
UCI
DREAM Lab

The TMO Scheme for Wide-Area
Distributed Real-Time

Computing and Distributed
Time-Triggered Simulation

For presentation at
NGS 2007

March 2007

Kane Kim and Stephen F. Jenks
University of California, Irvine

{khkim, sjenks}@uci.edu

2007-03-19 2
UCI

DREAM Lab

Outline

• Introduction

• Time-triggered, Message-triggered Object (TMO) Scheme

• Distance-aware TMO (DA-TMO) for use in WAN Environments

• TMO-based Distributed Real-time Computing (DRC) Applications

• TMO-structured Distributed Time-triggered Simulation (DTS)

• Conclusion

2007-03-19 3
UCI

DREAM Lab

Local-area DRC => Wide-area DRC

• While local area distributed real-time computing (DRC) is a steadily
advancing technology field with many immature aspects in its core at this
time, wide-area DRC is in its infancy.

• Our efforts to extend the DRC technology established for use in local area
network (LAN) environments to fit into the WAN environments:

– The basic building-block of our technology framework is the Time-triggered
Message-triggered Object (TMO) specification and programming scheme.

– The TMO scheme includes establishment and use of a global time base which
provides consistent real-time information available in all distributed computing
nodes.

– The TMO scheme for local-area DRC has been established in a sound form and its
practicality and attractiveness have been extensively demonstrated. However, its
extension to fit into wide-area-network based DRC is in an early stage.

• In this paper, we present a brief review of the progresses made recently in
extending the TMO scheme for use in WAN environments.

2007-03-19 4
UCI

DREAM Lab

High-Level RT Object: TMO

The Time-triggered Message-triggered Object (TMO)
programming and specification scheme

• Meant to be a natural
easy-to-use extension of
the C++/Java technology
into an RT distributed
software component
programming technology

• Supports design of
distributable HRT objects
and distributable non-RT
objects
within one general structure

• Contains only high-level
intuitive and yet precise
expressions of timing
requirements

• Formulated from the
beginning with the objective
of enabling design-time
guaranteeing of timely
actions

2007-03-19 5
UCI

DREAM Lab

Middleware and APIs

• TMO Support Middleware (TMOSM)

– A middleware architecture providing execution support mechanisms and being easily
adapted to a variety of commercial kernel+hardware platforms

– Uses well-established services of commercial OSs, e.g., process and thread support
services, short-term scheduling services, and low-level communication protocols, in
a manner transparent to the application programmer

– Non-Blocking Buffer (NBB) to avoid blocking of threads due to semaphores or locks

– Kernel Abstraction Layer (KAL) to improve portability

• TMO Support Library (TMOSL)

– User-friendly programming interfaces wrapping the execution support services of
TMOSM

– Consists of a number of C++ classes and approximates a programming language
directly supporting TMO as a basic building-block

• Visual Studio for TMO (ViSTMO)

– A GUI (graphic user interface) approach to designing an initial skeleton of each TMO
and letting a tool generate a code-framework for each TMO

2007-03-19 6
UCI

DREAM Lab

Logical connections ⊃ Remote TMO Calls, RMMCs

WTST

Communication Network

COTS OS platform

VMAT

RT Clock and
Interval Timer

Activate thread
Message

Thread

Virtual
MachineTMOSM

TMO TMO TMO

Application •••

IIT

VAT

other
processes

⊗

⊗ ⊗
SpM ThrSvM Thr

TMO Support Middleware (TMOSM)
on Windows XP & CE -- TMOSM / XP, CE, or Linux / Socket

Currently running

••
•

••
•

VCT

MMCT
MMCT

⊗

2007-03-19 7
UCI

DREAM Lab

- C++ code for TMO class defs
in Visual Studio projects files

- Config.ini files

Visual Studio for TMO
(ViSTMO)

Graphics-based
design editor

Code-framework
Generator

Top-Down Design & Spec
of Essential Parameters

Code generation

Compiler / Debugger
(MS Visual Studio) Timing Analyzer

ViSTMO

Other tools

Compiling and debugging

Properties of
TMO networks

Method Body
Implementation

s

2007-03-19 8
UCI

DREAM Lab

Distance-aware TMO (DA-TMO)

• The large communication latency inherent in a DRC prevents the
current TMOSM instantiations from cooperating and interacting
frequently among themselves.

• A newly extended TMO model called the distance-aware TMO (DA-
TMO) is introduced in order to establish an effective building-block
for wide-area DRC systems.

– DA-TMO programmers should expect that TMOSM instantiations
supporting nearby TMOs will interact with a relatively high frequency
whereas TMOSM instantiations supporting TMOs separated by long
distances will interact less frequently.

