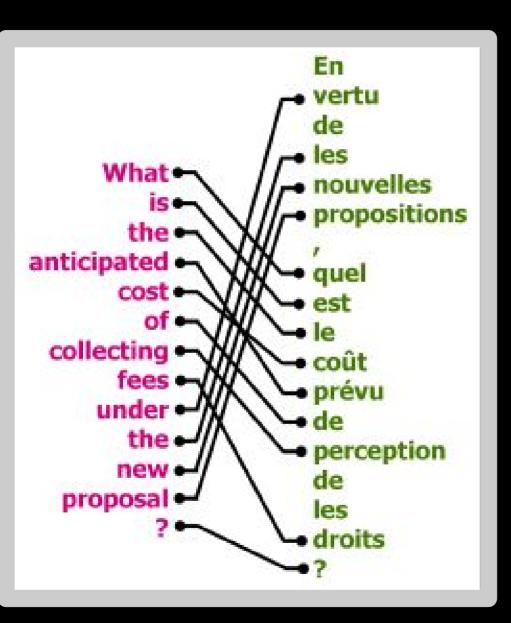
x = Yesterday I traveled to Lille y = - PER - - LOC

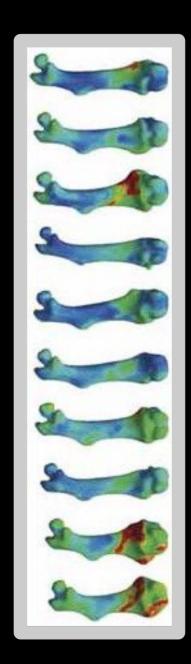


Natural language parsing



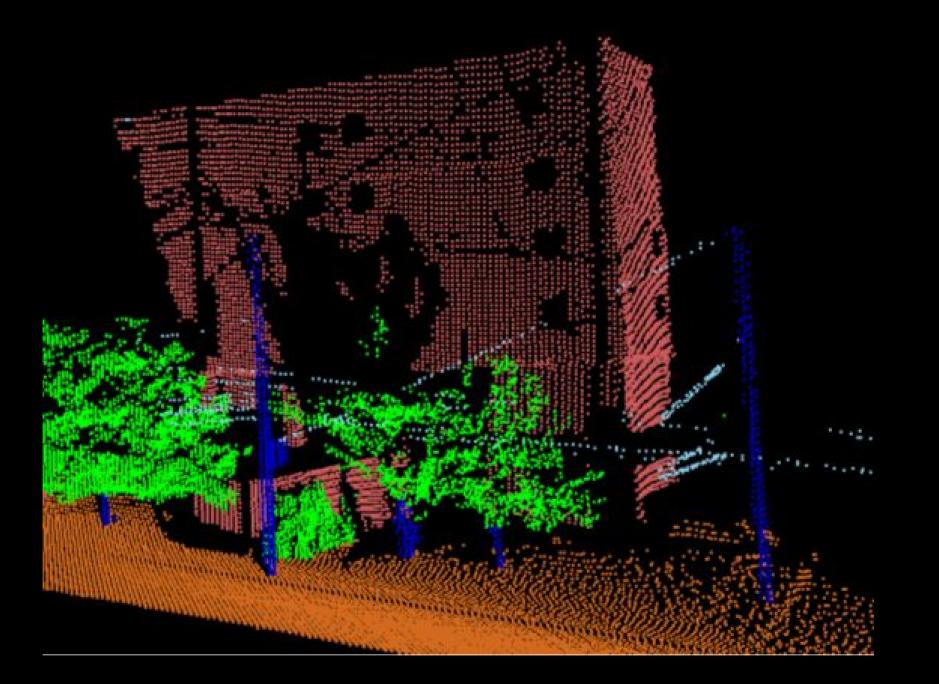
(Bipartite) matching



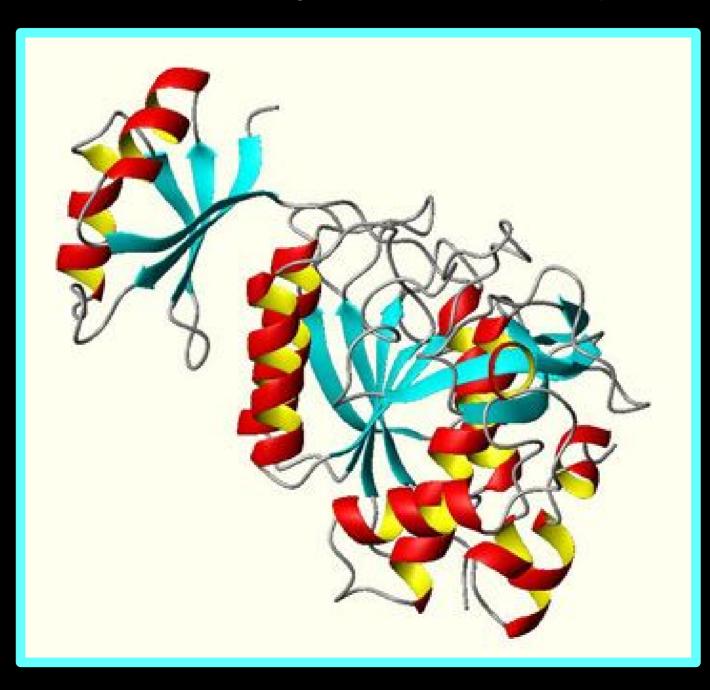


Machine translation

Segmentation



Protein secondary structure prediction



Outline

Background: learning to s

Isn't this kinda narrow?

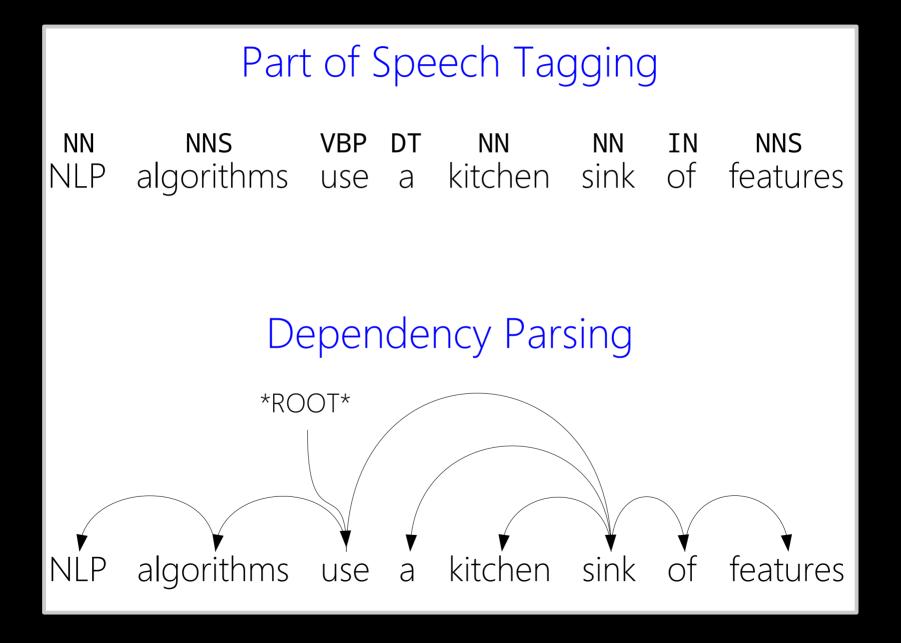
- Stuff I did in the Spring
 - Imperative DSL/library for learning to search
 - > SOTA examples for tagging, parsing, relation extraction, etc.
 - Learning to search under bandit feedback
 - Hardness results for learning to search
 - Active learning for accelerating learning to search
- Stuff I'm trying to do now
 - Distant supervision
 - Mashups with recurrent neural networks

