
Data-parallel Abstractions
for

Irregular Applications

Keshav Pingali
University of Texas, Austin

Joint work with Milind Kulkarni (UT Austin), and
Bruce Walter, Ganesh Ramanarayanan, Kavita Bala, Paul Chew (Cornell)

Summary
• Characteristics of irregular applications:

– data structures like stacks/queues/trees/graphs
– few if any dense arrays

• Optimistic (speculative) parallelization is essential
– pointer/shape analysis cannot work

• Current thread-level speculation (TLS) implementations
will not work
– crucial to exploit abstractions provided by object-oriented

languages
– in particular, distinction between abstract data type and its

implementation type
• Concurrency can be packaged within natural syntactic

constructs
• Benchmark programs are useless

– Wirth: Program = Algorithm + Data structure

Delaunay Mesh Refinement

• Delaunay meshes (2-D)
– Triangulation of a surface,

given vertices
– Delaunay property:

circumcircle of any triangle
does not contain another
point in the mesh

• In practice, want all
triangles in mesh to meet
certain quality constraints
– (e.g.) no angle > 120°

• Mesh refinement:
– fix bad triangles through

iterative refinement

Refinement Algorithm

{ pick a bad triangle
add new vertex at center of circumcircle
gather all triangles that no longer satisfy Delaunay

property into cavity
re-triangulate affected region, including new point

// some new triangles may be bad themselves
}

while there are bad triangles

Sequential Algorithm

Mesh m = /* read in mesh */
WorkList wl;
wl.add(mesh.badTriangles()); // non-deterministic order

while (true) {
if (wl.empty()) break;

Element e = wl.get();//non-deterministic choice

if (e no longer in mesh) continue;

Cavity c = new Cavity(e); //determine new cavity
c.expand(); //determine affected triangles
c.retriangulate(); //re-triangulate region

m.update(c); //update mesh

wl.add(c.badTriangles()); //add new bad triangles to queue in some order
}

Parallelization Opportunities

• Unit of work: fixing a bad triangle
• Bad triangles with non-overlapping cavities can be processed in
parallel.
• Cannot tell if cavities of two bad triangles will overlap without actually
building cavities must detect conflicts dynamically

Take-away lessons
• Parallelism in irregular apps depends on “data

values”
purely compile-time approach cannot find parallelism
inspector-executor approach (Saltz) cannot find
parallelism

optimistic parallelization is the only solution

• Parallelism is data “parallelism” of some kind
– but on irregular data structure elements, not arrays
– computations with different data items may conflict
– how conflicts must be handled depends on app

• Delaunay: abort all but one conflicting computations
• Agglomerative clustering: must ensure sequential order is

respected

Galois programming model
and implementation

Computational model

• Object-based shared-memory model
• Computation performed by some

number of threads
– but programs do not mention threads

• Threads can have their own local
memory

• Threads must invoke methods to
access internal state of objects
– mesh refinement:shared objects are

• worklist
• mesh

Shared Memory

Objects

Components of Galois approach

1) Two syntactic constructs for packaging
optimistic parallelism as iteration over
sets

2) Assertions about methods in class
libraries

3) Runtime system for detecting and
recovering from potentially unsafe
accesses by optimistic computations

(1) Concurrency constructs:
two iterators

• for each e in Set S do B(e)
– evaluate block B(e) for each element in set S
– sequential implementation

• set elements are unordered, so no a priori order on iterations
• there may be dependences between iterations

– set S may get new elements during execution
• for each e in PoSet S do B(e)

– evaluate block B(e) for each element in set S
– sequential implementation

• perform iterations in order specified by poSet
• there may be dependences between iterations

– set S may get new elements during execution

Galois version of mesh refinement

Mesh m = /* read in mesh */
Set wl;
wl.add(mesh.badTriangles()); // non-deterministic order

for each e in Set wl do { //unordered iterator
if (e no longer in mesh) continue;
Cavity c = new Cavity(e); //determine new cavity
c.expand(); //determine affected triangles
c.retriangulate(); //re-triangulate region
m.update(c); //update mesh
wl.add(c.badTriangles()); //add new bad triangles to workset

