Data-parallel Abstractions for Irregular Applications

Keshav Pingali University of Texas, Austin

Joint work with Milind Kulkarni (UT Austin), and Bruce Walter, Ganesh Ramanarayanan, Kavita Bala, Paul Chew (Cornell)

<u>Summary</u>

- Characteristics of irregular applications:
 - data structures like stacks/queues/trees/graphs
 - few if any dense arrays
- Optimistic (speculative) parallelization is essential
 - pointer/shape analysis cannot work
- Current thread-level speculation (TLS) implementations will not work
 - crucial to exploit abstractions provided by object-oriented languages
 - in particular, distinction between abstract data type and its implementation type
- Concurrency can be packaged within natural syntactic constructs
- Benchmark *programs* are useless
 - Wirth: Program = Algorithm + Data structure

Delaunay Mesh Refinement

• Delaunay meshes (2-D)

- Triangulation of a surface, given vertices
- Delaunay property: circumcircle of any triangle does not contain another point in the mesh
- In practice, want all triangles in mesh to meet certain quality constraints
 - (e.g.) no angle > 120°
- Mesh refinement:
 - fix bad triangles through iterative refinement

Refinement Algorithm

while there are bad triangles

- { pick a bad triangle
 - add new vertex at center of circumcircle
 - gather all triangles that no longer satisfy Delaunay property into cavity
 - re-triangulate affected region, including new point // some new triangles may be bad themselves
-]

Sequential Algorithm

Mesh m = /* read in mesh */ WorkList wl; wl.add(mesh.badTriangles()); // non-deterministic order

while (true) {

}

if (wl.empty()) break;

Element e = wl.get();//non-deterministic choice

if (e no longer in mesh) continue;

Cavity c = new Cavity(e); c.expand(); c.retriangulate();	<pre>//determine new cavity //determine affected triangles //re-triangulate region</pre>
m.update(c);	//update mesh
wl.add(c.badTriangles());	//add new bad triangles to queue in some order

Parallelization Opportunities

- Unit of work: fixing a bad triangle
- Bad triangles *with non-overlapping cavities* can be processed in parallel.

 Cannot tell if cavities of two bad triangles will overlap without actually building cavities → must detect conflicts dynamically

Take-away lessons

- Parallelism in irregular apps depends on "data values"
 - \rightarrow purely compile-time approach cannot find parallelism
 - →inspector-executor approach (Saltz) cannot find parallelism

 \rightarrow optimistic parallelization is the only solution

- Parallelism is data "parallelism" of some kind
 - but on irregular data structure elements, not arrays
 - computations with different data items may conflict
 - how conflicts must be handled depends on app
 - Delaunay: abort all but one conflicting computations
 - Agglomerative clustering: must ensure sequential order is respected

Galois programming model and implementation

Computational model

- Object-based shared-memory model
- Computation performed by some number of threads
 - but programs do not mention threads
- Threads can have their own local memory
- Threads must invoke methods to access internal state of objects
 - mesh refinement:shared objects are
 - worklist
 - mesh

Shared Memory

Components of Galois approach

- 1) Two syntactic constructs for packaging optimistic parallelism as iteration over sets
- 2) Assertions about methods in class libraries
- 3) Runtime system for detecting and recovering from potentially unsafe accesses by optimistic computations

(1) <u>Concurrency constructs:</u> <u>two iterators</u>

• for each e in Set S do B(e)

- evaluate block B(e) for each element in set S
- sequential implementation
 - set elements are unordered, so no a priori order on iterations
 - there may be dependences between iterations
- set S may get new elements during execution
- for each e in PoSet S do B(e)
 - evaluate block B(e) for each element in set S
 - sequential implementation
 - perform iterations in order specified by poSet
 - there may be dependences between iterations
 - set S may get new elements during execution

Galois version of mesh refinement

```
Mesh m = /* read in mesh */
Set wl;
wl.add(mesh.badTriangles()); // non-deterministic order
```

```
for each e in Set wl do {
```

}

//unordered iterator

```
if (e no longer in mesh) continue;
Cavity c = new Cavity(e); //
c.expand(); //
c.retriangulate(); //
m.update(c); //
```

```
wl.add(c.badTriangles());
```

//determine new cavity
//determine affected triangles
//re-triangulate region
//update mesh
//add new bad triangles to workset

Parallel execution of iterators

- Master thread and some number of worker threads
 - master thread begins execution of program and executes code between iterators
 - when it encounters iterator, worker threads help by executing some iterations concurrently with master
 - threads synchronize by barrier synchronization at end of iterator
- Key technical problem: semantics of iterators
 - serializability: result of parallel execution must appear as though iterations were performed in some interleaved order
 - ordering: for poSet iterator, this order must correspond to poSet order

(II) Assertions on methods

 Concurrent accesses to a mutable object by multiple threads are OK provided method invocations commute

Assertions on methods (contd.)