– They should also expect that a call by a client TMO for a service
offered by a remote TMO can involve searches for information not
readily available in the local TMOSM instantiation.

• Efforts to extend TMO Network Configuration Manager (TNCM) and
other parts of TMOSM to support DA-TMO are underway.

2007-03-19 9
UCI

DREAM Lab

Distance-aware TMO (DA-TMO) (cont)

• The clock synchronization module of TMOSM has been enhanced to
take advantage GPS facilities which serve as a source of global time
of micro-second precision.

• Middleware support components for dynamic creation and
destruction of TMOs have been incorporated into TMOSM.

• Member sites of a WAN are often machines of PC cluster types. We
have thus been developing a version of TMOSM for such a cluster.

2007-03-19 10
UCI

DREAM Lab

High-quality Multimedia Streaming Service

• An approach for realizing high-quality tele-audio services over
networks by applying the global time based coordination of
distributed actions (TCoDA) principle was realized.

• A TMO-based audio streaming application over heterogeneous
platforms, e.g., Windows XP, Windows CE.NET, and Linux 2.6, was
constructed. In LAN-based experiments, the maximum intra-stream
jitter was merely 17ms.

• Further experiments involving both LANs and WANs are under way.

• A video streaming service of a similar kind was studied, too, with
highly promising results and demonstrations.

2007-03-19 11
UCI

DREAM Lab

Wide-Area DRC Testbed: TMO Turtle

OptIPuter

Network

(1GB)

UCSD UCI

GPS

GPS

802.11
Wireless
LAN

Webcam

Joystick90 miles away

Video stream (20 fps, 640x480)

Control cmd (every 40msec)

Application-to-application msg transmission delay <= 60 msec!!!

Two ITX
single-board
PCs running
Windows CE

2007-03-19 12
UCI

DREAM Lab

Basic Requirements in RT Simulation

• Real-Time Simulation := Accurate mode of simulation in which
the simulator components show the timing behavior that are
the same as or similar to the timing behavior of the simulation targets.

• Every computer-based simulation execution engine has a simulator
clock for driving new simulation activities (a new simulation step).
– Simulator clock must be based on an RT clock to tick at a steady rate.

– All computational activities taking place during a ticking interval of the
simulator clock may be viewed as one simulation step.

– The ticking rate of the simulator clock in an RT simulator must be
chosen with the following understanding:

Only the resulting state of the simulation at the end of the ticking
interval may be seen by the user.

– The ticking interval must be long enough to accommodate the message
communication for the essential data flow among distributed simulator
objects.

2007-03-19 13
UCI

DREAM Lab

Distributed RT Simulation

• As the complexities of RT simulators grow, the use of distributed
and parallel RT simulation approaches become imperative.

• In distributed real-time simulation, simulator objects (or processes)
are distributed among multiple nodes.

• Synchronization of the simulation-steps of distributed simulator
objects is then a key challenge.
– A simulation-step executed by the distributed nodes as a group must

include the activities necessary to keep the executions of the
simulation-step by the nodes synchronized.

– The simulator clock for one simulator object must commence the n-th
tick neither before the (n-1) - th tick by the clock driving another
simulator object nor after the (n+1) - th tick by the latter clock.

2007-03-19 14
UCI

DREAM Lab

Distributed Time-triggered Simulation (DTS)

• Essence of the DTS approach
1) Every node is equipped with an RT clock and executes each

simulation-step upon reaching of the RT clock at the predetermined
value.

2) Every simulation-step is designed to be completed within one ticking
interval.

• Major advantages of the DTS approach
– Synchronization of simulation-steps executed by distributed simulator

objects under the DTS scheme does not require message exchanges
among the host nodes (not counting the message exchanges which
may be needed at a certain low frequency for re-synchronizing the
real-time clocks of the nodes) .

– DTS approach enables easy design of simulator objects which use
different ticking rates.

2007-03-19 15
UCI

DREAM Lab

TMO-structured DTS

• DTS approach facilitated by the TMO programming scheme

– Each simulation application can be modeled and constructed by one
TMO or a network of TMOs (distributed TMOs).

– Object data store (ODS) contains state representations of the simulated
targets.

– TT methods or SpM's execute simulation steps and update states.

• TT methods are mechanisms for approximately simulating
continuous state changes of target items in the application
environment.

• Natural parallelism can be precisely represented by use of multiple
TT methods which may be activated simultaneously.

• Precision of TMO-structured simulation is a function of the activation
frequencies of TT methods (the ticking rate of the target simulator
clock).

