
Adaptive Scheduling with
Parallelism Feedback

Kunal Agrawal (MIT), Yuxiong He (NUS),
Wen Jing Hsu (NUS), Charles E. Leiserson (MIT)

Supported in part by NSF Grant CNF 0615215

2

Adaptive Multiprocessor Scheduling

Many jobs space-share a large
multiprocessor, entering and
leaving the system dynamically.
The number of processors available
to the job may, therefore, change
during execution.

3

Adaptive Multiprocessor Scheduling

Many jobs space-share a large
multiprocessor, entering and
leaving the system dynamically.
The number of processors available
to the job may, therefore, change
during execution.

The jobs are adaptively parallel —
the parallelism of a jobs may
change during execution, e.g., data
parallel jobs [GC+94], dynamic
multithreaded jobs [BL92]. The
jobs’ future parallelism is unknown.

4

JobJobJobJob

Two-Level Scheduling

JobJobJobJobJobJob

5

JobJobJobJobJobJobJobJobJobJob

Two-Level Scheduling

The job scheduler allots
processors to jobs.

Job SchedulerJob Scheduler

6

JobJob

Thread
Scheduler
Thread

Scheduler

JobJob

Thread
Scheduler
Thread

Scheduler

JobJob

Thread
Scheduler
Thread

Scheduler

JobJob

Thread
Scheduler
Thread

Scheduler

JobJob

Thread
Scheduler
Thread

Scheduler

Two-Level Scheduling

The job scheduler allots
processors to jobs.

Job SchedulerJob Scheduler

The thread scheduler
schedules the ready work
of the job on the allotted
processors,

7

JobJob

Thread
Scheduler
Thread

Scheduler

JobJob

Thread
Scheduler
Thread

Scheduler

JobJob

Thread
Scheduler
Thread

Scheduler

JobJob

Thread
Scheduler
Thread

Scheduler

JobJob

Thread
Scheduler
Thread

Scheduler

Two-Level Scheduling

The job scheduler allots
processors to jobs.

Job SchedulerJob Scheduler

The thread scheduler
schedules the ready work
of the job on the allotted
processors, and
between scheduling
quanta, requests
processors from the job
scheduler for the next
quantum (parallelism
feedback).

8

Our Contributions

Provably good thread schedulers that provide parallelism
feedback for

data-parallel jobs, and
dynamic-multithreaded jobs.

Provably good job schedulers for jobs that use these
thread schedulers:

dynamic equipartitioning, and
dynamic equipartitioning augmented with round robin.

Performance evaluation by simulations.

9

Outline

Problem Definition
Thread Schedulers

A-GREEDY

A-STEAL

Job Schedulers
Dynamic Equipartitioning
Dynamic Equipartitioning + Round Robin

Simulation Results
Future Work

10

Thread Schedulers
A thread scheduler (TS) is responsible for reporting the
job’s parallelism to the job scheduler.

Time
Pa

ra
lle

lis
m

L L LThe TS does not know the
job’s future parallelism.
The job’s parallelism may
change during the
quantum. Therefore,
using the instantaneous
parallelism as feedback
might be ineffective.
If the TS requests (and receives) too few processors, then
the job runs slowly. If the TS requests (and receives) too
many processors, then the job wastes processor cycles that
other jobs could have used more effectively.

11

TS 1: A-GREEDY

A-GREEDY uses greedy scheduling [G69, B72] to schedule the
job on the allotted processors, and provides parallelism
feedback using a multiplicative increase, multiplicative
decrease algorithm. It guarantees that the jobs complete
quickly and waste few processor cycles, even when the job
scheduler is adversarial.

THEOREM: Consider a job with work T1 and span (critical-
path length) T∞ running on Pmax-processor machine and
scheduling quanta of length L. A-GREEDY guarantees
that the job

wastes O(T1) processor cycles and
attains linear speedup on all but O(T∞ + L lg Pmax)
time steps.

12

TS 2: A-STEAL

A-STEAL uses work-stealing [BS81, H84, BL98] to schedule the
job on the allotted processors, and provides parallelism
feedback using a multiplicative increase, multiplicative
decrease algorithm. It guarantees that the jobs complete
quickly and waste few processor cycles, even when the job
scheduler is adversarial.