- Semantic commutativity vs. concrete commutativity
 - (e.g.) workset representation may be different for different method invocation orders
 - for client program, this is not relevant
- Information provided by class implementer
 - commutativity of method invocations
 - undo methods
 - (e.g.) add(x) is inverse of remove(x)

(III) Runtime system

- Detect conflicts in method invocations on objects and roll back appropriate iteration
 - maintain logs of method invocations from ongoing iterations
- For PoSet iterator, ensure that iterations commit in order
 - similar to reorder buffer in speculative execution processors

Experimental Setup

- Machines
 - 4-processor 1.5 GHz Itanium 2
 - 16 KB L1, 256 KB L2, 3MB L3 cache
 - no shared cache between processors
 - Red Hat Linux
 - Dual processor, dual core 3.0 GHz Xeon
 - 32 KB L1, 4 MB L2 cache
 - dual cores share L2
 - Red Hat Linux

Delaunay mesh generation

- Workset: implemented using STL queue
- Mesh: implemented as a graph
 - each triangle is a node
 - edges in graph represent triangle adjacencies
 - used adjacency list representation of graph
- Input mesh:
 - from Shewchuck's Triangle program
 - 10,156 triangles of which 4,837 were bad

Code versions

- Three "default" versions
 - reference: sequential version w/o locks/threads/etc.
 - FGL(d): handwritten code that uses fine-grain locks on triangles
 - meshgen(d): Galois version
- Experiments showed high abort ratio
 - fixing a bad triangle creates a cluster of new bad triangles in the cavity
 - if workset is queue, these are co-scheduled with high probability
 - one solution: get() does random selection from workset
- Two other codes with randomized workset:
 FGL(p), meshgen(p)

<u>Speedups</u>

- sequential version is best on 1 processor
- meshgen(p) performs better than meshgen(d)
 - smaller abort ratio
- FGL(d) and FGL(p) perform almost equally well
 - cost of aborts is small in FGL
- FGL(p) and meshgen(p) perform almost equally well

Abort ratios and CPI

	Committed	Aborted	Client Object Runtime							
	iterations	iterations	30.0	25.6734			30.0			
1 proc	21918	n/a	(succession) (succ	16.8889	-	17.3086	(billions) 25.2 12.0	_ 13.8951 _		18.4675
4 proc	21736	28290	.015.0 Uctions							
meshgen(d)			Lis 7.5				7.5			
4 proc	21908	49	0	l proc	4 proc (d)	4 proc (p)	0	l proc	4 proc (d)	4 proc (p
meshgen(p)										

- Abort ratio is high for meshgen(d)
- Sequential and meshgen(p) perform almost same number of instructions
- However, cycles/instruction is higher for meshgen(p) mainly because of L3 cache misses

Related Work

- Weihl, 1988 Concurrency control using commutativity properties of ADTs
- Rinard & Diniz, 1996 Static commutativity analysis for parallelization
- Wu & Padua, 1998 Exploiting semantic properties of containers for parallelization
- Hosking & Moss Open nesting using data structure semantics

Take-away message

- Benchmark programs are bad
 - Programs ⊗
 - Algorithms+data structures ③
- Parallelism in many irregular apps is inherently data-dependent
 - Pointer/shape analysis cannot work for these apps
- Optimistic parallelization is essential for such apps
 - Analysis might be useful though to optimize parallel program execution
- Exploiting abstractions provided by OO is critical
 - Only CS people still worry about F77 and C anyway....
- Exploiting high-level semantic information about programs is critical
 - Galois knows about priority queues, sets, etc.
- Support for ordering speculative computations important
- Good scheduling may require domain-specific knowledge
- These beliefs are basis for Galois project

Thank you!