My experience, 6 months in industry

- Standard adage: academia=freedom, industry=time
 - Number of responsibilities vs number of bosses
- Aspects I didn't anticipate
 - Breadth (academia) versus depth (industry)
 - Collaborating through students versus directly
 - Security through tenure versus security through \$
- At the end of the day: who are your colleagues and what do you have to do to pay the piper?

Major caveat: this is comparing a top ranked CS dept to top industry lab, in a time when there's tons of money in this area (more in industry)

Joint prediction via learning to search



Joint prediction via learning to search



Joint Prediction Haiku

A joint prediction Across a single input Loss measured jointly

Back to the original problem...

• How to optimize a discrete, joint loss?

• Input:	$\mathbf{X} \in \mathbf{X}$	Ι	can	can	а	can
• Truth:		Pro	Md	Vb	Dt	Nn
• Iruun.	$y \in Y(x)$	Pro	Md	Md	Dt	Vb
• Outputs:	Y(x)	Pro	Md	Md	Dt	Nn
Duadiatadu	$\hat{\mathbf{x}} = \mathbf{V}(\mathbf{x})$	Pro	Md	Nn	Dt	Md
 Predicted: 	$y \in I(X)$	Pro	Md	Nn	Dt	Vb
• Loss:	$loss(y, \hat{y})$	Pro	Md	Nn	Dt	Nn
		Pro	Md	Vb	Dt	Md
• Data:	(x,y) ~ D	Pro	Md	Vb	Dt	Vb

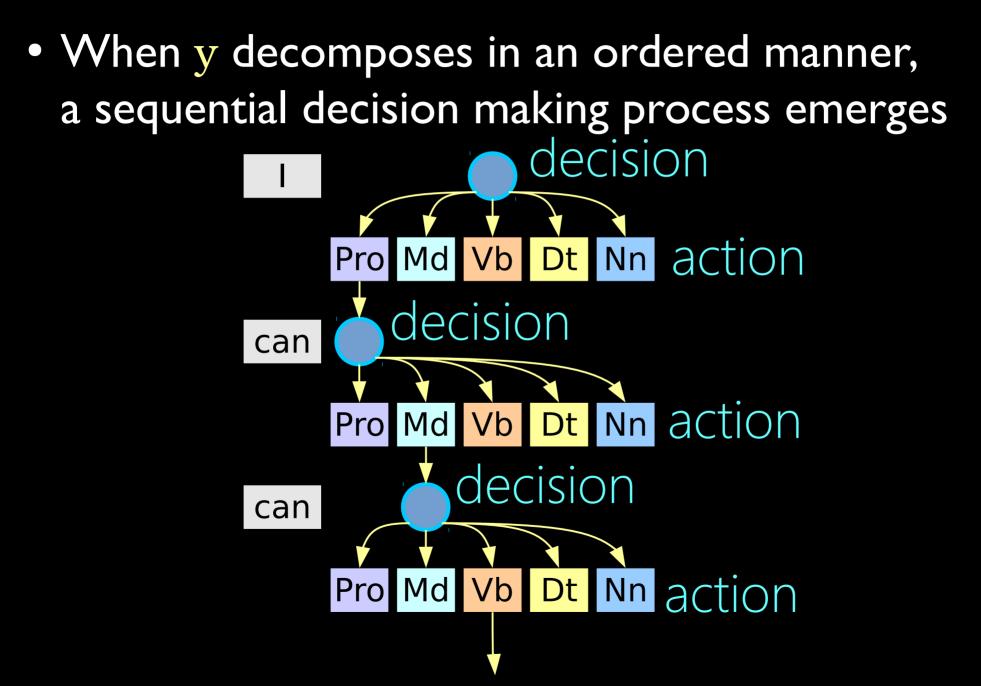
Back to the original problem...

• How to optimize a discrete, joint loss?

- Input: $x \in X$
- Truth: $y \in Y(x)$
- Outputs: Y(x)
- Predicted: $\hat{y} \in Y(x)$
- Loss: $loss(y, \hat{y})$
- Data: $(x,y) \sim D$

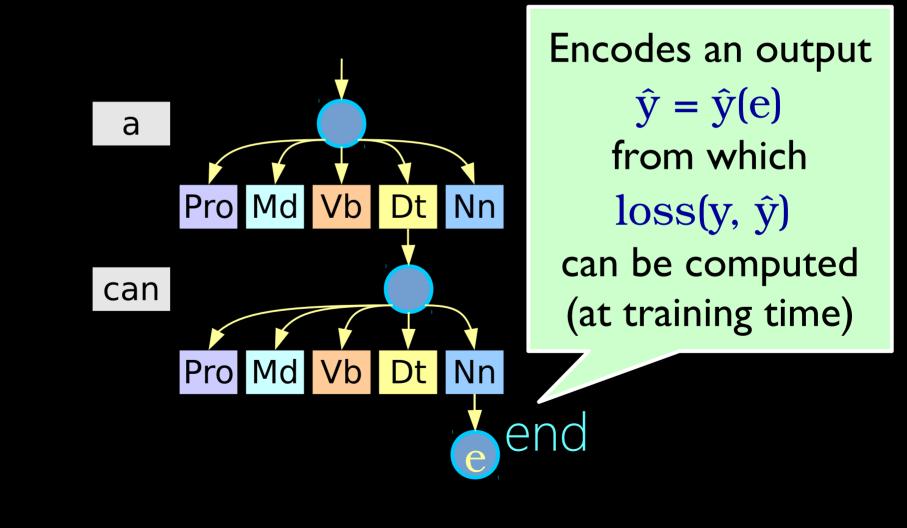
Goal: find $h \in H$ such that $h(x) \in Y(x)$ minimizing $E_{(x,y)\sim D}$ [loss(y, h(x))] based on N samples $(\mathbf{x}_n, \mathbf{y}_n) \sim \mathbf{D}$

