
The Adaptive Code Kitchen: 
Flexible Tools for Dynamic Application Composition

Pilsung Kang, Mike Heffner, Joy Mukherjee, 
Naren Ramakrishnan, Srinidhi Varadrajan, 

Calvin J. Ribbens, and Danesh K. Tafti

NSF CNS-0615181



Problem context

How can we 

abstract out 

adaptivity 

in complex 

scientific 

codes?



Adaptivity: its various incarnations

• Not just tinkering with
– partitioning parameters
– data decompositions
– scheduling policies

• But working at a logical unit of
– algorithms/object codes/models



• In an evolving turbulent flow
– re-route calls from linear solver S1 to S2

• Integrate optimistic and exploratory algorithms
– “use knowledge from the future to guide 

decisions in the present”

• In general 
– dynamically re-wire an application 
– support arbitrary code expansion/ 

contraction

Adaptivity: more..



Some related projects
• Performance modeling of solvers

– SALSA, SANS [Dongarra et al.]

• Application level checkpointing
– C3 [Pingali et al.]

• Generalized frameworks
– PCL [Adve et al.]
– Tunability interfaces [Karamcheti et al.]

• Adaptive programming
– AOP [Lieberherr et al.]



• Componentization without OO
– Support for legacy scientific codes

• Runtime system for instrumenting
– Function interception
– Continuation modification
– Dynamic process checkpointing/rollback

• Adaptivity schemas
– Recipes of how composition/adaptation will 

occur

Goals of the “Kitchen”



The Adaptive Code Kitchen 
builds upon

• NSF CAREER EIA-0133840

– Network emulation

• NSF CAREER EIA-9984317

– Runtime recommender systems



How the Kitchen works



Building the Kitchen

• Load and Let Link (LLL)

• Primitives for Runtime Composition

• Adaptivity Schemas



LLL

• Agile and flexible loading/composition of 

native code components

• Module: unit of encapsulation

– runtime image of an object file compiled from 

source written in any language

• Runtime control over addition/modification of 

module context table (MCT)



Traditional compile-time linking



What LLL does



Runtime Composition Primitives

• Function interception

– Wrap (at caller end) with pre-/post- handlers

• Continuation modification

– Recommender system triggers pre-/post-

callbacks for desired functions

• Dynamic process checkpointing

– Rollback using ‘Dejavu’ snapshot library



Adaptivity Schemas

• High level “recipes” of rewiring

– Staged composition

– Adaptation of problem decompositions

– Algorithm switching

– Graphs of models



Whats cookin currently
• Multiple levels of adaptivity

– Algorithms: steady flow, time-dependent flow, 

compressible high-speed flow...

– Models: RANS, LES, DNS, ...

– Solvers: scaling + preconditioner + algo.

• Grand goal

– Simulate leading edge film cooling flows for gas 

turbine blades



Questions?

Contact:
Naren Ramakrishan

naren@cs.vt.edu
http://people.cs.vt.edu/~naren