2007-03-19 16
UCI

DREAM Lab

Update Dependency

• A fundamental obstacle in parallel / distributed execution of real-time
simulation actions is the update-dependency.

• When a simulation target item covered by one simulator node is
update-dependent on another simulation target item covered by
another simulator node, update activities of the two nodes must be
serialized.

• The update dependency is a transitive relation. Therefore, a chain of
update dependency prevents DTS approach from exploiting the full
potential of parallelism in the distributed, parallel execution of the
simulation system.

• Several basic approaches dealing with the techniques for minimizing
the impacts of the update-dependency among distributed simulator
objects were formulated and experimental research is under way.

2007-03-19 17
UCI

DREAM Lab

0 X

Z

Y

60000 120000

60000

60000

Theater Space

Command Ship Command Post

70000

20000

Enemy Missiles

Birds (NTFO)

Alien’s Creatures

Sea Land

Unit : meter(m)

Land LauncherShip Launcher

Fighters

Commercial Airplanes

Radar on LandRadar on Ship

TMO-structured DTS Testbed:
Coordinated Anti-Missile Interceptor Network (CAMIN)

Goal: Defend the target (Command Ship) from enemy missiles!!!

Fighter Launcher

Enemy Missiles

2007-03-19 18
UCI

DREAM Lab

CAMIN with Fault-tolerance Support

TMO

Node

Theater

Alien
CPost
CShip
Fighter

Radar
On

Land

Land
Laun
cher

RDQ-a FOT-a IPDS-a RDQ-b FOT-b IPDS-b

Primary-Shadow TMO
Replication (PSTR)

with
Supervisor-based Network

Surveillance (SNS)

Node #1

Node #3 Node #4

LAN

RDQ
On

Ship

Radar
On

Ship

Ship
Laun
cher

Node #2

FOT
On

Ship

IPDS
On

Ship

2007-03-19 19
UCI

DREAM Lab

Conclusion

• The TMO scheme for wide area DRC is promising, especially with
the advent of a new-generation network infrastructure such as
OptIPuter. Nevertheless, this field is in an early stage.

• The TMO-structured DTS has been demonstrated in reasonably
convincing forms but its optimal use requires much further
research.

2007-03-19 20
UCI

DREAM Lab

backup

2007-03-19 21
UCI

DREAM Lab

TMOSM Support Library (TMOSL)

ODSS1
Class

TMOGate Class

TMO1
Class

EAC1
Class

Use an object
Inherit an object

..
Basic RMMC Class

Middleware Service Call

TMOSM

.. Group of functions
for Global time mgt

..

Application
TMO1

void main()

StartTMOengine ()

TMO1Class T1 (---)
TMO2Class T2 (---)

MainThrSleep ()

Group of functions
for I/O handling

Basic ODSS Class

Basic TMO Class

StartTMOengine ()

MainThrSleep ()

TMOSLUser friendly API
library for C++ TMO

programmers

2007-03-19 22
UCI

DREAM Lab

TMO Structure and Design Paradigms

(TM1) All time references in a TMO are references to global time.

(TM2) TMO is a distributed computing (DC) component.

(TM3) TMO has been devised to contain only high-level intuitive and yet
precise expressions of timing requirements.

(TM4) TMO is also an autonomous active DC component.

(TM5) A logical multicast channel facility, called Real-time Multicast and
Memory-replication Channel (RMMC), is used for message
communication among TMOs in addition to the regular RPC style service
request calls.

(TM6) The basic concurrency constraint (BCC) incorporated along with the
time-triggered Spontaneous Methods (SpMs) eases design-time
guaranteeing of timely services of TMOs by having SpM executions not
disturbed by SvM (Service Method) executions.

(TM7) An RT computer system will always take the form of a network of TMOs,
which may be produced in a top-down multi-step fashion, called the
TMO Network Development Methodology (TMONDeM).

2007-03-19 23
UCI

DREAM Lab

High-quality Multimedia Streaming Service

Telephony (Voice-over-IP) Distributed orchestra

Distance Learning

Videoconferencing

Remote Surgery

Interactive TV

2007-03-19 24
UCI

DREAM Lab

Attractive Features of TMO-structured DTS

• Uniform structuring of DTS from requirement specification to the
detailed implementation

• Highly predictable timing performance due to the explicitly specified
timing characteristics during design time

• Systematic expansion of a single TMO into a TMO network

• Easy programming and debugging of timing characteristics and
concurrency control

• Efficient distributed and parallel processing in heavy-load simulations
thanks to lack of massive message exchange for synchronization
purposes

• Unified development environment of both simulation targets and
simulator itself