}

Parallel execution of iterators

• Master thread and some number of worker threads
– master thread begins execution of program and executes code

between iterators
– when it encounters iterator, worker threads help by executing

some iterations concurrently with master
– threads synchronize by barrier synchronization at end of iterator

• Key technical problem: semantics of iterators
– serializability: result of parallel execution must appear as though

iterations were performed in some interleaved order
– ordering: for poSet iterator, this order must correspond to poSet

order

(II) Assertions on methods

• Concurrent accesses
to a mutable object by
multiple threads are
OK provided method
invocations commute

Shared Memory

Objects

get()

add()

get()

add()

get()
get()
add()
add()

get()
get()
add()
add()

get()
add()
get()
add()

Assertions on methods (contd.)

• Semantic commutativity vs. concrete
commutativity
– (e.g.) workset representation may be different for

different method invocation orders
– for client program, this is not relevant

• Information provided by class implementer
– commutativity of method invocations
– undo methods

• (e.g.) add(x) is inverse of remove(x)

(III) Runtime system

• Detect conflicts in method invocations on
objects and roll back appropriate iteration
– maintain logs of method invocations from

ongoing iterations
• For PoSet iterator, ensure that iterations

commit in order
– similar to reorder buffer in speculative

execution processors

Experiments

Experimental Setup

• Machines
– 4-processor 1.5 GHz Itanium 2

• 16 KB L1, 256 KB L2, 3MB L3 cache
• no shared cache between processors
• Red Hat Linux

– Dual processor, dual core 3.0 GHz Xeon
• 32 KB L1, 4 MB L2 cache
• dual cores share L2
• Red Hat Linux

Delaunay mesh generation

• Workset: implemented using STL queue
• Mesh: implemented as a graph

– each triangle is a node
– edges in graph represent triangle adjacencies
– used adjacency list representation of graph

• Input mesh:
– from Shewchuck’s Triangle program
– 10,156 triangles of which 4,837 were bad

Code versions

• Three “default” versions
– reference: sequential version w/o locks/threads/etc.
– FGL(d): handwritten code that uses fine-grain locks

on triangles
– meshgen(d): Galois version

• Experiments showed high abort ratio
– fixing a bad triangle creates a cluster of new bad

triangles in the cavity
– if workset is queue, these are co-scheduled with high

probability
– one solution: get() does random selection from

workset
• Two other codes with randomized workset:

– FGL(p), meshgen(p)

Speedups

• sequential version is best
on 1 processor

• meshgen(p) performs
better than meshgen(d)
– smaller abort ratio

• FGL(d) and FGL(p)
perform almost equally
well
– cost of aborts is small in

FGL
• FGL(p) and meshgen(p)

perform almost equally
well

Abort ratios and CPI

• Abort ratio is high for meshgen(d)
• Sequential and meshgen(p) perform almost

same number of instructions
• However, cycles/instruction is higher for

meshgen(p) mainly because of L3 cache misses

49219084 proc
meshgen(p)

28290217364 proc
meshgen(d)

n/a219181 proc

Aborted
iterations

Committed
iterations

Related Work

• Weihl, 1988 – Concurrency control using
commutativity properties of ADTs

• Rinard & Diniz, 1996 – Static
commutativity analysis for parallelization

• Wu & Padua, 1998 – Exploiting semantic
properties of containers for parallelization

• Hosking & Moss – Open nesting using
data structure semantics

• Benchmark programs are bad
– Programs
– Algorithms+data structures ☺

• Parallelism in many irregular apps is inherently data-dependent
– Pointer/shape analysis cannot work for these apps

• Optimistic parallelization is essential for such apps
– Analysis might be useful though to optimize parallel program execution

• Exploiting abstractions provided by OO is critical
– Only CS people still worry about F77 and C anyway….

• Exploiting high-level semantic information about programs is critical
– Galois knows about priority queues, sets, etc.

• Support for ordering speculative computations important
• Good scheduling may require domain-specific knowledge
• These beliefs are basis for Galois project

Take-away message

Thank you!

