A Markov Reward Model for Software Reliability

YoungMin Kwon and Gul Agha Open Systems Laboratory Department of Computer Science University of Illinois at Urbana-Champaign

Motivation

Evaluating software with many processes/threads State explosion problem • 100 3-state system => 3^{100} states Statistical abstraction of state State (pmf): probability that a randomly picked thread is in certain module. e.g.: 90% of the threads are in 'A' state Abstract enough to handle state Detailed enough to evaluate reliability

Overview

Model the software as Markov reward model

- Each module represents a state
- Module reliabilities are rewards
- Transition probabilities between modules are obtained by operational profiling
- System Reliability Estimation
 - Evaluated by Probabilistic Model Checking
 - Helps focus testing on particular modules that may increase the reliability of the entire system
 - Modules are not equally important

Markov Reward Model for Software Reliability

Markov model

- Model the program by a DTMC X = (S,M)
 - S is the set modules in the program and M represents the transition probabilities between modules.

Reliability of a module:

- Probability that a module does not produce a fault when a control is passed to it.
- NHPP: a simple reliability model

$$R(x | t) = e^{-a (e^{-b t} - e^{-b(t+x)})}$$

R(x|t) is the probability that a module does not have a failure during the time interval t to t + x.

Markov model

DTMC model extension for reliability checking

- Add fail state f.
- Transition probability matrix M is extended as follows

$$\mathbf{M'} = \begin{bmatrix} r_1 M_{11} & r_2 M_{12} & \cdots & r_n M_{1n} & 0\\ r_1 M_{21} & r_2 M_{22} & \cdots & r_n M_{2n} & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ r_1 M_{n1} & r_2 M_{n2} & \cdots & r_n M_{nn} & 0\\ 1 - r_1 & 1 - r_2 & \cdots & 1 - r_n & 1 \end{bmatrix}$$

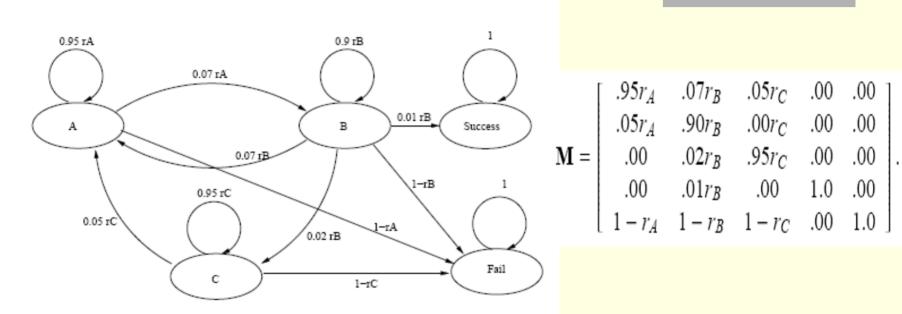
÷.

Reliability of a program is the probability that a program eventually arrives at the final success state:

$$\mathbf{r} = M_{\mathsf{n}^*} \lim_{t \to \infty} \sum_{i=1}^{t} M_*^i \cdot \mathbf{x}(0)$$

where M_* is a sub-matrix of M that comprises the first n - 1 rows and the first n - 1 columns of M, M_{n^*} is a n^{th} row vector of M with first n - 1 elements, and x(0) is an initial probability mass function of X(0)

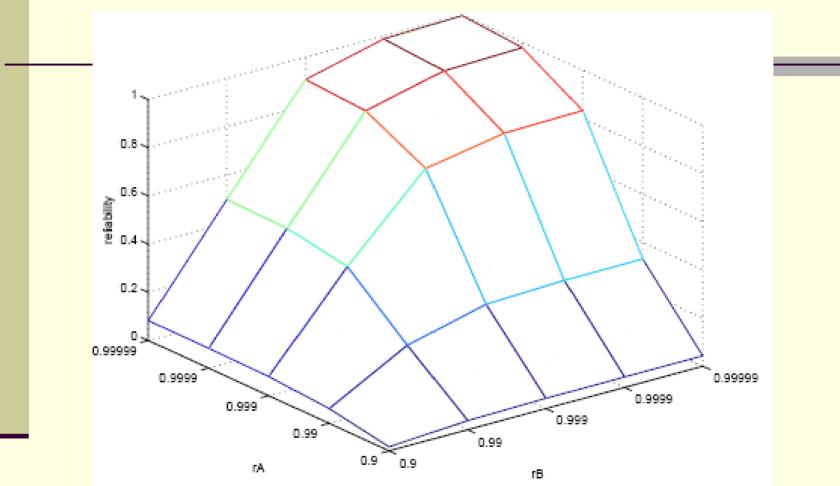
Example



A module reliability diagram, where r_A , r_B and r_c are the reliabilities of the modules A,B and C.

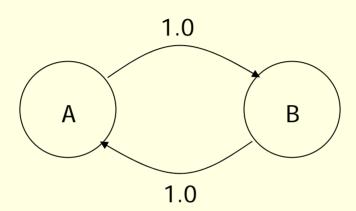
Reliability of the program is modeled by a DTMC X =(S,M) where S={A, B, C, success, fail} and M as above.

