
Department of Computer Sciences

Using Data-flow Analysis to Improve the 
Scalability of Model Checking

Adam Brown, James C. Browne and Calvin Lin

The University of Texas at Austin

This work has been supported by the National Science Foundation under grant 
number 0509354 , “Collaborative Research: CSR–AES: Unification of Verification and

Validation Methods.”



April 18, 2007 2

Department of Computer Sciences

Project Goal
Unification of Verification and 

Validation Methods

Static (data-flow) analysis

Testing

Model checking

Theorem proving

Runtime Verification



April 18, 2007 3

Department of Computer Sciences

Model checking in one slide

Method for proving properties of 
systems
Suffers from state-space explosion

State-space grows exponentially
Does not scale for large software systems

How do you reduce the state-space?



April 18, 2007 4

Department of Computer Sciences

Use data-flow analysis (DFA)

Less precise but more efficient method 
for proving properties
We use DFA to improve model checking

C code

Spec

DFA Model
Checker

Result



April 18, 2007 5

Department of Computer Sciences

Improving model checking with DFA

DFA has a number of approximation 
techniques

Context-insensitive analysis
Flow-insensitive analysis
Path-insensitive analysis

Approximations improve performance of 
an analysis



April 18, 2007 6

Department of Computer Sciences

Context-sensitivity

Context-sensitive
Analyze procedure for each call

Context-insensitive
Analyze each procedure once
Merge info from all procedure calls



April 18, 2007 7

Department of Computer Sciences

A simple callgraph



April 18, 2007 8

Department of Computer Sciences

Context-sensitive



April 18, 2007 9

Department of Computer Sciences

Key idea
Identify when context-sensitivity is 
needed
Use adaptive analysis [Guyer & Lin 2003]

Quick, imprecise analysis
Track where precision is necessary



April 18, 2007 10

Department of Computer Sciences

With adaptive analysis



April 18, 2007 11

Department of Computer Sciences

Evaluation

Measured size of invocation graph
Indication of resulting model size

C code programs
~10Ks lines of code
41 to 959 procedures and library routines

Results from one security analysis
FTP behavior analysis



April 18, 2007 12

Department of Computer Sciences

Motivating results

>143x1531>219999959blackhole

551

85

43

Adaptive

>689x>379999311named

105x893041muh

162x700343pfingerd

ReductionContext-
Sensitive

Context-
Insensitive



April 18, 2007 13

Department of Computer Sciences

Insight

Two-orders reduction in invocation 
graph size

Upper-bound because DFA adds unrealizable 
paths



April 18, 2007 14

Department of Computer Sciences

Status & Future Work

Translating abstracted program to 
model checker
Understand relationship with other 
control abstractions

Partial-order reductions
Slicing

Comprehensive integration between DFA 
and model checking



April 18, 2007 15

Department of Computer Sciences

Questions



April 18, 2007 16

Department of Computer Sciences



April 18, 2007 17

Department of Computer Sciences

Model checking in one slide

Completely determines satisfiability
Performs an exhaustive search
Can generate huge state-space from 
simple model

Research focused on reducing state-
space by over-abstracting the model



April 18, 2007 18

Department of Computer Sciences

Data-flow analysis in one slide

Determines safe, but incomplete, 
solution
Iteratively solves flow equations
Quickly converges in practice

Adaptive analysis can identify where 
effort should be exerted



April 18, 2007 19

Department of Computer Sciences

Best of both worlds

Model checking and DFA are two sides of 
the same coin
Completeness of model checking
Scalability of data-flow analysis



April 18, 2007 20

Department of Computer Sciences

Statement location results

>155x>81999752653865blackhole

>703x>144999620611273bind

191x30114157157muh205

162x24361150150pfinger

reductioncontext-
sensitive

adaptivecontext-
insensitive



April 18, 2007 21

Department of Computer Sciences

Current status

Implementing analysis for C programs
Using Broadway/C-Breeze compiler
Initial phase limited to typestate problems

Output model to SPIN model checker
Handles recursion



April 18, 2007 22

Department of Computer Sciences

Conclusion

Reduce by two orders of magnitude
Without other reduction techniques

No loss of accuracy in the model check 
result


