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Motivation

• Many important numerical simulations take days, months, years
• Applications include weather prediction, ADCIRC (UT-Austin 

with Clint Dawson), contaminant transport in porous media, oil 
recovery, medical device applications, and others.

• Individual parts of large-scale numerical computations are often 
run and tested on a PC before running on a supercomputer.

• Repeated numerical simulations that run in minutes on a PC are 
often not adequate for real time applications (DDDAS).

• Portable, low-power, mobile systems that are based on numerical 
methods have little high-speed technology

• Speeding up numerical simulations run on PCs and in Embedded 
Systems impacts small- and large-scale numerical computing 
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Motivation

• Currently many researchers use PCs to run numerical simulations.
Supercomputer users often develop and test codes using PCs.

• Embedded (mobile) systems for running numerical codes are 
limited to processor cores.

• Take advantage of a reconfigurable, spatial computing paradigm 
for speeding up simulations

• Automated
• Uses existing codes written in common languages such as 

FORTRAN, C/C++, and Java
• Affordable and easy to use
• Generate hardware that has higher execution frequencies
• Generate hardware description that is human readable



Research Objectives

• Develop a method optimized for speeding up execution of 
numerical codes using reconfigurable, spatial computing

• Work is based on previous results in speedup using 
methodology for creating Flowpaths – SPPs from multi-
threaded code

• Flowpath optimization techniques based on constructs 
commonly found in numerical codes

• Current focus is towards an affordable, easy to use system for 
speedup compared with a PC



Research Objectives

Why Spatial Computing?  Why Flowpaths?
• Processors

• Load-execute-store overhead
• Stack operation overhead
• Register and data manipulation overhead
• OS overhead
• Multithreading overhead including context switching, etc…
• Fixed chip space

• Special-purpose processors (SPP)
• Eliminate these overheads
• Variable chip space
• Critical path determines maximum execution frequency*
• Very difficult to design, time consuming, requires specialized skill
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Current Results

• 3D diffusion problem solved using a Finite Difference Method

where f(c)/ =ρc+S(c) 

• The no-flow boundary conditions are imposed as follows:

• Initial condition c(x, 0) = cinit(x), in Ω.
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Current Results

• Discretization using Cell-Centered Finite Difference Method
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Current Results

• The Finite Difference Equation

• Operator Splitting Method

Transport: We assume the special case that u = 0.

Diffusion:  Conjugate Gradient Method (bottleneck)
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Current Results

• To Start
• Create double arithmetic components
• Non-optimized flowpaths

• Inspect both extremes
• Entire algorithm is a flowpath
• A single line of code is a flowpath

• Next Steps
• Employ flowpath optimizations
• Use techniques to take advantage of code-level parallelism
• Explore this methodology with Finite Element Methods



Current Results

• Entire code is a flowpath
• 96.75 MHz 

• PC - 1.10 GHz, 1.25 GB RAM 



Current Results

Speedup relative to flowpath
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Current Results

• PowerPC on a Xilinx Virtex2 XC2VP30
• One line of code executing as a flowpath

• 413,000,000 clock cycles to execute that line on a PowerPC
• Emulated double arithmetic operations

• 4,538,887 clock cycles using a flowpath
• 82.315 MHz

do i = 1,nx
do j = 1,ny
do k = 1,nz

u(i,j,k) =  adiag(i,j,k)*v(i,j,k) - aleft(i,j,k)*v(i-1,j,k) –
aright(i,j,k)*v(i+1,j,k) –
aup(i,j,k)*v(i,j,k+1) –
adown(i,j,k)*v(i,j,k-1) –
afront(i,j,k)*v(i,j+1,k) –
aback(i,j,k)*v(i,j-1,k)

... 



Challenges

• Synthesizing components to hardware takes time
• One-time overhead for a given numerical code

• FPGA space is finite
• Making use of reconfigurable real estate efficiently

• Creating a methodology that is both efficient and compatible with 
multiple, common languages

• Currently, busses between embedded microcores and on-chip 
processors are slow

• Bus interfaces can also be a limiting constraint (FPGA-FPGA, 
FPGA-PC)

• Temporary and persistent storage is limited



Conclusions and Next Steps

Conclusions
• Using reconfigurable, spatial computing, numerical codes can be sped 

up at least an order of magnitude before optimization or parallelism
• Hardware is generated from existing codes and is human readable
• Observations indicated that parallelism and optimization can lead to 

between two and three orders of magnitude of speedup.

Next Steps
• Develop methodology for generating flowpaths optimized specifically 

for constructs commonly occurring in numerical codes
• Use existing techniques for automated code-level parallelization for 

further speedup
• Compare the speed of this approach to using GPUs
• Compile the Java LINPACK to hardware



Thank You

THANK YOU! ☺