Search spaces



Search spaces

• When y decomposes in an ordered manner, a sequential decision making process emerges



Policies

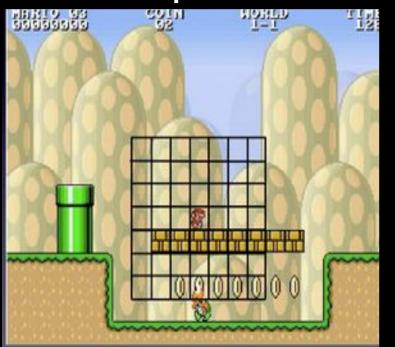
A policy maps observations to actions

ODS. input: x timestep: t partial traj: t ... anything else

An analogy from playing Mario

From Mario AI competition 2009

Input:



Output: Jump in {0,1} Right in {0,1} Left in {0,1} Speed in {0,1}

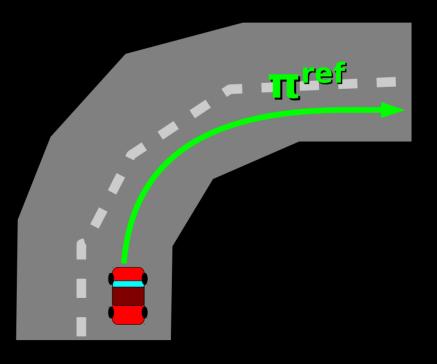
High level goal: Watch an expert play and learn to mimic her behavior

Training (expert)

Warm-up: Supervised learning

I.Collect trajectories from expert π^{ref} 2.Store as dataset $D = \{ (o, \pi^{ref}(o, y)) | o \sim \pi^{ref} \}$ 3.Train classifier π on D

• Let π play the game!

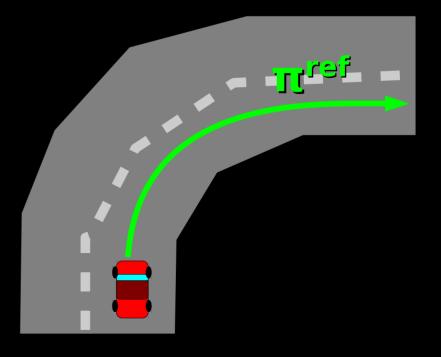


Test-time execution (sup. learning)

What's the (biggest) failure mode?

The expert never gets stuck next to pipes

 \Rightarrow Classifier doesn't learn to recover!

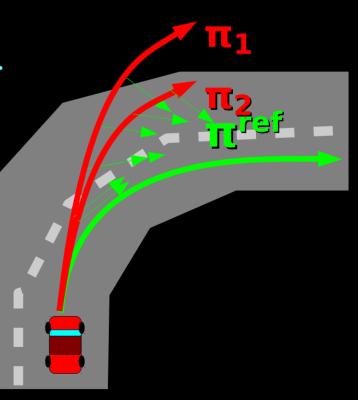


Warm-up II: Imitation learning

- I. Collect trajectories from expert $\pi^{\rm ref}$
- 2. Dataset $D_0 = \{ (o, \pi^{ref}(o, y)) | o \sim \pi^{ref} \}$
- 3. Train π_1 on D_0
- 4. Collect new trajectories from π_1
 - But let the expert steer!
- 5. Dataset $D_{I} = \{ (o, \pi^{ref}(o, y)) | o \sim \pi_{I} \}$
- 6. Train π_2 on $D_0 \cup D_1$
- In general:
 - $D_n = \{ (o, \pi^{ref}(o, y)) | o \sim \pi_n \}$
 - Train π_{n+1} on $U_{i\leq n} D_i$

If N = T log T, L(π_n) < T ϵ_N + O(1)

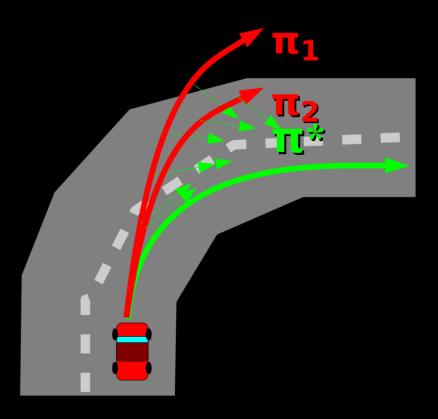
for some n



Test-time execution (DAgger)

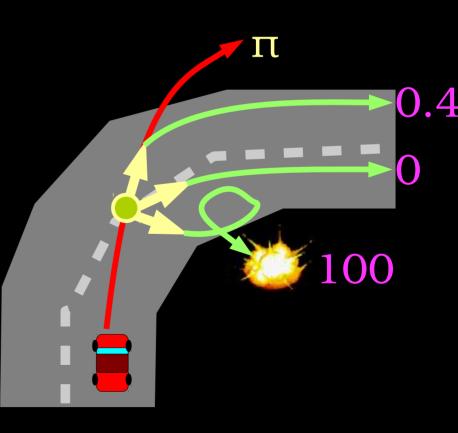
What's the biggest failure mode?

- Classifier only sees right versus not-right
- No notion of better or worse
- No partial credit
- Must have a single target answer

