### Intelligent Optimization of Parallel and Distributed Applications

#### **USC/ISI:**

Jacqueline Chame Chun Chen Ewa Deelman Yolanda Gil **Mary Hall** Kristina Lerman Yoonju Lee Nelson

#### USC (Physics/CS):

Bhupesh Bansal Aiichiro Nakano Priya Vashishta **OSU:** 

Umit Catalyurek Vijay Kumar Tahsin Kurc Joel Saltz Ashish Sharma

This research has been partially funded by NSF NGS and CSR.





## Motivation

#### Historical Perspective

- Highly tuned applications are too hard to develop, port
- Complexity leads to fragile applications & system software
- Ad hoc approaches, not formalized
- Community knowledge exists in the minds of too few people
- Fragmentation of community, duplication of effort

#### How to Move Forward

- Systematize the process of constructing and tuning applications from existing components or patterns
- Build tools that form a foundation to which many can contribute and improve
- Organize the community to work together





## System Design



# Key Concepts

- A systematic strategy for composing application components into workflows
- Search for the most appropriate implementation of both components and workflows
- Component optimization
  - Select among implementation *variants* of the same computation
  - Derive integer values of optimization *parameters*
  - Only search promising code variants and a restricted parameter space
- Workflow optimization
  - Knowledge-rich representation of workflow properties





# Early Project Goals

- Define interfaces
- Combine infrastructures
  - Pegasus + Wings already combined
  - Now want to incorporate DataCutter
- Experiments in each sub-project
  - Compiler-guided component optimization
  - Optimization of workflow intermediate data
- Pairwise experiments
  - Component optimization of MD simulation
  - DataCutter workflow in Wings/Pegasus





## System Design



### Compiler: Matrix-Vector Multiply on Pentium M



### Compiler: Nonpivoting LU on Pentium M



Chen, "Model-Guided Empirical Optimization for Memory Hierarchy", PhD dissertation, University of Southern California, May, 2007.

## Application-Level Parameters: Visualization of MD Simulation

- Explore tradeoff space of two application-level parameters
  - Cell size:
    granularity of
    decomposition
  - Cache size:

number of neighbors to replicate





#### Findings:

- Cell size has more impact on performance
- Parameter values sensitive to graph connectivity, number of processors
- Search can be generalized



## System Design



## Workflow Optimization: Reducing Workflow Space Requirements

• Optimization problem: Data replicas and intermediate results introduce extensive storage requirements

CleanUp:
 identify
 "dead" files
 and remove



A. Ramakrishnan, et al. (2007 <u>Scheduling Data-Intensive Workflows onto Storage-Constrained Distributed</u> <u>Resources</u>. Seventh IEEE International Symposium on Cluster Computing and the Grid — CCGrid 2007

### Performance Optimization of Data-intensive Workflows: Integrating Wings and Data Cutter



*Workflow representation using Wings* 

# **Concluding Remarks**

- Three core technical ideas
  - Compiler technology: Modular compilers, systematic approach to optimization, empirical search, *hand-tuned performance*
  - Components: Tunable, automatically-generated XML-based interfaces, knowledge representations, more empirical search
  - Systematic: Based on machine learning, knowledge representation
- Focus on long-term evolutionary path
- ... And community organization