Example...



Reliability of a program as a function of module Reliabilities r_A and r_B with $r_c = 1 - 10^{-5}$ Transition probabilities significantly affect the overall reliability of the program.

Probabilistic Model Checking



- With PCTL like logics, 'P[X=A] > .3 is always true' is always false regardless of initial *pmfs*
 - However if 50 out of 100 threads are in A state and the others are in B state \Rightarrow 50% of the threads are always in A state.
- iLTL can specify this situation because it works on *pmf transitions*

iLTL Formula

Syntax

iLTL Formula :atomic propositions

At least 10% more nodes are in READY state than in IDLE state

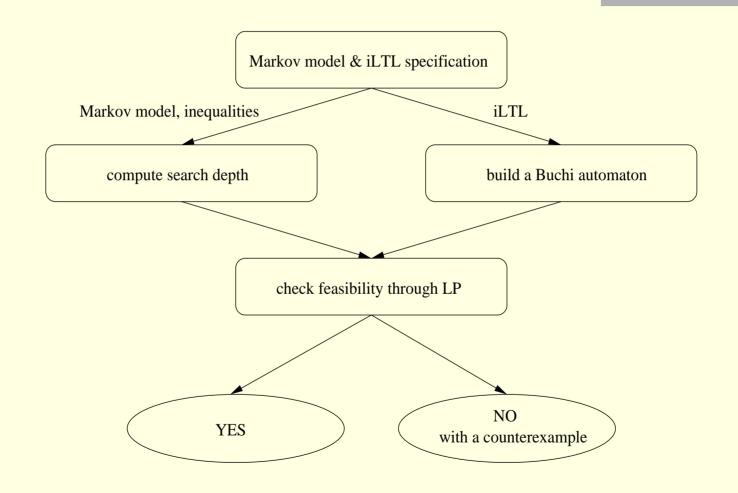
- P[X=READY] > P[X=IDLE] + 0.1
- P[X=READY] P[X=IDLE] > 0.1
- Expected Queue length is less than 2
 1*P[Q=S1] + 2*P[Q=S2] + 3*P[Q=S3] < 2
- Availability of a system X is 10% larger than that of a system Y
 - P[X=READY] > P[Y=READY] + 0.1

Main Theorem

lf

- Markov matrix M is diagonalizable
- Absolute value of second largest eigenvalue of M is strictly less than 1
- For all inequalities of an iLTL formula Ψ, the steady state expected value of LHS is not equal to its RHS
- Then
 - There is a bound N after which all inequalities of Ψ become constants

Model Checking Algorithm



iLTL Model Checking of Software Reliability

Program properties related to reliability that can be evaluated using iLTL are

- Find the configuration of a system (represented by pmf) that will make the system most unreliable.
- Reliability of a system given its configuration.
- Effects on the reliability of the program if different executions constraints are enforced on the program.
- System parameter adjustment through comparison between systems with different parameters.

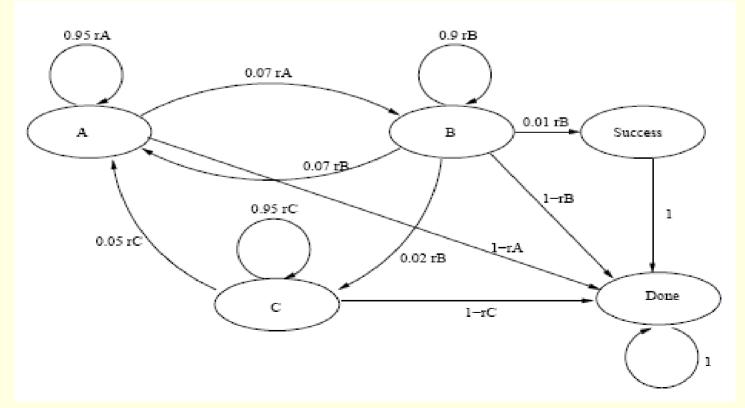
Model not appropriate....

ILTL model checking algorithm cannot be directly applied on the previous markov model because the model violated the eigenvalue constraints of the theorem.

Transformation is required.

Add Success State

- Fail state is replaced by done state and the self loop transition of success state is removed
- Transition from success to done with a probability one is added and success state is made transient.



Modification...