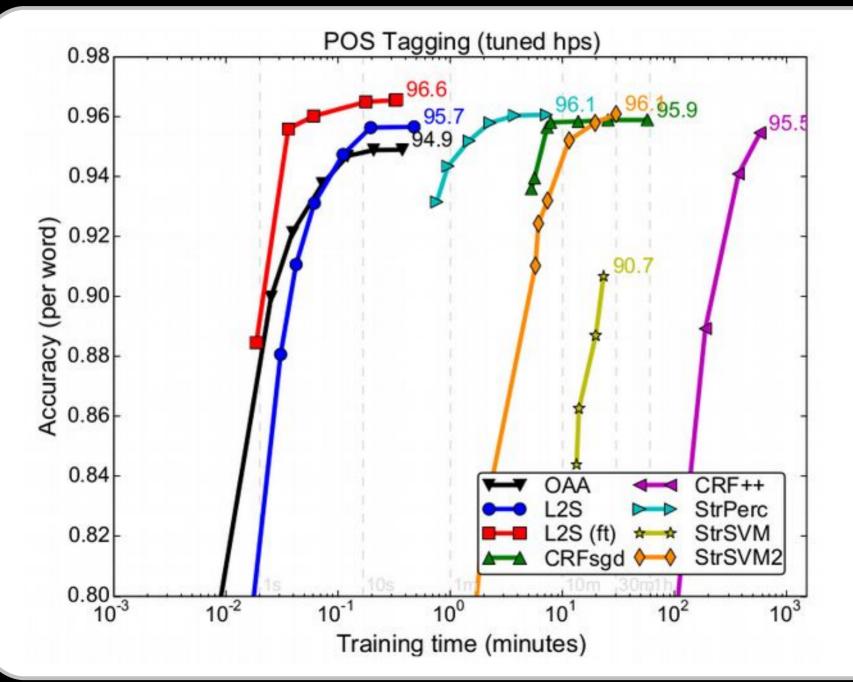


Learning to search: AggraVaTe

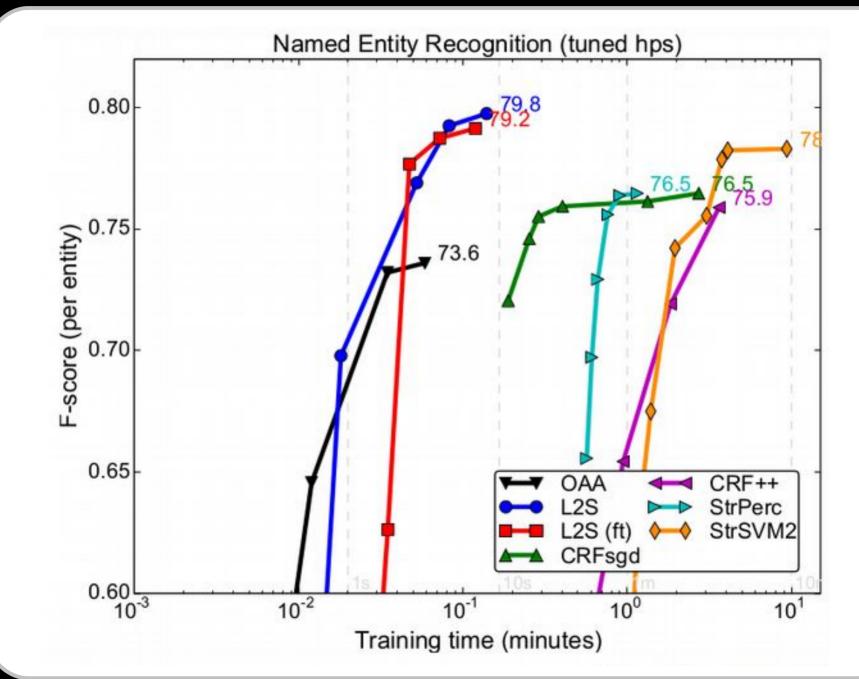
- I.Let learned policy π drive for t timesteps to obs. 0
- 2. For each possible action a:
 - Take action **a**, and let expert π^{ref} drive the rest
 - Record the overall loss, Ca
- 3.Update π based on example: (0, $\langle c_1, c_2, ..., c_K \rangle$) 4.Goto (1)



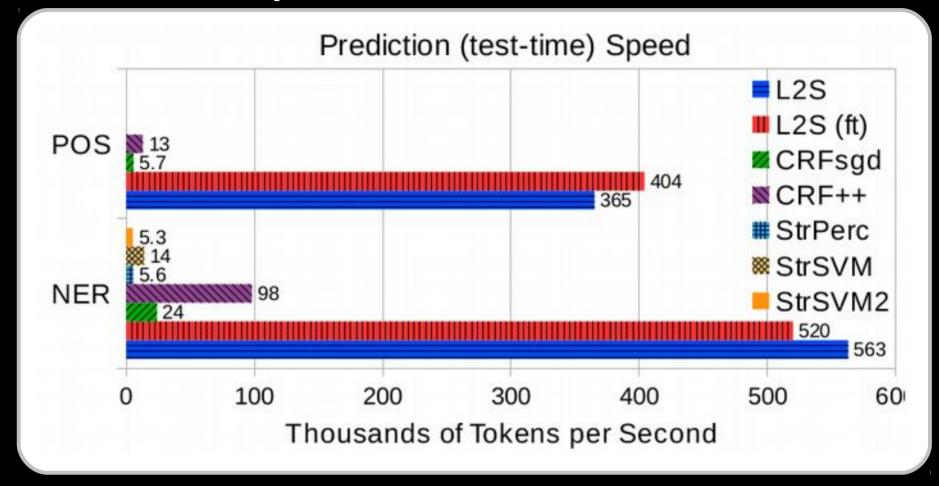
Training time versus test accuracy



Training time versus test accuracy



Test time speed



State of the art accuracy in....

- Part of speech tagging (I million words)
 - US: 6 lines of code 10 seconds to train
 - CRFsgd: 1068 lines
 - CRF++: 777 lines

10 seconds to train30 minuteshours

- Named entity recognition (200 thousand words)
 - US: 30 lines of code
 - CRFsgd:
 - CRF++:
 - SVMstr: 876 lines

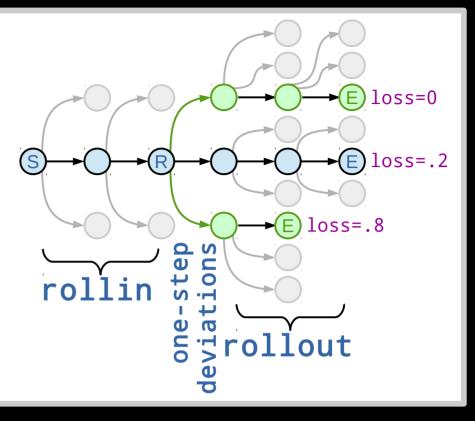
5 seconds to train
I minute
I0 minutes
30 minutes (suboptimal accuracy)

The Magic

- You write some greedy "test-time" code
 - In your favorite imperative language (C++/Python)
 - It makes arbitrary calls to a Predict function
 - And you add some minor decoration
- We will automatically:
 - Perform learning
 - Generate non-determinstic (beam) search
 - Run faster than specialized learning software

How to train?

I.Generate an initial trajectory using a rollin policy



2.Foreach state R on that trajectory:

