#### Rethinking Automated Synthesis of MPSoC Architectures

Brett Meyer Don Thomas ECE Department

NSF-NGS Workshop 2007





Modeling Environment for Software and Hardware



- Funding
  - NSF, General Motors Research, ST Microelectronics, Semiconductor Research Corporation (SRC)
- People involved in larger project
  - JoAnn Paul now at Virginia Tech
  - Students Alex Bobrek, Josh Pieper, Jeff Nelson



#### Single Chip Multi-core Embedded Systems

- The MESH Project
  - Modeling Environment for Software and Hardware
- Embedded Systems custom design scenario
  - Design of single-chip heterogeneous multiprocessors
  - Tens of processing elements
  - Asking what is the best multiprocessor architecture for the system functionality
  - Leveraging knowledge of the application and their datasets for optimization
- Design elements customize by selecting
  - Off-the-shelf processor cores for the PEs
  - Pre-designed (synthesizable) on-chip buses/networks
  - Off-the-shelf memories (shared)
  - Special hardware IP
  - Schedulers for PEs or groupings of PEs
  - Off-the-shelf and custom software
    - Real-time and best effort



MESH

Needed: a design methodology to reduce design costs of these complex systems





MESH

### **Performance Modeling**



MEST

## **Simulation Results**



**Carnegie Mellon** 

1

### Mesh Research Directions

- Model, simulate and synthesize
- Research topics
  - Performance simulation
  - Synthesis through to floorplanning
  - Designing robust systems in light of deep submicron wearout mechanisms
  - What should the language be





Applications, datasets, PEs,

bus models, constraints...







# Synthesis Methodology

- System synthesis
  - Memory allocation
    - Number and location
  - Data-array mapping to memories
  - Bus interconnect
    - Number and connections
- Augmented simulated annealing
- Guided by full system evaluation in loop
  - Performance
  - Floorplan





## An Illustration



- ARM7s, DMA engines, SRAM, one bus type
- EXP 1:  $\alpha$  to balance performance and cost
- EXP 2: Multiple  $\alpha$  to find pareto-optimal points







Balancing cost and performance balances partitioning and sharing





MESH



Insight into Design Methodology



- We want insight into MPSoC design principles to better automate exploration
- We examine three design points
  - Low cost
  - Balanced cost/performance
  - High performance
- When optimizing multiple design aspects, is there a best practice?
  - Should some aspects of the design be fixed before others?



## Move Acceptance Trends

- Key
  - A: bus splits end
  - B: bus moves end
  - C: memory moves end
  - D: system freezes
- Same progression occurs for all design points
  - Bus topology fixed first
  - Memory allocation fixed next
  - Data mapping fixed last





- MESH
- Compared to other approches, our's fixed bus topology *first*, not last
  - Allocation is optimized for a given bus topology
- Optimization doesn't end with buses
  - Buses are not the only source of cost
  - System cost improves 24% <u>after</u> bus topology is fixed
- Experiment suggests an approach contrary to liturature





- Device reliability is a growing concern as devices shrink
  - Cost of manufacturing defects
  - Safe operation in the field
  - Adding a measure of robustness to our design process

