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Summary
• Characteristics of irregular applications: 

– data structures like stacks/queues/trees/graphs
– few if any dense arrays

• Optimistic (speculative) parallelization is essential
– pointer/shape analysis cannot work 

• Current thread-level speculation (TLS) implementations 
will not work
– crucial to exploit abstractions provided by object-oriented 

languages 
– in particular, distinction between abstract data type and its 

implementation type
• Concurrency can be packaged within natural syntactic 

constructs
• Benchmark programs are useless

– Wirth:  Program = Algorithm + Data structure



Delaunay Mesh Refinement

• Delaunay meshes (2-D)
– Triangulation of a surface, 

given vertices
– Delaunay property:

circumcircle of any triangle 
does not contain another 
point in the mesh

• In practice, want all 
triangles in mesh to meet 
certain quality constraints
– (e.g.) no angle > 120°

• Mesh refinement: 
– fix bad triangles through 

iterative refinement



Refinement Algorithm

{ pick a bad triangle
add new vertex at center of circumcircle
gather all triangles that no longer satisfy Delaunay  

property into cavity
re-triangulate affected region, including new point

// some new triangles may be bad themselves
}

while there are bad triangles



Sequential Algorithm

Mesh m = /* read in mesh */
WorkList wl;
wl.add(mesh.badTriangles()); // non-deterministic order

while (true) {
if ( wl.empty() ) break;

Element e = wl.get();//non-deterministic choice

if (e no longer in mesh) continue;

Cavity c = new Cavity(e); //determine new cavity
c.expand(); //determine affected triangles
c.retriangulate(); //re-triangulate region

m.update(c); //update mesh

wl.add(c.badTriangles()); //add new bad triangles to queue in some order
}



Parallelization Opportunities

• Unit of work: fixing a bad triangle
• Bad triangles with non-overlapping cavities can be processed in  
parallel.
• Cannot tell if cavities of two bad triangles will overlap without actually 
building cavities must detect conflicts dynamically



Take-away lessons
• Parallelism in irregular apps depends on “data 

values”
purely compile-time approach cannot find parallelism
inspector-executor approach (Saltz) cannot find 
parallelism

optimistic parallelization is the only solution

• Parallelism is data “parallelism” of some kind
– but on irregular data structure elements, not arrays
– computations with different data items may conflict
– how conflicts must be handled depends on app

• Delaunay: abort all but one conflicting computations
• Agglomerative clustering: must ensure sequential order is 

respected



Galois programming model 
and implementation



Computational model

• Object-based shared-memory model
• Computation performed by some 

number of threads
– but programs do not mention threads

• Threads can have their own local 
memory

• Threads must invoke methods to 
access internal state of objects
– mesh refinement:shared objects are 

• worklist
• mesh

Shared Memory

Objects



Components of Galois approach

1) Two syntactic constructs for packaging 
optimistic parallelism as iteration over 
sets

2) Assertions about methods in class 
libraries

3) Runtime system for detecting and 
recovering from potentially unsafe 
accesses by optimistic computations



(1) Concurrency constructs: 
two iterators

• for each e in Set S do B(e)
– evaluate block B(e) for each element in set S
– sequential implementation

• set elements are unordered, so no a priori order on iterations
• there may be dependences between iterations

– set S may get new elements during execution
• for each e in PoSet S do B(e)

– evaluate block B(e) for each element in set S
– sequential implementation

• perform iterations in order specified by poSet
• there may be dependences between iterations

– set S may get new elements during execution



Galois version of mesh refinement

Mesh m = /* read in mesh */
Set wl;
wl.add(mesh.badTriangles()); // non-deterministic order

for each e in Set wl do { //unordered iterator
if (e no longer in mesh) continue;
Cavity c = new Cavity(e); //determine new cavity
c.expand(); //determine affected triangles
c.retriangulate(); //re-triangulate region
m.update(c); //update mesh
wl.add(c.badTriangles()); //add new bad triangles to workset

}



Parallel execution of iterators

• Master thread and some number of worker threads
– master thread begins execution of program and executes code 

between iterators
– when it encounters iterator, worker threads help by executing 

some iterations concurrently with master
– threads synchronize by barrier synchronization at end of iterator

• Key technical problem: semantics of iterators
– serializability: result of parallel execution must appear as though 

iterations were performed in some interleaved order
– ordering: for poSet iterator, this order must correspond to poSet

order



(II) Assertions on methods

• Concurrent accesses 
to a mutable object by 
multiple threads are 
OK provided method 
invocations commute

Shared Memory

Objects
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Assertions on methods (contd.)

• Semantic commutativity vs. concrete 
commutativity
– (e.g.) workset representation may be different for 

different method invocation orders
– for client program, this is not relevant

• Information provided by class implementer
– commutativity of method invocations
– undo methods

• (e.g.) add(x)  is inverse of remove(x) 



(III) Runtime system

• Detect conflicts in method invocations on 
objects and roll back appropriate iteration
– maintain logs of method invocations from 

ongoing iterations
• For PoSet iterator, ensure that iterations 

commit in order
– similar to reorder buffer in speculative 

execution processors



Experiments



Experimental Setup

• Machines
– 4-processor 1.5 GHz Itanium 2

• 16 KB L1, 256 KB L2, 3MB L3 cache
• no shared cache between processors
• Red Hat Linux

– Dual processor, dual core 3.0 GHz Xeon
• 32 KB L1, 4 MB L2 cache
• dual cores share L2
• Red Hat Linux



Delaunay mesh generation

• Workset: implemented using STL queue
• Mesh: implemented as a graph

– each triangle is a node
– edges in graph represent triangle adjacencies
– used adjacency list representation of graph

• Input mesh:
– from Shewchuck’s Triangle program
– 10,156 triangles of which 4,837 were bad



Code versions

• Three “default” versions
– reference: sequential version w/o locks/threads/etc.
– FGL(d): handwritten code that uses fine-grain locks 

on triangles
– meshgen(d): Galois version

• Experiments showed high abort ratio
– fixing a bad triangle creates a cluster of new bad 

triangles in the cavity
– if workset is queue, these are co-scheduled with high 

probability
– one solution: get() does random selection from 

workset
• Two other codes with randomized workset:

– FGL(p), meshgen(p)



Speedups

• sequential version is best 
on 1 processor

• meshgen(p) performs 
better than meshgen(d)
– smaller abort ratio

• FGL(d) and FGL(p) 
perform almost equally 
well
– cost of aborts is small in 

FGL
• FGL(p) and meshgen(p) 

perform almost equally 
well



Abort ratios and CPI

• Abort ratio is high for meshgen(d)
• Sequential and meshgen(p) perform almost 

same number of instructions
• However, cycles/instruction is higher for 

meshgen(p) mainly because of L3 cache misses

49219084 proc
meshgen(p)

28290217364 proc
meshgen(d)

n/a219181 proc

Aborted
iterations

Committed
iterations
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• Benchmark programs are bad
– Programs 
– Algorithms+data structures ☺

• Parallelism in many irregular apps is inherently data-dependent
– Pointer/shape analysis cannot work for these apps

• Optimistic parallelization is essential for such apps
– Analysis might be useful though to optimize parallel program execution

• Exploiting abstractions provided by OO is critical
– Only CS people still worry about F77 and C anyway….

• Exploiting high-level semantic information about programs is critical
– Galois knows about priority queues, sets, etc.

• Support for ordering speculative computations important 
• Good scheduling may require domain-specific knowledge
• These beliefs are basis for Galois project

Take-away message

Thank you!