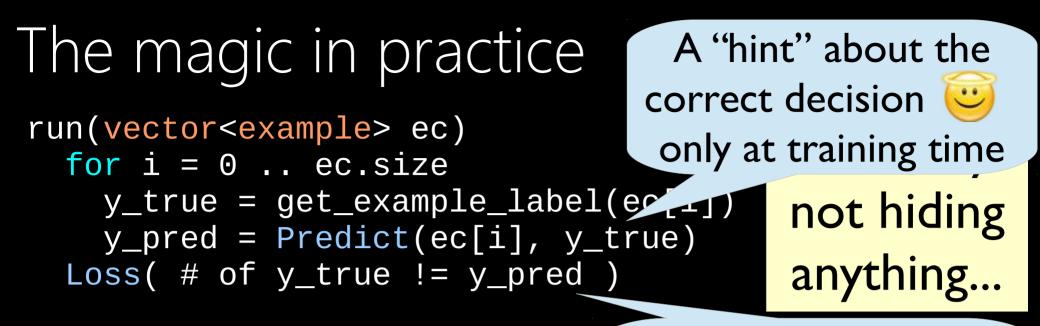
a) Foreach possible action *a* (one-step deviations)

i. Take that action

ii. Complete this trajectory using a rollout policy

iii.Obtain a final loss

b)Generate a cost-sensitive classification example: ($\Phi(R)$, $\langle c_a \rangle_{a \in A}$)



void run(search& sch, vector<example*> ec) {
 for (size_t i=0; i<ec.size(); i++) {
 uint32_t y_true = get_example_label(ec[i]);
 uint32_t y_pred = sch.predict(ec[i], y_true);</pre>

sch.loss(y_true != y_pred);

if (sch.output().good())
 sch.output() << y_pred << ' ';</pre>

The illusion of control

- Execute run O(T×A) times, modifying Predict
- For each time step myT = I .. T:
 For each possible action myA = I .. A:

define Predict(...) = $\begin{cases} myA & \text{if } t = myT \\ \pi & \text{otherwise} \end{cases}$

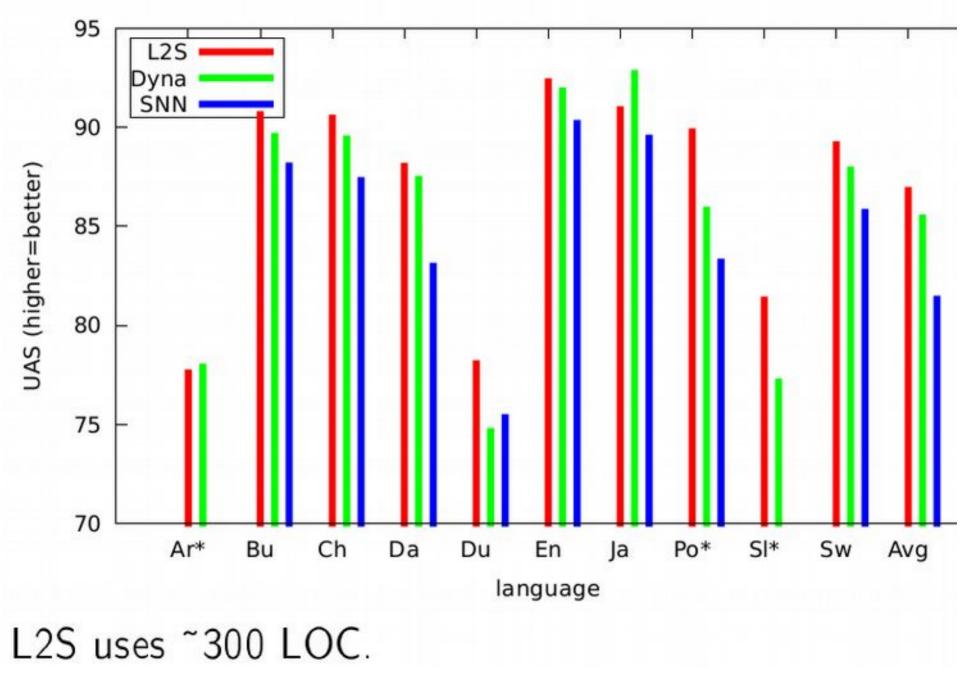
run your code in full set $cost_a = result$ of Loss Make classification example on x_{myT} with $< cost_a >$

run(vector<example> ec)
for i = 0 .. ec.size
 y_true = get_example_label(ec[i])
 y_pred = Predict(ec[i], y_true)
 Loss(# of y_true != y_pred)

Entity/relation identification

Goal: find the Entities and then find their Relations						
Method	Entity F1	Relation F1	Train Time			
Structured SVM	88.00	50.04	300 seconds			
L2S	92.51	52.03	13 seconds			
L2S uses ~100 LO	Ċ.					

Dependency parsing



Hal Daumé III (me@hal3.name)

LOLS

Outline

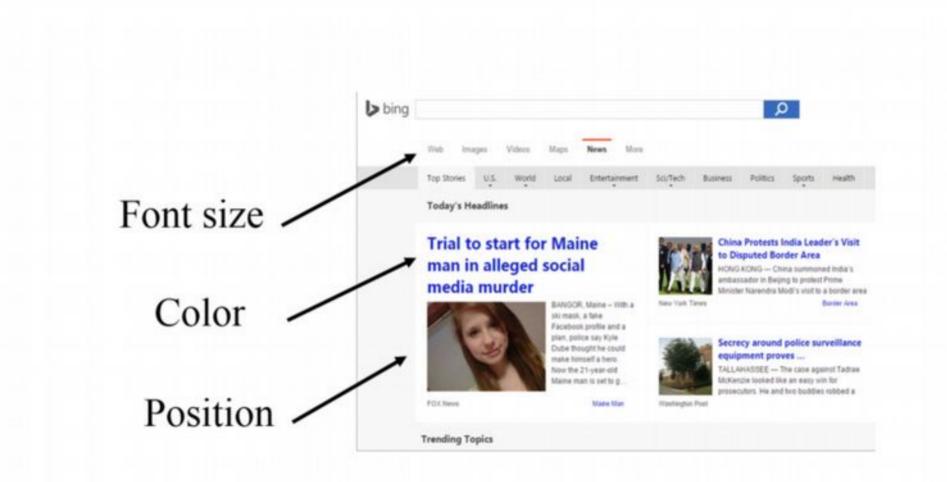
Background: learning to search

Stuff I did in the Spring

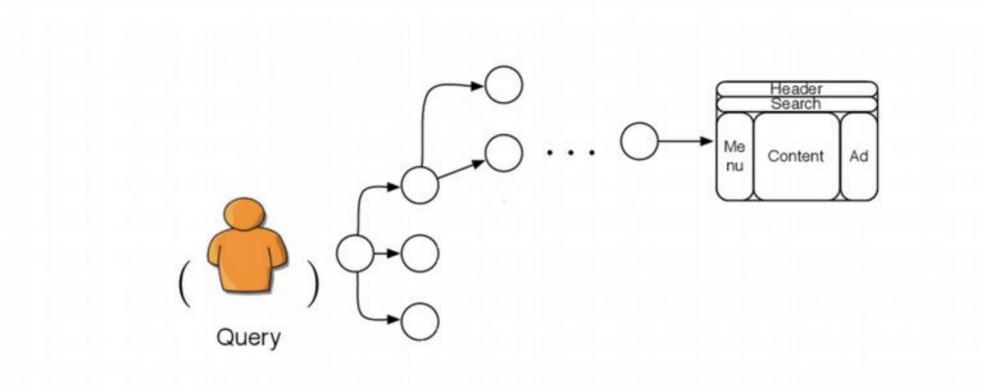
- Imperative DSL/library for learning to search
- SOTA examples for tagging, parsing, relation extraction, etc.
- Learning to search under bandit feedback
- Hardness results for learning to search
- Active learning for accelerating learning to search

