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iTrends at the Petascale

Gordon Moore, 1966: 2 X # transistors in 18
months, ..... , Patrick Gelsinger, 2004: power is
the 0/7/y real imiter...” DAC Keynote

« HPC/SC Scaling = Parallelism at multiple levels

« ILP, CMP, CMPxMPPs+Network, algorithm,
aplication

« H/W scaling= 12 —~1 Petaops peak 1/2 years

= Power at Petascale = 4 ... 20 Megawatts
= Energy Bill @%$.1 KWH = $10M+/year



iOps/S vs Ops/J

= Ops/S Peak ~ CPU frequency (f), observed for
dense LAPACK, TOP500

= Factor 10 to 1000 gap between peak and sustained
rates on real workloads (Loft at NCAR, Simon at
NERSC, NSA, ..)

= Most apps are memory, network, 1/0 bound

= Low ops/data load typical of sparse codes with
O(N) computational costs

» PXP goal: Multilayer adaptivity for energy-
aware supercomputing



PxP Supercomputing

= Characterizing power reductions and performance
/mprovements _x quality x cost tradeoffs
= Utilizing power control modes of the CPU, memory, network
= Developing/utilizing optimizations to improve performance
= Leveraging interactions between code tuning/phases & h/w
= Utilizing application/algorithm/implementation trade-offs for
quality and performance
= QXPxP from single processor, to CMPs, to MPPs

= Tools and environments for adaptive
feature/method/mode tuning for QxPxP
optimizations




PxP For Sparse Scientific Codes

= Sparse codes (irregular meshes, matrices, graphs),
unlike tuned dense codes, do not operate at peak
rates (despite tuning)

= Sparse codes represent scalable formulations for many
applications but ...
= Limited data locality, poor data re-use
= Memory and network latency bound
= Load imbalances despite partitioning/re-partitioning
= Multiple algorithms, implementations with different
quality/performance trade-offs
= Present many opportunities for adaptive
QualityxPowerxPerformance tuning



Sparse
Codes and

Interoperable, Sparse Data Structures and
Transformations
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iPxP Recent Results

= PxP through adaptivity
= Single CPU s/w phase-aware h/w adaptivity

= MPP network link shutdown adaptivity in collective
communications

= CMP: adapting to reduced processor availability

= Methodology: Simulation based including,
Simplescalar, Wattch and Cacti, SIMICS +
new tool TorusSim



PxP Results — |I: CPU+Memory

= Different S/W phases can benefit from different H/W
features

= Challenges:

= How do known s/w phases correspond to h/w detectable
phases?

= What H/W metric can be used to detect phase change?
(lightweight)
= Goals:
= Reduce power subject to performance constraint
= Reduce time subject to power constraint



iNAS MG: LSQ and 10M cycle window

NAS MG (10M cycle window)
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NAS MG: LSQ and 100K cycle
window

NAS MG — one iteration (100K cycle window)
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FSM For H/W Adaptivity

L3 miss rate = threshold
latency (Ip+mp) = latency(b)

L3 miss rate = threshold

Power optimization )

L3 miss rate = threshold ™

L3 miss rate = threshold

L3 miss rate = threshold

L3 miss rate = threshold
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All vs Adaptive summary
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iPxP Results — I1: MPP Networks

= HPC codes: compute, compute, compute,
communicate; compute, compute, ...

= Network link shutdown can save energy
during compute phase

= Can network link shutdown save energy even
during communication phase, e.g., for
collective communication?



i TorusSim

eTorusSim: Simulator models
network energy and performance

eTracks performance and energy

statistics

e Simulates large nets — (2563 ) , ‘ i

1-, 2-, and3-D toruses and 8 9

meshes, like BlueGene/L s ——
T

e e

 |dentifies link shutdown 4 |[&» 5 [o» 6 (o 7

opportunities with a cut off timer I - g L ? L % ’

e Simulates in minutes for real O T2 e

traces, and is deadlock-free S Ry 4 A

under realistic network
conditions.



Link Shutdown vs Cutoff Time
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eMany links remain
unused. For reduce,
it's 66%.

eImplement simple
link shutdown (LS)
hardware in the net

e MPI library X
inf LS hardware
can permit
optimal
collective
communication
shutdown
exploitation



PxP Results — Il1l;: CMPs

Program Execution

16 processors MA@
16 threads 1 W
2 PE go down
High Availability Low Availability

How to allocate processors and maps threads to

nandle runtime processor availability changes for
PXP?




Adapting to Low Avallability

16 CPUs
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Summary and Challenges

= Large potential for HPC QxPxP optimizations

= AESXSMA challenge: Need for formalisms and optimization
methodology and their incorporation into runtime systems

= Applications, algorithms <<- libraries, language/compiler -=
architecture

« Applications, algorithms: models of quality, parallelism, scaling as
f( N,P,Err)

» Architecture: models of multiple components, at different scales,
hybrid eg.x CMP+MPP, PxP features

« Libraries.langquages: at many levels, for many functions/goals

= Methodology: multi-objective stochastic optimization in high
dimensional QxPxP parameter space




