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Software Transactions
• Classical concurrency control abstractions using locks 

requires a great deal of programmer care to ensure 
correctness and efficiency. 
★deadlocks, priority inversion,etc.

• Transactions can significantly relieve this burden:
★Provide serializability properties

✦ Atomicity: effects of updates seen all-at-once or not-at-all

✦ Isolation: transactions appear to execute one-at-a-time

★API

✦ Start a transaction

✦ Validate serializability

‣ Commit

‣ Abort

✦ Contention management to schedule transactions in case of 
conflicts
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Composability
• Transactions encourage modular reasoning

★ Unlike lock-based mutual-exclusion, we can reason about transactional 
behavior without exposing details about:

✦The order in which transactions execute

✦The data transactions protect

• Transactions support composability
★The manner in which transactions are combined does not affect 

correctness

• What happens when transactions need to communicate in 
ways that (presumably) break isolation and hinder 
composability?
★ Producer/consumer pipelines

★ Message-passing primitives (ICFP’06)

★ Exceptions or faults 

★ Interaction with lock-based code (ECOOP’06)
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Composability
• Not easy to prohibit these violations

★ Violations may be buried under many software layers.

• May be necessary for correctness and performance
★ Naive implementations would block communication until the 

transaction commits.

• Specific instance of more general question of legacy support

• Open-nested transactions are one alternative
★ Impose an abstract notion of serializability based on higher-level 

invariants of a concurrent data structure

★Defining abstract serializability for complex communicating actions 
is non-trivial

★It’s difficult to reason about composability

✦ removing the effect of a message send on a channel may require 
compensating actions on all behavior that witnessed the send
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Pragmatics
• Real programs frequently violate isolation:

★Apache: 68%  (mostly acyclic communication patterns)

★JavaGrande: 50% (mostly cyclic)

★Splash: 13% (mixture of both)

• These programs exploit some form of producer/consumer 
communication pattern within their critical sections.

• Using existing techniques requires either:
★transforming the code to break cycles, and explicitly order 

communication actions, or

★allowing communication in an open-nested transaction:

✦ permits producers to notify consumers before the outer 
transaction completes

✦ use compensations to undo actions of sends in aborted outer 
transactions
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Robustness
• Once isolation is relaxed, arbitrary actions internal to the 

transaction may impact global behavior.
★ Consider exceptions or errors within a transaction

★ Or, retry primitives that explicitly abort the transaction

• How do we rationalize visible effects within the transaction 
that are no longer valid?
★Reminiscent of a cascading abort model

★But, how do we keep track of induced dependencies?

★Can we constrain the scope of influence?

• Hard for applications to encode these dependencies
★Non-determinism

★Understanding these dependencies involve reasoning about complex 
data and control-flow across different threads
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Programming Model
• Consider a language with:

★ Closed-nested transactions

✦  Retry operations for explicit abort

✦  Allow threads to be spawned within transactions

★ Message-passing communication primitives:

✦  First-class typed channels

✦  Synchronous send and receives

‣ Any object (including procedures, references, or channels) can 
be transmitted along a channel

✦  Events and choice  (CML)

★ First-class references

• Goal:  Devise a precise semantics and implementation for 
transactional behavior in the presence of channel 
communication.
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Interaction with Non-Transactional 
Code
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Semantics
• Transactions that communicate via non-isolated 

communication actions must commit together

• If any transaction in a group of transactions aborts, the 
entire group aborts

• Reads and writes to memory still implemented using basic 
transactional machinery:
★Pessimistic writes

★Optimistic reads

• A transactional group can commit only if each transaction in 
the group is conflict-free
★Operations performed within a transaction group are serializable 

with respect to other transactions outside the group.

★Allows progress in the presence of synchronous communication
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Observations
• Transactions must still adhere to serializability constraints 

on memory accesses with respect to other transactions

• Non-isolated actions augment constraints:
★The success of a transaction commit within a transaction group 

depends on the successful commit of all other transactions within 
that group

★Non-local reasoning limited to communication actions

• Congruence:
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Issues

• Key issues:

★How do we effectively track communication actions 
across transactions?

★How do we deal with nesting?

★How do we build transaction groups?

★What happens when a communication event within a 
transaction is paired with an action that occurs outside?

★Progress properties.  Loss of obstruction-freedom?  

• Build a runtime communication graph that records 
dependencies among communication actions 

★Structure of the graph determines how transactions 
coalesce into groups
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Behavior

• Atomic sections delimited by programmer

• Safety violations may be due to serializability violations or 
explicit retry

• Save continuations to allow thread execution to resume 
within a partially executed atomic section

• Abort semantics 
★ Revert control to globally consistent state based on communication 

events observed within an atomic section.
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Compiler Support
• What are the best continuation-save points within an atomic section?

• Memoization opportunities in the presence of synchronous 
communication

★ Can lead to substantial savings: 40% execution improvement on 
STMBench7

• Only need to record a specific communication event once

★ Only a single edge between two atomic sections needs to be 
recorded

• Use weak references to collect unreachable portions of the graph

• Need to track read and write operations to shared data accessed 
outside atomic blocks

★ State of live variables at a communication point must be saved

★ Avoid saving variables that have been previously recorded and 
which have not changed

★Use write barriers 
15
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Overheads

16

Threads Channels Events
Shared 
Writes

Shared
Reads

Graph
Size (MB)

Runtime
Overheads (%)

Triangle 205 79 187  88 88 .19 .59

N-Body 240 99 224 224 273 .29 .81

Pretty 801 340 950 602 840 .74 6.23

Swerve 10532 231 902 9339 80293 5.43 6.60

• Implemented in MLton
★ Insertion of write barriers

★ hooks in the CML library to update the dependency graph

• Overheads to maintain dependency graph small, roughly 6% 
★ eXene:  a windowing toolkit 

★ Swerve: a web server
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Conclusions
• Can rationalize a semantics and implementation for atomic 

transactions that engage in non-isolated communication 
actions.

• Makes transactions more useful in distributed message-
passing environments. 

• Improve robustness and expressivity of concurrency and 
synchronization abstractions

★ Valuable for long-lived applications

★ Useful to help coordinate activities of dynamically-
related threads

• Provides useful safety guarantees

• Can be implemented with relatively small overhead
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