Modified DTMC model is X = (S,M) where S = { A, B, C, success, done} and

	.95r _A	$.07r_B$	$.05r_C$.00	.00	1
	$.05r_A$	$.90r_B$	$.00r_C$.00	.00	
$\mathbf{M} =$.00	$.02r_B$	$.95r_C$.00	.00	
	.00	$.01r_B$.00	.00	.00	
	$1 - r_{A}$	$1 - r_B$	$1 - r_C$	1.0	1.0	

The reliability of the program is the accumulated sum of the probabilities that the success state is visited. It is given by

$$r = \sum_{t=0}^{\infty} P\{ X(t) = success \}$$

= $\sum_{t=0}^{\infty} [0, 0, 0, 1, 0] \cdot x(t)$
= $\sum_{t=0}^{\infty} [0, 0, 0, 1, 0] \cdot M^{t} \cdot x(0)$

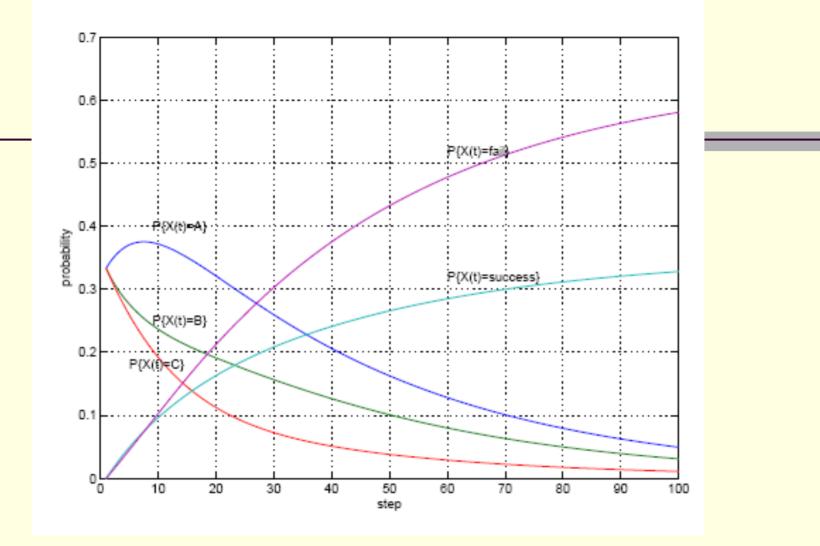


Figure shows how the probabilities of each states change over time and how the reliability of the program (P{X(t) = success}) is accumulated with the module reliabilities r_A , r_B and r_C and initial pmf x(0) = [1/3,1/3,1/3,0,0]

iLTL checker

model:					
Markov chain pgm					
has states :					
{ A, B, C, S, D},					
transits by :					
[.9215, .0699, .05, .0, .0;					
.0485, .8991, .0, .0, .0;					
.0, .02, .9191, .0, .0;					
.0, .01, .03, .0, .0;					
.03, .001, .001, 1.0,1.0]					
specification:					
a : .2149*P{pgm=A} + .3478*P{pgm=B} + .5036*P{pgm=C} < .7,					
b : .2149*P{pgm=A} + .3478*P{pgm=B} + .5036*P{pgm=C} < .5,					
c : .2149*P{pgm=A} + .3478*P{pgm=B} + .5036*P{pgm=C} < .3,					
d : P{pgm=S} + P{pgm=D} > .0,					
e : P{pgm=A} > P{pgm=C} + .3					
a #1)					
#(b /\ ~ d) -> ~ e 2)					
#(b ∧ ~ d) -> <>~ e 3)					
An iltl checker description of the modified reliability model					
Agha NSFNGS Workshop 2007					

Results

The specification "a" checks whether the reliability of the program pgm is less than 0.7

Depth 22

Result T

Here 22 indicates the required search depth for the formula.

The second example (b \rightarrow ~e) checks whether the fact that the reliability of pgm is less than 0.5 implies not e

Depth 78

Result F

Counterexample: *pmf* (pgm(0)) : [.3 .7 .0 .0 .0]

Result is false and it provides with the counter example of X(0).

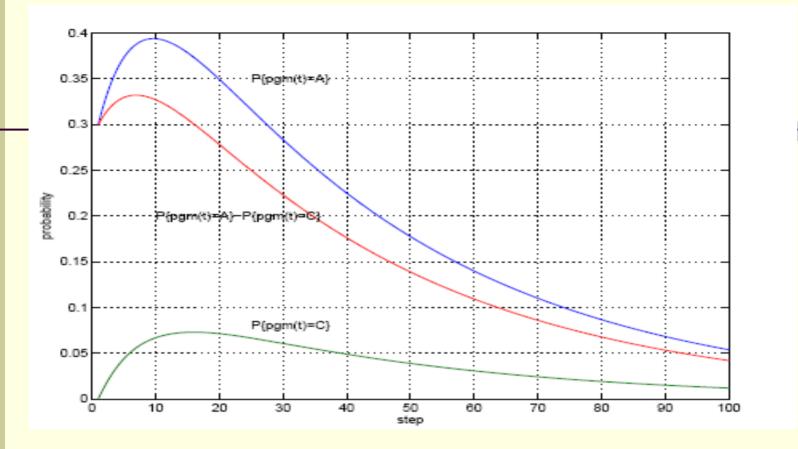


Figure explain the second and third examples. From step 1 to 15, the probability difference is larger than 0.3. However, eventually after step 15 the difference becomes less than .3

Future Work

- Develop a distributed algorithm for iLTL to speed up model checking
 - iLTL model checking is a feasibility checking of Disjunctive Normal Form of (in)equality constraints: each conjunctive set of constraints can be checked independently.
- Once search depth N is computed, bounded model checking techniques can be introduced