
Intelligent Optimization of Parallel and 
Distributed Applications

USC/ISI: USC (Physics/CS): OSU:
Jacqueline Chame Bhupesh Bansal Umit Catalyurek
Chun Chen Aiichiro Nakano Vijay Kumar
Ewa Deelman Priya Vashishta Tahsin Kurc
Yolanda Gil Joel Saltz
Mary Hall Ashish Sharma
Kristina Lerman
Yoonju Lee Nelson

This research has been partially funded by NSF NGS and CSR.



Motivation
Historical Perspective
• Highly tuned applications are too hard to develop, port
• Complexity leads to fragile applications & system software
• Ad hoc approaches, not formalized
• Community knowledge exists in the minds of too few people 
• Fragmentation of community, duplication of effort
How to Move Forward
• Systematize the process of constructing and tuning applications from 

existing components or patterns
• Build tools that form a foundation to which many can contribute and 

improve
• Organize the community to work together



System Design



Key Concepts
• A systematic strategy for composing application 

components into workflows
• Search for the most appropriate implementation of 

both components and workflows
• Component optimization

– Select among implementation variants of the same 
computation

– Derive integer values of optimization parameters
– Only search promising code variants and a restricted 

parameter space
• Workflow optimization

– Knowledge-rich representation of workflow properties



Early Project Goals
• Define interfaces
• Combine infrastructures

– Pegasus + Wings already combined
– Now want to incorporate DataCutter

• Experiments in each sub-project
– Compiler-guided component optimization
– Optimization of workflow intermediate data

• Pairwise experiments
– Component optimization of MD simulation
– DataCutter workflow in Wings/Pegasus



System Design

Existing Tools (Hall):
• ECO Compiler: Model-guided 
empirical optimization

• Code Isolator
Other Application Tools:
• Express application-level 
parameters, range, models 

• Learning parameter models 
(Lerman)

Application (Nakano, Vashishta):
• Scalable Molecular Dynamics 
Simulation



Compiler: Matrix-Vector Multiply on 
Pentium M

Chen, “Model-Guided Empirical Optimization for Memory Hierarchy”, PhD dissertation, University of 
Southern California, May, 2007. 

M
FL
O
PS



Compiler: Nonpivoting LU on Pentium M

Chen, “Model-Guided Empirical Optimization for Memory Hierarchy”, PhD dissertation, University of 
Southern California, May, 2007. 



Application-Level Parameters: 
Visualization of MD Simulation

Rdx14 DFS Execution Time (1 Node)

200

250

300

350

48 64 80 96 112 128 144

Cell Size
Se

co
nd

s

1
3
9
27
81
243

Cache
Size

• Explore tradeoff 
space of two 
application-level 
parameters
– Cell size:

granularity of 
decomposition

– Cache size:
number of 
neighbors to 
replicate

Findings:
• Cell size has more impact on performance
• Parameter values sensitive to graph connectivity,

number of processors 
• Search can be generalized



System Design

Existing Tools:
• WINGS (Gil): Workflow 
specification and mapping

• Pegasus (Deelman):
Workflow scheduling and 
optimization for distributed 
platforms

• DataCutter (Saltz, Kurc, 
Catalyurek):
Data management and 
optimization of data-intensive
applications



Workflow Optimization: Reducing 
Workflow Space Requirements

0 1 2 3 4 5 6

x 10
4

0

2

4

6

8

10

12

14

16
x 10

7

Time (t in sec) −−−−>

S
cr

at
ch

 S
pa

ce
 u

se
d 

(k
B

) 
−

−
−

−
>

Simulated LIGO Workflow on 4 Resources with Cleanup Nodes

space usage
without CleanUp

space usage
with CleanUp

A. Ramakrishnan, et al. (2007 Scheduling Data-Intensive Workflows onto Storage-Constrained Distributed 
Resources. Seventh IEEE International Symposium on Cluster Computing and the Grid — CCGrid 2007 

• Optimization 
problem: Data 
replicas and 
intermediate 
results 
introduce 
extensive 
storage 
requirements

• CleanUp:
identify 
“dead” files 
and remove



Performance Optimization of Data-intensive Workflows:
Integrating Wings and Data Cutter

Application: Biomedical image analysis

normalization

alignment &
stitching warping

z-projection

Each component is implemented as a DataCutter 
filter. Our system enables distributed processing of 
very large, out-of-core image data. 

Workflow representation using 
Wings

Sample workflow for image correction

Integration with Wings
Extend the core ontology of Wings to support the 
creation of image analysis workflow templates

Performance optimization 
parameters:
• Tiling of data to fit in core
• Mapping data to processors
• Internal data organization
Performance/accuracy 
parameters:
• Image resolution
• Feature detection accuracy



Concluding Remarks
• Three core technical ideas

– Compiler technology: Modular compilers, 
systematic approach to optimization, empirical 
search, hand-tuned performance

– Components: Tunable, automatically-generated 
XML-based interfaces, knowledge representations, 
more empirical search

– Systematic: Based on machine learning, knowledge 
representation

• Focus on long-term evolutionary path
• ... And community organization


