

CNS-0509404 Update

José F. Martínez

M³ Architecture Research Group http://m3.csl.cornell.edu/

Project's Recent Highlights

- Dynamic multicore reconfiguration/adaptation
 - E. İpek, M. Kırman, N. Kırman, and J.F. Martínez
 Core Fusion: Accommodating Software Diversity in Multicore Chips In Intl. Symp. on Computer Architecture (ISCA), June 2007
 - C.C. LaFrieda, E. İpek, J.F. Martínez, and R. Manohar
 Dynamic Core Coupling for Resilient Multicore Chips
 In Intl. Conf. on Dependable Systems and Networks (DSN), June 2007
 - J. Li and J.F. Martínez
 Power-Performance Optimization of Parallel Computing in Multicore Chips
 In Intl. Symp. on High Performance Computer Architecture (HPCA), Feb. 2006

Project's Recent Highlights

- Dynamic hardware reconfiguration/adaptation
 - E. İpek, M. Kırman, N. Kırman, and J.F. Martínez
 Core Fusion: Accommodating Software Diversity in Multicore Chips In Intl. Symp. on Computer Architecture (ISCA), June 2007
 - C.C. LaFrieda, E. İpek, J.F. Martínez, and R. Manohar
 Dynamic Core Coupling for Resilient Multicore Chips
 In Intl. Conf. on Dependable Systems and Networks (DSN), June 2007
 - J. Li and J.F. Martínez
 Power-Performance Optimization of Parallel Computing in Multicore Chips
 In Intl. Symp. on High Performance Computer Architecture (HPCA), Feb. 2006

Challenge: CMPs Lack Flexibility

- In CMPs, core is "new transistor"
- Must support diverse apps
 - Sequential
 - Multiprogrammed
 - Parallel (coarse- or fine-grain)
 - Evolving
- Conflicting requirements
 - No. of cores
 - Per-core performance

Challenge: CMPs Lack Flexibility

- In CMPs, core is "new transistor"
- Must support diverse apps
 - Sequential
 - Multiprogrammed
 - Parallel (coarse- or fine-grain)
 - Evolving
- Conflicting requirements
 - No. of cores
 - Per-core performance

High-ILP, High-TLP Hardware

- Spatial approach: Multiscalar, RAW, Smart Memories, TRIPS
 - + Modular, flexible designs
 - Significant software support
- Temporal approach: SMT
 - + Tiny overhead on top of base core; quasi-transparent
 - Top-down approach: Large base core
 - Little tolerance for hardware bugs/faults
 - Resource interference
 - Lower parallel efficiency

Proposal: Core Fusion

- Run-time CMP "synthesis"
- High compatibility
 - Single execution model
 - Backward-compatible ISA
 - No sophisticated SW support
- Bottom-up hierarchical design
 - Tolerant to hardware bugs/faults
- No interference across base cores
 - High parallel efficiency

Contributions and Findings

- Run-time fully reconfigurable and distributed
 - Front-end + i-Cache
 - LSQ + d-Cache
 - ROB
- Thorough evaluation using diverse workload classes
 - Sequential
 - Parallel
 - Multiprogrammed
 - Evolving

- Effective
 - Always best or 2nd best
 - Always best in intermediate parallelization stages
 - Others lag significantly in 1+ cases
- Highly compatible

Conceptual Organization

Concept: Add enveloping hardware to enable on-demand core fusion

Not meant to represent actual floorplan

Core Fusion Operation

- i-Cache fusion and reconfiguration
- Collective fetch
- Instruction steering/renaming
- Collective execution
- Distributed memory access
- Collective commit

Core Fusion Operation

- * i-Cache fusion and reconfiguration
- Collective fetch
- Instruction steering/renaming
- Collective execution
- Distributed memory access
- Collective commit

Collective Fetch

Collective Fetch

Collective Commit I

i3
i2
i3
i2
іЗ
i2
іЗ
i2

i7
i6
i7
i6
i7
i6
i7
i6

Collective Commit II

i7
i6
i7
i6
i7
i6
i7
i6

Run-time Reconfiguration

- Run-time control of granularity
 - Serial vs. parallel sections
 - Variable granularity in parallel sections
- Mechanism: Fusion, fission ISA instruction
 - Typically encapsulated in macros or directives (e.g., OpenMP sections)
 - Can be safely ignored (single execution model)
- Relatively simple
 - Flush pipelines and i-caches
 - Reconfigure i-cache tags
 - Transfer architectural state as needed

Evaluation Nugget: Evolving Apps

Issues that Intrigue Me

- Synergistic hardware-software technology
 - Virtualization
 - OS scheduling
 - Multicore compiler mechanisms
 - Application programming

Acknowledgments

- Outstanding Ph.D. students: E. Ipek, M. Kırman, N. Kırman, C. LaFrieda, J. Li
- Generous support
 - NSF Award CNS-0509404 (Darema)
 - Other NSF Awards
 - CAREER CCF-0545995 (Pinkston)
 - CCF-0429922 (Pinkston)
 - IBM Faculty Award
 - Intel graduate fellowships (M. Kırman and N. Kırman)
 - Intel gifts and equipment donations

NGS-CSR Workshop Bullet

If we forget Amdahl's Law, it will come back to haunt us

