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Project Goal
Unification of Verification and 

Validation Methods

Static (data-flow) analysis

Testing

Model checking

Theorem proving

Runtime Verification
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Model checking in one slide

Method for proving properties of 
systems
Suffers from state-space explosion

State-space grows exponentially
Does not scale for large software systems

How do you reduce the state-space?
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Use data-flow analysis (DFA)

Less precise but more efficient method 
for proving properties
We use DFA to improve model checking

C code

Spec

DFA Model
Checker

Result
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Improving model checking with DFA

DFA has a number of approximation 
techniques

Context-insensitive analysis
Flow-insensitive analysis
Path-insensitive analysis

Approximations improve performance of 
an analysis
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Context-sensitivity

Context-sensitive
Analyze procedure for each call

Context-insensitive
Analyze each procedure once
Merge info from all procedure calls
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A simple callgraph
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Context-sensitive
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Key idea
Identify when context-sensitivity is 
needed
Use adaptive analysis [Guyer & Lin 2003]

Quick, imprecise analysis
Track where precision is necessary
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With adaptive analysis
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Evaluation

Measured size of invocation graph
Indication of resulting model size

C code programs
~10Ks lines of code
41 to 959 procedures and library routines

Results from one security analysis
FTP behavior analysis
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Motivating results
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Insight

Two-orders reduction in invocation 
graph size

Upper-bound because DFA adds unrealizable 
paths
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Status & Future Work

Translating abstracted program to 
model checker
Understand relationship with other 
control abstractions

Partial-order reductions
Slicing

Comprehensive integration between DFA 
and model checking
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Questions
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Model checking in one slide

Completely determines satisfiability
Performs an exhaustive search
Can generate huge state-space from 
simple model

Research focused on reducing state-
space by over-abstracting the model
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Data-flow analysis in one slide

Determines safe, but incomplete, 
solution
Iteratively solves flow equations
Quickly converges in practice

Adaptive analysis can identify where 
effort should be exerted
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Best of both worlds

Model checking and DFA are two sides of 
the same coin
Completeness of model checking
Scalability of data-flow analysis
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Statement location results
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reductioncontext-
sensitive

adaptivecontext-
insensitive
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Current status

Implementing analysis for C programs
Using Broadway/C-Breeze compiler
Initial phase limited to typestate problems

Output model to SPIN model checker
Handles recursion
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Conclusion

Reduce by two orders of magnitude
Without other reduction techniques

No loss of accuracy in the model check 
result


