
Speedup using Flowpaths for a Finite Difference
Solution of a 3D Parabolic PDE

Graduate Research Assistant: Michael DuChene
High Performance FPGA Systems Laboratory

This work supported by NSF SGER grant #0636895
October 2006 – September 2007

Darrin M. Hanna
Dept. of Computer Science and Engineering

Oakland University

Anna M. Spagnuolo
Dept. of Mathematics and Statistics

Oakland University

Motivation

• Many important numerical simulations take days, months, years
• Applications include weather prediction, ADCIRC (UT-Austin

with Clint Dawson), contaminant transport in porous media, oil
recovery, medical device applications, and others.

• Individual parts of large-scale numerical computations are often
run and tested on a PC before running on a supercomputer.

• Repeated numerical simulations that run in minutes on a PC are
often not adequate for real time applications (DDDAS).

• Portable, low-power, mobile systems that are based on numerical
methods have little high-speed technology

• Speeding up numerical simulations run on PCs and in Embedded
Systems impacts small- and large-scale numerical computing

Research Objectives
Digital System Design Goals

Zero
cost

Zero
power

Zero
delay

Desktop PCs,
DVD players,
Cable boxes

Leading edge
wedge

Adapted from
Nick Tredennick
Gilder Technology Report

Servers,
Supercomputers

Washing machines
Microwave ovens
Dishwashers

Electric Toothbrushes
Digital Watches

Motivation

• Currently many researchers use PCs to run numerical simulations.
Supercomputer users often develop and test codes using PCs.

• Embedded (mobile) systems for running numerical codes are
limited to processor cores.

• Take advantage of a reconfigurable, spatial computing paradigm
for speeding up simulations

• Automated
• Uses existing codes written in common languages such as

FORTRAN, C/C++, and Java
• Affordable and easy to use
• Generate hardware that has higher execution frequencies
• Generate hardware description that is human readable

Research Objectives

• Develop a method optimized for speeding up execution of
numerical codes using reconfigurable, spatial computing

• Work is based on previous results in speedup using
methodology for creating Flowpaths – SPPs from multi-
threaded code

• Flowpath optimization techniques based on constructs
commonly found in numerical codes

• Current focus is towards an affordable, easy to use system for
speedup compared with a PC

Research Objectives

Why Spatial Computing? Why Flowpaths?
• Processors

• Load-execute-store overhead
• Stack operation overhead
• Register and data manipulation overhead
• OS overhead
• Multithreading overhead including context switching, etc…
• Fixed chip space

• Special-purpose processors (SPP)
• Eliminate these overheads
• Variable chip space
• Critical path determines maximum execution frequency*
• Very difficult to design, time consuming, requires specialized skill

Research Objectives

Java

Bytecode /
CIL

Flowpath
(VHDL)

C++

FORTRAN

Profile and
Split

Processor
Instructions
(PC, Core)

Source
Parallelization

Source
Parallelization

FPGA

Processor

Design Flow

Current Results

• 3D diffusion problem solved using a Finite Difference Method

where f(c)/ =ρc+S(c)

• The no-flow boundary conditions are imposed as follows:

• Initial condition c(x, 0) = cinit(x), in Ω.

()() ()c f cuc D c
t φ
∂

+∇ −∇ ∇ =
∂

0, on ,u v D c v= ∇ = ∂Ω

Current Results

• Discretization using Cell-Centered Finite Difference Method
*

*

 = ((1/ 2) , (1/ 2) , (1/ 2)),

((1/ 2) , (1/ 2) , (1/ 2)),

f f i h j h k h

c c i h j h k h

+ + +

= + + +
i

i

(, (1/ 2) , (1/ 2)),

((1/ 2) , , (1/ 2)),

((1/ 2) , (1/ 2) ,).

D D ih j h k h

D D i h jh k h

D D i h j h kh

= + +

= + +

= + +

1,i

2,i

3,i

l l l

3
* * * * *

, , ,2
1

i+ e i+ e i i i i- e
1() (() ()h l l

l
h h hD c D c c D c c

h =

∇ ∇ = − − −∑i

Current Results

• The Finite Difference Equation

• Operator Splitting Method

Transport: We assume the special case that u = 0.

Diffusion: Conjugate Gradient Method (bottleneck)

*, *, 1 *,
*,

,() on ,
n n n

n
hh

c c f
D c

t φ

−−
− ∇ ∇ = Ω

∆
i i i

i

*, *, 1n t nc e cρ∆ −=i i

*, *,
*, *,

,()
n n

n n
h

c c
D c S

t
−

− ∇ ∇ =
∆

i i
ii

Current Results

• To Start
• Create double arithmetic components
• Non-optimized flowpaths

• Inspect both extremes
• Entire algorithm is a flowpath
• A single line of code is a flowpath

• Next Steps
• Employ flowpath optimizations
• Use techniques to take advantage of code-level parallelism
• Explore this methodology with Finite Element Methods

Current Results

• Entire code is a flowpath
• 96.75 MHz

• PC - 1.10 GHz, 1.25 GB RAM

Current Results

Speedup relative to flowpath

148165704105600

14716569013200

1461646571650

FlowpathCPU - FORTRANCPU - C++CPU – Java

Flowpath Speedup
of

Points

835 401,978 54,705 588,186 105600

112 52,545 7,202 76,991 13200

16 7,311 1,018 10,405 1650

Flowpath
(100 MHz)

CPU – FORTRAN
1.1 GHz

CPU – C++
1.1 GHz

CPU – Java
1.1 GHz

Algorithm Runtime (milliseconds)

of Points

Time speedup

Current Results

• PowerPC on a Xilinx Virtex2 XC2VP30
• One line of code executing as a flowpath

• 413,000,000 clock cycles to execute that line on a PowerPC
• Emulated double arithmetic operations

• 4,538,887 clock cycles using a flowpath
• 82.315 MHz

do i = 1,nx
do j = 1,ny
do k = 1,nz

u(i,j,k) = adiag(i,j,k)*v(i,j,k) - aleft(i,j,k)*v(i-1,j,k) –
aright(i,j,k)*v(i+1,j,k) –
aup(i,j,k)*v(i,j,k+1) –
adown(i,j,k)*v(i,j,k-1) –
afront(i,j,k)*v(i,j+1,k) –
aback(i,j,k)*v(i,j-1,k)

...

Challenges

• Synthesizing components to hardware takes time
• One-time overhead for a given numerical code

• FPGA space is finite
• Making use of reconfigurable real estate efficiently

• Creating a methodology that is both efficient and compatible with
multiple, common languages

• Currently, busses between embedded microcores and on-chip
processors are slow

• Bus interfaces can also be a limiting constraint (FPGA-FPGA,
FPGA-PC)

• Temporary and persistent storage is limited

Conclusions and Next Steps

Conclusions
• Using reconfigurable, spatial computing, numerical codes can be sped

up at least an order of magnitude before optimization or parallelism
• Hardware is generated from existing codes and is human readable
• Observations indicated that parallelism and optimization can lead to

between two and three orders of magnitude of speedup.

Next Steps
• Develop methodology for generating flowpaths optimized specifically

for constructs commonly occurring in numerical codes
• Use existing techniques for automated code-level parallelization for

further speedup
• Compare the speed of this approach to using GPUs
• Compile the Java LINPACK to hardware

Thank You

THANK YOU! ☺