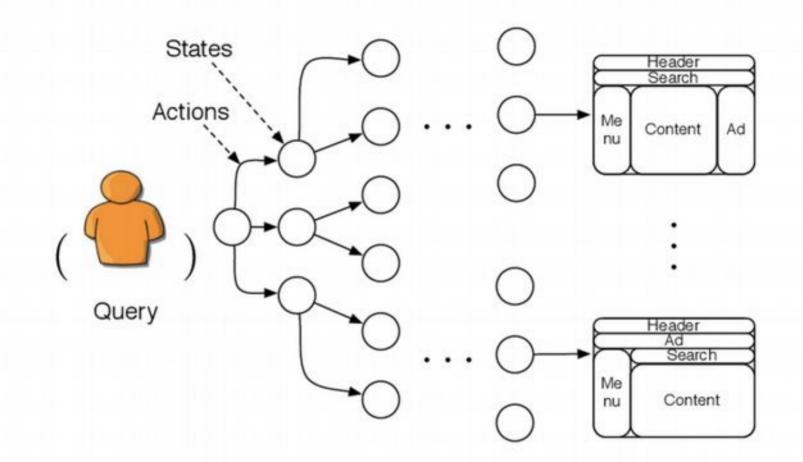
Stuff I'm trying to do now

- Distant supervision
- Mashups with recurrent neural networks

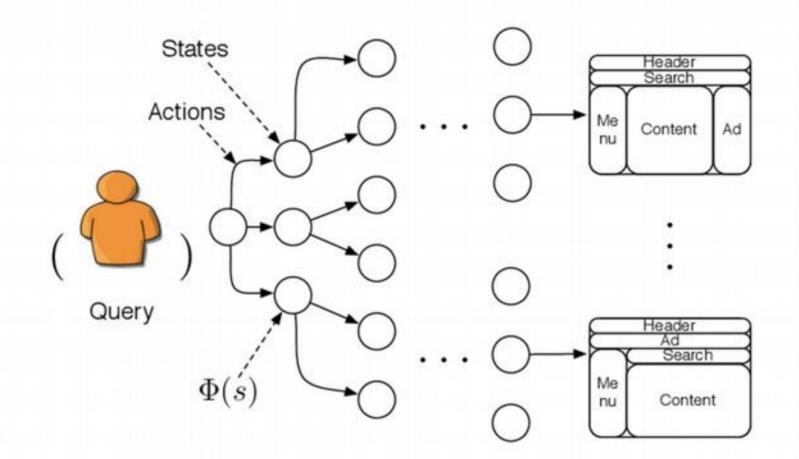


Loss of a single structured label can be observed.



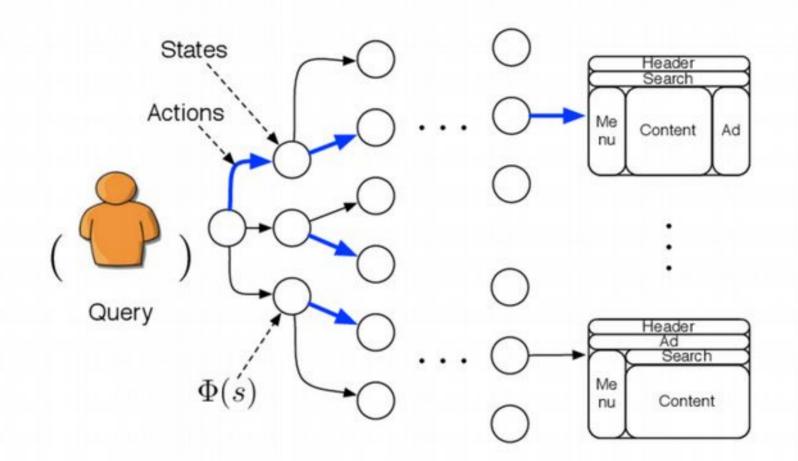


Convert SCB into search problem (search space + actions).



Define structured features over each state.

Learn policy mapping features to actions.



Use status quo system as reference policy (Ref).

Goal is to improve on Ref.

L2S	SCB	

	L2S	SCB	
Search Space		States, Actions, Featu	ires

	L2S	SCB	
Search Space	States, Actions, Features		
Feedback	Labels	Single Loss	

Search SpaceStates, Actions, FeatFeedbackLabelsSingle	tures
Feedback Labels Single	
-	Loss
Ref Quality Optimal Can be	e bad

	L2S	SCB	
Search Space	ch Space States, Actions, Features		
Feedback	Labels	Single Loss	
Ref Quality	Optimal	Can be bad	
Ref Availability	Training only	Train and Test	

	L2S	SCB	
Search Space	States, A	tates, Actions, Features	
Feedback	Labels	Single Loss	
Ref Quality	Optimal	Can be bad	
Ref Availability	Training only	Train and Test	
Goal	Imitate Ref	Improve upon Ref	

	L2S	SCB	
Search Space	States, A	tates, Actions, Features	
Feedback	Labels	Single Loss	
Ref Quality	Optimal	Can be bad	
Ref Availability	Training only	Train and Test	
Goal	Imitate Ref	Improve upon Ref	

Existing L2S algorithms give:

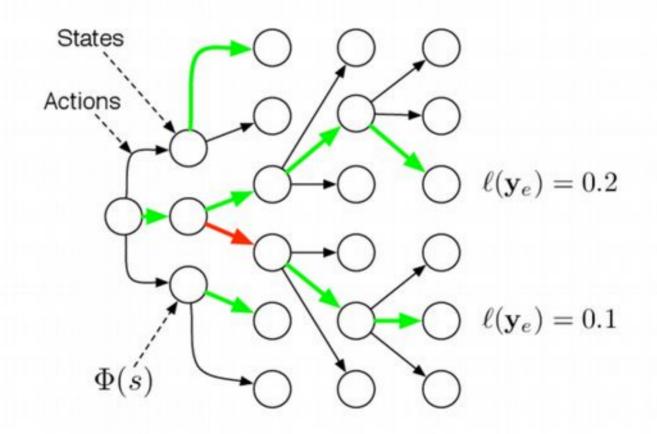
 $L(\pi) \leq L(\pi^{\mathsf{ref}}) + o(1)$

Learning to Search with:

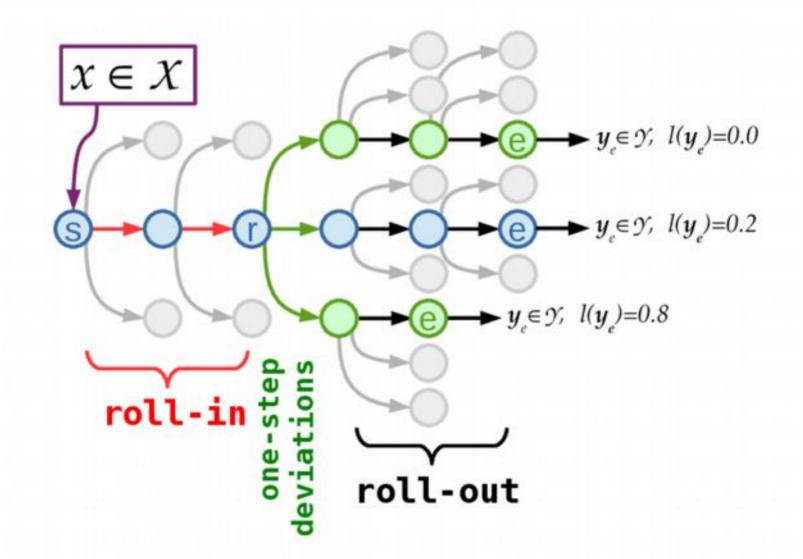
- 1. A suboptimal reference \Rightarrow Learn policy that improves on Ref.
- 2. Partial feedback.

DISEDERATA

- Compete with Ref.
 - Global optimality if Ref is optimal and realizable.
- Local optimality.
 - Compete with your own one-step deviations.



EXPLORATION IN SEARCH SPACE



- Roll-in choice affects what states we train on.
- Roll-out choice affects how we score actions.

roll-out → \downarrow roll-in	Reference	Half/Half	Learned
Reference	Inconsistent		
Learned	No local opt	Good	RL

roll-out → \downarrow roll-in	Reference	Half/Half	Learned
Reference	Inconsistent		
Learned	No local opt	Good	RL

Theorem

Roll-in with Ref can generate a model with unbounded structured regret but zero cost-sensitive regret.

States trained on are not representative of those seen at prediction time.

roll-out → \downarrow roll-in	Reference	Half/Half	Learned
Reference	Inconsistent		
Learned	No local opt	Good	RL

Theorem

Roll-out with Ref may cause the learned policy to fail to converge to a local optimum if the reference policy is suboptimal.

Causes poor assessment of comparison policies.

roll-out → \downarrow roll-in	Reference	Half/Half	Learned
Reference	Inconsistent		
Learned	No local opt	Good	RL

Theorem

Roll-in and roll-out with the learned policy ignores Ref and is equivalent to reinforcement learning.

roll-out → ↓ roll-in	Reference	Half/Half	Learned
Reference	Inconsistent		
Learned	No local opt	Good	RL

THEOREM

LOLS minimizes a combination of regret to Ref and regret to its own one-step deviations.

LOLS REGRET BOUND

THEOREM

LOLS minimizes a combination of regret to Ref and regret to its own one-step deviations.

$$\frac{1}{2} \underbrace{\left(L(\hat{\pi}) - L(\pi^{\text{ref}}) \right)}_{\text{Regret to Ref}} + \frac{1}{2} \underbrace{\left(L(\hat{\pi}) - L(\pi^{\text{dev}}) \right)}_{\text{Regret to devs}} \text{ is small.}$$

LOLS Regret Bound

THEOREM

LOLS minimizes a combination of regret to Ref and regret to its own one-step deviations.

$$\frac{1}{2} \underbrace{\left(L(\hat{\pi}) - L(\pi^{\text{ref}}) \right)}_{\text{Regret to Ref}} + \frac{1}{2} \underbrace{\left(L(\hat{\pi}) - L(\pi^{\text{dev}}) \right)}_{\geq 0} \text{ is small.}$$

Competes with Ref.

LOLS REGRET BOUND

THEOREM

LOLS minimizes a combination of regret to Ref and regret to its own one-step deviations.

$$\frac{1}{2}\underbrace{\left(L(\hat{\pi}) - L(\pi^{\text{ref}})\right)}_{\geq 0} + \frac{1}{2}\underbrace{\left(L(\hat{\pi}) - L(\pi^{\text{dev}})\right)}_{\text{Regret to devs}} \text{ is small.}$$

- Competes with Ref.
- Locally optimal when Ref is optimal (even if unrealizable).

LOLS REGRET BOUND

THEOREM

LOLS minimizes a combination of regret to Ref and regret to its own one-step deviations.

$$\frac{1}{2} \underbrace{\left(L(\hat{\pi}) - L(\pi^{\text{ref}}) \right)}_{\text{Regret to Ref}} + \frac{1}{2} \underbrace{\left(L(\hat{\pi}) - L(\pi^{\text{dev}}) \right)}_{\text{Regret to devs}} \text{ is small.}$$

- Competes with Ref.
- Locally optimal when Ref is optimal (even if unrealizable).
- If Ref suboptimal, either locally optimal or better than Ref.

Finding local optimum could be hard without further assumptions.

THEOREM

Can require $\Omega(2^T)$ cost-sensitive classification examples to reach local optimum.

T is the number of decisions per example.

Find the dependency structure of words in a sentence.

$roll-out\to$	Reference	Mixture	Learned
↓ roll-in			
	Reference is	s optimal	
Reference	87.2	89.7	88.2
Learned	90.7	90.5	86.9
	Reference is a	suboptimal	
Reference	83.3	87.2	81.6
Learned	87.1	90.2	86.8
	Reference	is bad	
Reference	68.7	65.4	66.7
Learned	75.8	89.4	87.5

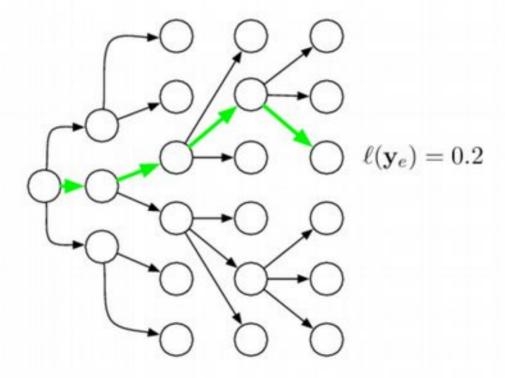
LOLS always good, even with suboptimal Ref.

Loss of a single structured label can be observed.

Reference policy is not optimal under this setting.

