
Weaving Atomicity Through
Dynamic Dependence Tracking

Suresh Jagannathan

joint work with Lukasz Ziarek, Philip Schatz, Jeremy Orlow
Jan Vitek

1

Software Transactions
• Classical concurrency control abstractions using locks

requires a great deal of programmer care to ensure
correctness and efficiency.
★deadlocks, priority inversion,etc.

• Transactions can significantly relieve this burden:
★Provide serializability properties

✦ Atomicity: effects of updates seen all-at-once or not-at-all

✦ Isolation: transactions appear to execute one-at-a-time

★API

✦ Start a transaction

✦ Validate serializability

‣ Commit

‣ Abort

✦ Contention management to schedule transactions in case of
conflicts

2

2

Composability
• Transactions encourage modular reasoning

★ Unlike lock-based mutual-exclusion, we can reason about transactional
behavior without exposing details about:

✦The order in which transactions execute

✦The data transactions protect

• Transactions support composability
★The manner in which transactions are combined does not affect

correctness

• What happens when transactions need to communicate in
ways that (presumably) break isolation and hinder
composability?
★ Producer/consumer pipelines

★ Message-passing primitives (ICFP’06)

★ Exceptions or faults

★ Interaction with lock-based code (ECOOP’06)
3

3

Composability
• Not easy to prohibit these violations

★ Violations may be buried under many software layers.

• May be necessary for correctness and performance
★ Naive implementations would block communication until the

transaction commits.

• Specific instance of more general question of legacy support

• Open-nested transactions are one alternative
★ Impose an abstract notion of serializability based on higher-level

invariants of a concurrent data structure

★Defining abstract serializability for complex communicating actions
is non-trivial

★It’s difficult to reason about composability

✦ removing the effect of a message send on a channel may require
compensating actions on all behavior that witnessed the send

4

4

Pragmatics
• Real programs frequently violate isolation:

★Apache: 68% (mostly acyclic communication patterns)

★JavaGrande: 50% (mostly cyclic)

★Splash: 13% (mixture of both)

• These programs exploit some form of producer/consumer
communication pattern within their critical sections.

• Using existing techniques requires either:
★transforming the code to break cycles, and explicitly order

communication actions, or

★allowing communication in an open-nested transaction:

✦ permits producers to notify consumers before the outer
transaction completes

✦ use compensations to undo actions of sends in aborted outer
transactions

5

5

Robustness
• Once isolation is relaxed, arbitrary actions internal to the

transaction may impact global behavior.
★ Consider exceptions or errors within a transaction

★ Or, retry primitives that explicitly abort the transaction

• How do we rationalize visible effects within the transaction
that are no longer valid?
★Reminiscent of a cascading abort model

★But, how do we keep track of induced dependencies?

★Can we constrain the scope of influence?

• Hard for applications to encode these dependencies
★Non-determinism

★Understanding these dependencies involve reasoning about complex
data and control-flow across different threads

6

6

Programming Model
• Consider a language with:

★ Closed-nested transactions

✦ Retry operations for explicit abort

✦ Allow threads to be spawned within transactions

★ Message-passing communication primitives:

✦ First-class typed channels

✦ Synchronous send and receives

‣ Any object (including procedures, references, or channels) can
be transmitted along a channel

✦ Events and choice (CML)

★ First-class references

• Goal: Devise a precise semantics and implementation for
transactional behavior in the presence of channel
communication.

7

7

Model

8 8

Model

8

Transaction T

8

Model

8

Transaction T

Transaction T’

8

Model

8

Transaction T

Transaction T’

send(ch,x)

recv(ch)

8

Inter-Transaction Dependency

Model

8

Transaction T

Transaction T’

send(ch,x)

recv(ch)

8

Inter-Transaction Dependency

Model

8

Transaction T

Transaction T’

send(ch,x)

recv(ch)

retry()

8

Inter-Transaction Dependency

Model

8

Transaction T

Transaction T’

send(ch,x)

recv(ch)

retry()

8

Inter-Transaction Dependency

Model

8

Transaction T

Transaction T’

send(ch,x)

recv(ch)

retry()

8

Inter-Transaction Dependency

Model

8

Transaction T

Transaction T’

send(ch,x)

recv(ch)

retry()

8

Inter-Transaction Dependency

Model

8

Transaction T

Transaction T’

send(ch,x)

recv(ch)

retry()

8

Interaction with Non-Transactional
Code

9

9

Transaction T

Thread t

Interaction with Non-Transactional
Code

9

9

Transaction T

Thread t

Interaction with Non-Transactional
Code

9

send(ch,x)

recv(ch)

9

Transaction T

Thread t

Interaction with Non-Transactional
Code

9

send(ch,x)

recv(ch)

retry()

9

Transaction T

Thread t

Interaction with Non-Transactional
Code

9

send(ch,x)

recv(ch)

retry()

9

Transaction T

Thread t

Interaction with Non-Transactional
Code

9

send(ch,x)

recv(ch)

retry()

9

Transaction T

Thread t

Interaction with Non-Transactional
Code

9

send(ch,x)

recv(ch)

restore thread to state prior
to channel communication
initiated by the transaction

retry()

9

Transaction T

Thread t

Interaction with Non-Transactional
Code

9

send(ch,x)

recv(ch)

restore thread to state prior
to channel communication
initiated by the transaction

retry()

strong atomicity

9

Semantics
• Transactions that communicate via non-isolated

communication actions must commit together

• If any transaction in a group of transactions aborts, the
entire group aborts

• Reads and writes to memory still implemented using basic
transactional machinery:
★Pessimistic writes

★Optimistic reads

• A transactional group can commit only if each transaction in
the group is conflict-free
★Operations performed within a transaction group are serializable

with respect to other transactions outside the group.

