Speedup using Flowpaths for a Finite Difference
Solution of a 3D Parabolic PDE

Darrin M. Hanna Anna M. Spagnuolo
Dept. of Computer Science and Engineering Dept. of Mathematics and Statistics
Oakland University Oakland University

Graduate Research Assistant: Michael DuChene
High Performance FPGA Systems Laboratory

This work supported by NSF SGER grant #0636895
October 2006 — September 2007

L T L M TR e T
AT LT g g
%" i 1%'-“-_?.5;. :3?*-5'5

Tk b I e e -\.-I"' T e
It s b :

Motivation

UNIVERSITY

* Many important numerical simulations take days, months, years
 Applications include weather prediction, ADCIRC (UT-Austin
with Clint Dawson), contaminant transport in porous media, oil
recovery, medical device applications, and others.
 Individual parts of large-scale numerical computations are often
run and tested on a PC before running on a supercomputer.
* Repeated numerical simulations ™ tesonaPCare
often not adequate for real time ¢ IDAS).
« Portable, low-power, mobile sys
methods have little high-speed t¢

* Speeding up numerical simulations run on PCs a
Systems impacts small- and large-scale numerica: voiupuung

e Lo o U T | gyt e e, £ L i
T e A
; | Nl S i i ey =3
it % i P e 7
P e e 2E

oL A T R

A K3
4444444

Research Objectives

Digital System Design Goals

pOwEer
Zero
cost \ Electric Toothbrushe I—e ad I n g ed g €
Digital Watches
wedge

Zero
delay

Washing machines
Microwave ovens

Dishwashers
Servers,
Supercomputers
Desktop PCs,
Adapted from DVD players,
Nick Tredennick Cable boxes

Gilder Technology Report

Motivation

UNIVERSITY

e Currently many researchers use PCs to run numerical simulations.
Supercomputer users often develop and test codes using PCs.
 Embedded (mobile) systems for running numerical codes are
limited to processor cores.
« Take advantage of a reconfigurable, spatial computing paradigm
for speeding up simulations
« Automated
 Uses existing codes written in common languages such as
FORTRAN, C/C++, and Java
« Affordable and easy to use
» Generate hardware that has higher execution frequencies
» Generate hardware description that 1s human readable

Research Objectives

UNIVERSITY

* Develop a method optimized for speeding up execution of
numerical codes using reconfigurable, spatial computing
» Work 1s based on previous results in speedup using
methodology for creating Flowpaths — SPPs from multi-
threaded code
» Flowpath optimization techniques based on constructs
commonly found in numerical codes
* Current focus is towards an affordable, easy to use system for
speedup compared with a PC

Research Objectives

UNIVERSITY

Why Spatial Computing? Why Flowpaths?
* Processors
 Load-execute-store overhead
 Stack operation overhead
» Register and data manipulation overhead
* OS overhead
e Multithreading overhead including context switching, etc...
 Fixed chip space
* Special-purpose processors (SPP)
« Eliminate these overheads
* Variable chip space
e Critical path determines maximum execution frequency*

* Very difficult to design, time consuming, requires specialized skill
e

Oakland Research Objectives

UNIVERSITY

Design Flow
Processor
C++ Processor /
Instructions ~<__
_ (PC, Core) -
Profile and -
Java Split Y FPGA
Bytecode / Flowpath
FORTRAN CIL o (VHDL)
Source Source

Parallelization Parallelization

Current Results

3D diffusion problem solved using a Finite Difference Method

Ot
where f(c)/ =pc+S(c)

S)T = ;C)

e The no-flow boundary conditions are imposed as follows:

ulv = DVcly =0, on 0Q,

* Initial condition c(x, 0) = cinit(x), in Q.

Current Results

 Discretization using Cell-Centered Finite Difference Method

£ =f(G+1/2)h, (j+1/2)h, (k+1/2)h),
¢ =c((i+1/2)h, (j+1/2)h, (k+1/2)h),

Dy, = D(ih,(j +1/2)h,(k+1/2)h),
D,; = D((i +1/2)h, jh,(k+1/2)h),
Dy = D((i+1/2)h,(j +1/2)h, kh).