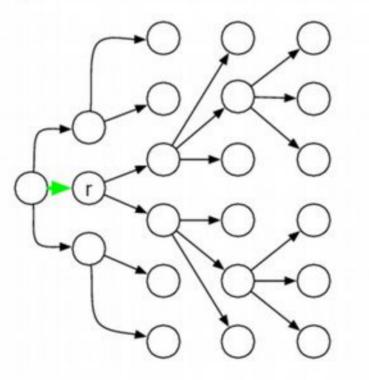
We adapt an ϵ -greedy algorithm Upon receiving an example:

• w/ prob. $1 - \epsilon$: follow the current policy



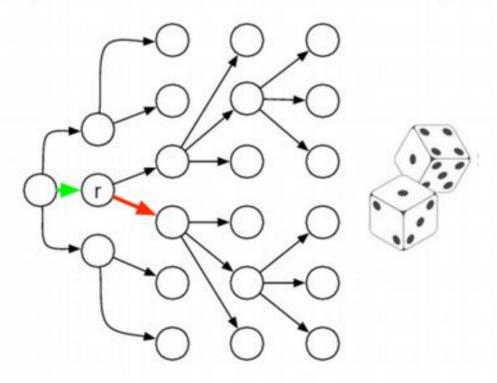
We adapt an ϵ -greedy algorithm Upon receiving an example:

- w/ prob. 1ϵ : follow the current policy
- **w**/prob. ϵ : perform a randomized LOLS update.



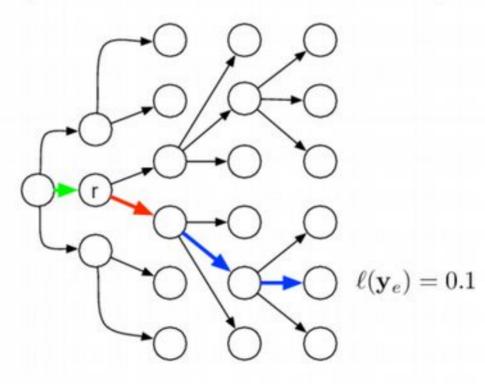
We adapt an ϵ -greedy algorithm Upon receiving an example:

- w/ prob. 1ϵ : follow the current policy
- w/ prob. ϵ : perform a randomized LOLS update.



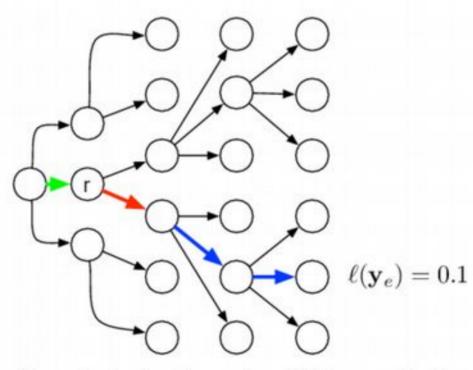
We adapt an ϵ -greedy algorithm Upon receiving an example:

- w/ prob. 1ϵ : follow the current policy
- **w**/prob. ϵ : perform a randomized LOLS update.



We adapt an ϵ -greedy algorithm Upon receiving an example:

- w/ prob. 1ϵ : follow the current policy
- **w**/prob. ϵ : perform a randomized LOLS update.



Regret against ref and deviations is still bounded.

Outline

- Background: learning
- Stuff I did in the Spr
 - Imperative DSL/libra
 - SOTA examples for
 - Learning to search un
 - Hardness results for lear
 - Active learning for accelerating
- Stuff I'm trying to do now
 - Distant supervision
 - Mashups with recurrent neural networks

Observation: rollouts at all time steps not equally useful

Solution: importance-weighted active learning selection of where to rollout vs skip

Hacky heuristic: 5* speedup, slightly increased accuracy

Training RNNs with LOLS yields drastic increases in performance on nonadversarial synthetic data

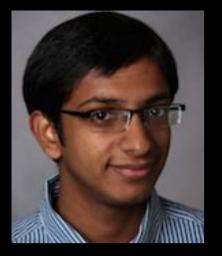
Distant supervision

Learning with a human in the loop

Repeat forever:

- Information need
- Machine makes complex prediction
- Human is happy or unhappy, provides extra feedback
- Machine learns
- Human learns

How to handle the last step?



Alekh Agarwal

Kai-Wei Chang

Akshay Krishnamurthy

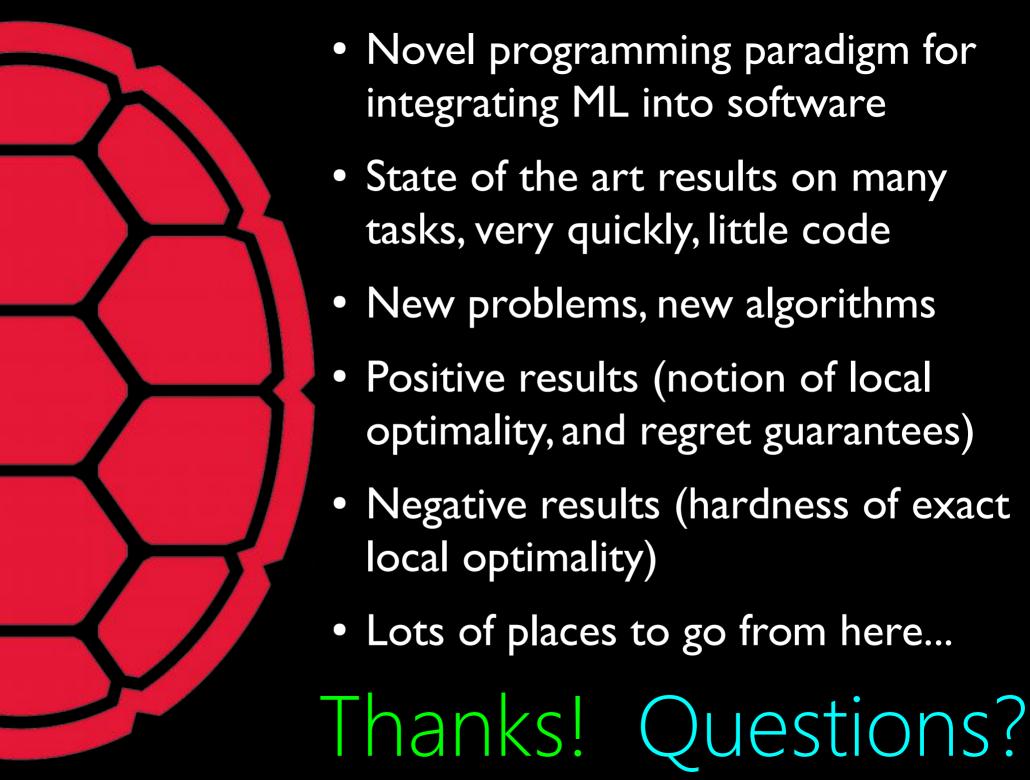
John Langford

Alina Beygelzimmer

Paul Mineiro

Stéphane Ross

He He



- Novel programming paradigm for integrating ML into software
- State of the art results on many tasks, very quickly, little code
- New problems, new algorithms
- Positive results (notion of local optimality, and regret guarantees)
- Negative results (hardness of exact local optimality)
- Lots of places to go from here...