

## Speedup using Flowpaths for a Finite Difference Solution of a 3D Parabolic PDE

Darrin M. Hanna Dept. of Computer Science and Engineering Oakland University Anna M. Spagnuolo Dept. of Mathematics and Statistics Oakland University

Graduate Research Assistant: Michael DuChene High Performance FPGA Systems Laboratory



This work supported by NSF SGER grant #0636895 October 2006 – September 2007



- Many important numerical simulations take days, months, years
  - Applications include weather prediction, ADCIRC (UT-Austin with Clint Dawson), contaminant transport in porous media, oil recovery, medical device applications, and others.
  - Individual parts of large-scale numerical computations are often run and tested on a PC before running on a supercomputer.
- Repeated numerical simulations often not adequate for real time a
- Portable, low-power, mobile systemethods have little high-speed to



tes on a PC are DAS).



Speeding up numerical simulations run on PCs a
Systems impacts small- and large-scale numerical computing





- Currently many researchers use PCs to run numerical simulations. Supercomputer users often develop and test codes using PCs.
- Embedded (mobile) systems for running numerical codes are limited to processor cores.
- Take advantage of a reconfigurable, spatial computing paradigm for speeding up simulations
  - Automated
  - Uses **existing** codes written in common languages such as FORTRAN, C/C++, and Java
  - Affordable and easy to use
  - Generate hardware that has **higher execution frequencies**
  - Generate hardware description that is **human readable**



## **Research Objectives**

- Develop a method optimized for speeding up execution of numerical codes using reconfigurable, spatial computing
  - Work is based on previous results in speedup using methodology for creating Flowpaths SPPs from multi-threaded code
  - Flowpath optimization techniques based on constructs commonly found in numerical codes
- Current focus is towards an affordable, easy to use system for speedup compared with a PC



# **Research Objectives**

Why Spatial Computing? Why Flowpaths?

- Processors
  - Load-execute-store overhead
  - Stack operation overhead
  - Register and data manipulation overhead
  - OS overhead
  - Multithreading overhead including context switching, etc...
  - Fixed chip space
- Special-purpose processors (SPP)
  - Eliminate these overheads
  - Variable chip space
  - Critical path determines maximum execution frequency\*
  - Very difficult to design, time consuming, requires specialized skill





- 3D diffusion problem solved using a Finite Difference Method  $\frac{\partial c}{\partial t} + \nabla \Box (uc) - \nabla \Box (D\nabla c) = \frac{f(c)}{\phi}$ where f(c)/= $\rho$ c+S(c)
- The no-flow boundary conditions are imposed as follows:  $u \Box v = D \nabla c \Box v = 0$ , on  $\partial \Omega$ ,
- Initial condition c(x, 0) = cinit(x), in  $\Omega$ .



Discretization using Cell-Centered Finite Difference Method

 $f_{i}^{*} = f((i+1/2)h, (j+1/2)h, (k+1/2)h),$  $c_{i}^{*} = c((i+1/2)h, (j+1/2)h, (k+1/2)h),$ 

 $D_{1,i} = D(ih, (j+1/2)h, (k+1/2)h),$   $D_{2,i} = D((i+1/2)h, jh, (k+1/2)h),$  $D_{3,i} = D((i+1/2)h, (j+1/2)h, kh).$ 

$$(\nabla \Box D \nabla c^*)_{h,\mathbf{i}} = \frac{1}{h^2} \sum_{l=1}^3 (D_{l,\mathbf{i}+h\mathbf{e}_1} (c^*_{\mathbf{i}+h\mathbf{e}_1} - c^*_{\mathbf{i}}) - D_{l,\mathbf{i}} (c^*_{\mathbf{i}} - c^*_{\mathbf{i}-h\mathbf{e}_1})$$



• The Finite Difference Equation

$$\frac{c_{\mathbf{i}}^{*,n} - c_{\mathbf{i}}^{*,n-1}}{\Delta t} - (\nabla \Box D \nabla c^{*,n})_{h,\mathbf{i}} = \frac{f_{\mathbf{i}}^{*,n}}{\phi} \text{ on } \Omega_{h}$$

Operator Splitting Method

**Transport:** We assume the special case that u = 0.

$$\overline{c_{\mathbf{i}}}^{*,n} = e^{\rho \Delta t} c_{\mathbf{i}}^{*,n-1}$$

Diffusion: Conjugate Gradient Method (bottleneck)

$$\frac{c_{\mathbf{i}}^{*,n} - \overline{c}_{\mathbf{i}}^{*,n}}{\Delta t} - (\nabla \Box D \nabla c^{*,n})_{h,\mathbf{i}} = S_{\mathbf{i}}^{*,n}$$



- To Start
  - Create double arithmetic components
  - Non-optimized flowpaths
    - Inspect both extremes
      - Entire algorithm is a flowpath
      - A single line of code is a flowpath
- Next Steps
  - Employ flowpath optimizations
  - Use techniques to take advantage of code-level parallelism
  - Explore this methodology with Finite Element Methods



- Entire code is a flowpath
  - 96.75 MHz
- PC 1.10 GHz, 1.25 GB RAM





#### Speedup relative to flowpath

|                | Flowpath Speedup |           |               |          |  |
|----------------|------------------|-----------|---------------|----------|--|
| # of<br>Points | CPU – Java       | CPU - C++ | CPU - FORTRAN | Flowpath |  |
| 1650           | 657              | 64        | 461           | 1        |  |
| 13200          | 690              | 65        | 471           | 1        |  |
| 105600         | 704              | 65        | 481           | 1        |  |

#### Time speedup

|             | Algorithm Runtime (milliseconds) |                      |                          |                       |  |
|-------------|----------------------------------|----------------------|--------------------------|-----------------------|--|
| # of Points | CPU – Java<br>1.1 GHz            | CPU – C++<br>1.1 GHz | CPU – FORTRAN<br>1.1 GHz | Flowpath<br>(100 MHz) |  |
| 1650        | 10,405                           | 1,018                | 7,311                    | 16                    |  |
| 13200       | 76,991                           | 7,202                | 52,545                   | 112                   |  |
| 105600      | 588,186                          | 54,705               | 401,978                  | 835                   |  |



. . .

# **Current Results**

- PowerPC on a Xilinx Virtex2 XC2VP30
- One line of code executing as a flowpath
  - 413,000,000 clock cycles to execute that line on a PowerPC
    - Emulated double arithmetic operations
  - 4,538,887 clock cycles using a flowpath
    - 82.315 MHz



- Synthesizing components to hardware takes time
  - One-time overhead for a given numerical code
- FPGA space is finite
  - Making use of reconfigurable real estate efficiently
- Creating a methodology that is both efficient and compatible with multiple, common languages
- Currently, busses between embedded microcores and on-chip processors are slow
- Bus interfaces can also be a limiting constraint (FPGA-FPGA, FPGA-PC)
- Temporary and persistent storage is limited



# Conclusions and Next Steps

#### **Conclusions**

- Using reconfigurable, spatial computing, numerical codes can be sped up at least an order of magnitude *before* optimization or parallelism
- Hardware is generated from existing codes and is human readable
- Observations indicated that parallelism and optimization can lead to between two and three orders of magnitude of speedup.

#### Next Steps

- Develop methodology for generating flowpaths optimized specifically for constructs commonly occurring in numerical codes
- Use existing techniques for automated code-level parallelization for further speedup
- Compare the speed of this approach to using GPUs
- Compile the Java LINPACK to hardware



# THANK YOU! ③