★Allows progress in the presence of synchronous communication

10

10

Observations
• Transactions must still adhere to serializability constraints

on memory accesses with respect to other transactions

• Non-isolated actions augment constraints:
★The success of a transaction commit within a transaction group

depends on the successful commit of all other transactions within
that group

★Non-local reasoning limited to communication actions

• Congruence:

11
11

Observations
• Transactions must still adhere to serializability constraints

on memory accesses with respect to other transactions

• Non-isolated actions augment constraints:
★The success of a transaction commit within a transaction group

depends on the successful commit of all other transactions within
that group

★Non-local reasoning limited to communication actions

• Congruence:

11

send(ch,v)

T1

11

Observations
• Transactions must still adhere to serializability constraints

on memory accesses with respect to other transactions

• Non-isolated actions augment constraints:
★The success of a transaction commit within a transaction group

depends on the successful commit of all other transactions within
that group

★Non-local reasoning limited to communication actions

• Congruence:

11

send(ch,v)

T1 x = recv(ch)

T2

11

Observations
• Transactions must still adhere to serializability constraints

on memory accesses with respect to other transactions

• Non-isolated actions augment constraints:
★The success of a transaction commit within a transaction group

depends on the successful commit of all other transactions within
that group

★Non-local reasoning limited to communication actions

• Congruence:

11

send(ch,v)

T1 x = recv(ch)

T2

11

Observations
• Transactions must still adhere to serializability constraints

on memory accesses with respect to other transactions

• Non-isolated actions augment constraints:
★The success of a transaction commit within a transaction group

depends on the successful commit of all other transactions within
that group

★Non-local reasoning limited to communication actions

• Congruence:

11

commit

send(ch,v)

T1 x = recv(ch)

T2

11

Observations
• Transactions must still adhere to serializability constraints

on memory accesses with respect to other transactions

• Non-isolated actions augment constraints:
★The success of a transaction commit within a transaction group

depends on the successful commit of all other transactions within
that group

★Non-local reasoning limited to communication actions

• Congruence:

11

commit

send(ch,v)

T1 x = recv(ch)

T2

v x = v

T1 T2

commitcommit

11

Issues

• Key issues:

★How do we effectively track communication actions
across transactions?

★How do we deal with nesting?

★How do we build transaction groups?

★What happens when a communication event within a
transaction is paired with an action that occurs outside?

★Progress properties. Loss of obstruction-freedom?

• Build a runtime communication graph that records
dependencies among communication actions

★Structure of the graph determines how transactions
coalesce into groups

12

12

Approach

13

13

Approach

13

atomic f

spawn(atomic(g) (...))

13

Approach

13

atomic g

atomic f

spawn(atomic(g) (...))

13

Approach

13

atomic g

atomic f

spawn(atomic(g) (...))

send(c,x) recv(c)

13

Approach

13

atomic g

atomic f

spawn(atomic(g) (...))

recv(c)

send(c,y)

atomic h

send(c,x) recv(c)

13

Approach

13

atomic g

atomic f

spawn(atomic(g) (...))

recv(c)

send(c,y)

atomic h

retry

send(c,x) recv(c)

13

Approach

13

atomic g

atomic f

spawn(atomic(g) (...))

recv(c)

send(c,y)

atomic h

retry

send(c,x) recv(c)

13

Behavior

• Atomic sections delimited by programmer

• Safety violations may be due to serializability violations or
explicit retry

• Save continuations to allow thread execution to resume
within a partially executed atomic section

• Abort semantics
★ Revert control to globally consistent state based on communication

events observed within an atomic section.

14

14

Compiler Support
• What are the best continuation-save points within an atomic section?

• Memoization opportunities in the presence of synchronous
communication

★ Can lead to substantial savings: 40% execution improvement on
STMBench7

• Only need to record a specific communication event once

★ Only a single edge between two atomic sections needs to be
recorded

• Use weak references to collect unreachable portions of the graph

• Need to track read and write operations to shared data accessed
outside atomic blocks

★ State of live variables at a communication point must be saved

★ Avoid saving variables that have been previously recorded and
which have not changed

★Use write barriers
15

15

Overheads

16

Threads Channels Events
Shared
Writes

Shared
Reads

Graph
Size (MB)

Runtime
Overheads (%)

Triangle 205 79 187 88 88 .19 .59

N-Body 240 99 224 224 273 .29 .81

Pretty 801 340 950 602 840 .74 6.23

Swerve 10532 231 902 9339 80293 5.43 6.60

• Implemented in MLton
★ Insertion of write barriers

★ hooks in the CML library to update the dependency graph

• Overheads to maintain dependency graph small, roughly 6%
★ eXene: a windowing toolkit

★ Swerve: a web server

16

Conclusions
• Can rationalize a semantics and implementation for atomic

transactions that engage in non-isolated communication
actions.

• Makes transactions more useful in distributed message-
passing environments.

• Improve robustness and expressivity of concurrency and
synchronization abstractions

★ Valuable for long-lived applications

★ Useful to help coordinate activities of dynamically-
related threads

• Provides useful safety guarantees

• Can be implemented with relatively small overhead

17

17