(VIDVc), ; = o Z(D;,Hhel (Ci+he1 —¢;)=D, (¢ _Ci-hel)
1

Current Results

5 _*,n—l) o
G5 (viDvet,, :f7 on Q,,

» Operator Splitting Method

Transport: We assume the special case that u = 0.

—* n Ar |
& e ¢

Diffusion: Conjugate Gradient Method (bottleneck)

*n

G

—C

n —(VDDVC*’”)h,i — 8§17

Current Results

* To Start
e C(Create double arithmetic components
* Non-optimized flowpaths
* Inspect both extremes
 Entire algorithm is a flowpath
A single line of code is a flowpath
* Next Steps
* Employ flowpath optimizations
« Use techniques to take advantage of code-level parallelism
e Explore this methodology with Finite Element Methods

Current Results

Oakland

 Entire code is a flowpath

e 96.75 MHz
« PC-1.10GHz, 1.25 GB RAM
700
600 - .Java
- FORTRAN
EEW e (44
E 400 - Flowpath
E 300
X 200
100
0 e ey

0 20 40 60 80
Relative Algorithm Size

Speedup relative to flowpath

Current Results

Flowpath Speedup
of
Point CPU - Java CPU - C++ CPU - FORTRAN Flowpath
1650 657 64 461 1
13200 690 65 471 1
105600 704 65 481 1
Time speedup
Algorithm Runtime (milliseconds)
of Points | CPU—Java [CPU-C++ | CPU-FORTRAN Flowpath
1.1 GHz 1.1 GHz 1.1 GHz (100 MHz)
1650 10,405 1,018 7,311 16
13200 76,991 7,202 52,545 112
105600 588,186 54,705 401,978 835

FEsEug e
,@I-"- : ?ﬁ"’j’r ’%” { i
i J%""ﬂ@-’; :q‘mmm. e

T
Mu::"“l vﬁw!‘%‘;t i R
L DA
.:35‘ PR - A o i ol SR
il A

Current Results

UNIVERSITY

 PowerPC on a Xilinx Virtex2 XC2VP30
e One line of code executing as a flowpath
» 413,000,000 clock cycles to execute that line on a PowerPC
* Emulated double arithmetic operations
« 4,538,887 clock cycles using a flowpath

e 82.315 MHz
o 1 = 1 %
do jJ = 1,ny
do k = 1 nz

u(i,j.k) = adiag(i,j,.kK)*v(i,j,.k) - aleft(i,j,.k)*v(i-1,j,k) —
aright(i,j,kK)*v(i+l,j,k) -
aup(i,J,k)*v(i,j,k+1) —
adown(i , j ,K)*v(i,j,k-1) —
afront(i,j,k)*v(i,j+1,k) —
aback(i , j,K)*v(i,j-1,k)

L T T e o e P e e e e e ey
Eg,ﬁ."l' ¥ :}ﬁg,"-“%::'ﬁiﬁ{ ‘:"‘?;;:7”! ; : -:’3' iy r
PR et "}-’{?{". i LeE e S e e

e J.ﬁ'}%ﬁﬁﬁﬁi L L S R 2%

Challenges

UNIVERSITY

Synthesizing components to hardware takes time

* One-time overhead for a given numerical code
FPGA space 1s finite

« Making use of reconfigurable real estate efficiently
Creating a methodology that 1s both efficient and compatible with
multiple, common languages
Currently, busses between embedded microcores and on-chip
processors are slow
Bus interfaces can also be a limiting constraint (FPGA-FPGA,
FPGA-PC)
Temporary and persistent storage 1s limited

Conclusions and Next Steps

UNIVERSITY

Conclusions

« Using reconfigurable, spatial computing, numerical codes can be sped
up at least an order of magnitude before optimization or parallelism

« Hardware 1s generated from existing codes and i1s human readable

» Observations indicated that parallelism and optimization can lead to
between two and three orders of magnitude of speedup.

Next Steps

e Develop methodology for generating flowpaths optimized specifically
for constructs commonly occurring in numerical codes

« Use existing techniques for automated code-level parallelization for
further speedup

e Compare the speed of this approach to using GPUs

e Compile the Java LINPACK to hardware

Thank You

Oakland

THANK YOU! ©

