

An Analysis of Availability Distributions in Condor

Rich Wolski Daniel Nurmi John Brevik University of California, Santa Barbara

Talk given by: Chandra Krintz (UCSB)

Distributed Computing: How long can we

- Modern distributed systems are heterogeneous
 - -Large scale SMP
 - -Clusters
 - -Cycle-harvesting systems
- Resource availability duration is important
 - -We are given 'max walltime' in supercomputers
 - -Resource availability times determined by competing users in cycle-harvesting systems!
- Question: can we predict how much time we are given to compute?

Condor: distributed computing through cycle-

- Idea: use desktop and cluster resources when they are idle
 - -Achieve high-throughput computing
- Processes are scheduled on idle resources until...
 - -Process completes
 - -Resource is reclaimed
- Submitted ten sensor processes to UW Madison pool
 - -Sensor records time between 'began execution' and 'resource was revoked'
 - -In total gathered process lifetime intervals from 900 hosts over 26 months

- Wish to generate accurate descriptive models
 - Simulation
 - Prediction
- Typically assume exponential distribution
 - Shown in literature to be inaccurate for lifetime modeling
- •We choose some other distributions from similar family
 - Weibull, Pareto, Log-normal, Hyper Exponential
- Perform MLE fitting technique on gathered process lifetime intervals
 - Tools for automatic model fitting

The shape of condor resource availability

1

0.6

0.1

UCSB

Process Lifetime Intervals (Seconds)

- 'Clustering' results in better fit
- For non-cluster data, neither model fits very well
 - Weibull better for large quantiles
 - Log-normal better for small quantiles

Data Set	Parametric MLE Method	Bootstrapping	Binomial Method
CSIL	93.3%	96.7%	96.6%
Condor	99.5%	97.1%	95.0%
Long	91.7%	96.0%	97.3%

- Quantile prediction experiment
 - Compare parametric (stat. Model based) method to non-parametric methods
- Non-parametric more accurate, **Binomial Method** (novel) most accurate with smallest data set size

- Log-normal or Weibull distributions are useful for modeling Condor process lifetimes
- Clustering of data into 'cluster' and 'desktop' sets improves model accuracy
 - Desktop data not very well modeled using parametric techniques
 - Non-parametric better for prediction
- We can accurately predict process lifetime quantiles
 - -Optimal checkpoint interval selection
 - -Redundancy hints
 - -Condor scheduler hints
- Thank You! Ouestions?