THEOREM: Consider a job with work T1 and span (critical-
path length) T∞ running on Pmax-processor machine and
scheduling quanta of length L. A-STEAL guarantees that
the job

wastes O(T1) processor cycles and
attains linear speedup on all but O(T∞ + L lg Pmax + L
ln 1/ε) time steps with probability (1-ε).

13

Trim Analysis

We assume that the job scheduler is an adversary of
the thread scheduler.

Therefore, our results apply to any job scheduler.
No parallelism feedback algorithm can guarantee
linear speedup on all time steps, while still minimizing
waste, against an adversarial job scheduler.
To reduce the power of the adversary, we introduce a
new technique called trim analysis.
Trim analysis allows the online algorithm to ignore a
few data points and guarantee tight bounds on the
majority.

14

Outline

Problem Definition
Thread Schedulers

A-GREEDY

A-STEAL

Job Schedulers
Dynamic Equipartitioning
Dynamic Equipartitioning + Round Robin

Simulation Results
Future Work

15

Dynamic Equipartitioning

A dynamic equipartitioning (DEQ) job scheduler tries to allot
equal number of processors to each job, while never giving
any job more processors than it requests.

THEOREM 1: If all jobs use A-GREEDY or A-STEAL in a
multiprocessor system which uses DEQ as a job
scheduler, then the makespan of the jobs is within a
constant factor of the optimal makespan.

THEOREM 2: If all jobs use A-GREEDY or A-STEAL in a
multiprocessor system which uses DEQ as a job
scheduler and all jobs arrive at the same time, then the
mean completion time of the jobs is within a constant
factor of the optimal mean completion time.

16

DEQ + Round Robin

PROBLEM: Dynamic equipartitioning works only if the number
of processors P is at least the number of jobs J.

SOLUTION: Combine DEQ with round-robin scheduling.
When P ≥ J, use DEQ.
When P ≤ J, use round-robin scheduling. Maintain jobs in
a FIFO queue. Remove P jobs from the front of the queue
and give them 1 processor each. At the end of the
quantum, push these jobs back at the end of the queue and
schedule the next P jobs.

This algorithm provides results analogous to DEQ. When this
algorithm is used in conjunction with A-GREEDY, then we get
constant competitiveness with respect to makespan and mean
completion time (if all jobs arrive at the same time).

17

Outline

Problem Definition
Thread Schedulers

A-GREEDY

A-STEAL

Job Schedulers
Dynamic Equipartitioning
Dynamic Equipartitioning + Round Robin

Simulation Results
Future Work

18

Simulation: A-STEAL vs. ABP

A-STEAL provides nearly perfect linear speedup and
wastes less than 20% of the allotted processor cycles.
We compared the
utilization provided by A-
STEAL and ABP [ABP99],
a work-stealing scheduler
that does not employ
parallelism feedback.
The mean completion
time of jobs under ABP is
nearly 50% slower than
that of jobs using A-STEAL.

19

Simulation: Makespan

The combination of A-GREEDY and DEQ+RR guarantees
that the makespan is within a constant factor of the
optimal makespan. But the theoretical constant is large.
Simulations
indicate that
the constant
should be less
than 2 in
practice.

20

Simulation: Mean Completion Time

The combination of A-GREEDY and DEQ+RR guarantees
that the mean completion time is within a constant factor
of the optimal mean completion time. But the theoretical
constant is large.
Simulations
indicate that
the constant
should be less
than 3 in
practice.

21

Current Research
How do you provide parallelism feedback when the
individual jobs are not independent?
Example: MPEG Decoder.

Parse
MPEG
Stream

Inverse
Quantization

Saturation &
Mismatch Control

Inverse Discrete
Cosine Transform Saturation

Motion Vector
Decode

Display

Luminescence Channel
Processing

Chrominance
Channel Processing

Chrominance
Channel Processing

Combiner & Processing

	Adaptive Scheduling with Parallelism Feedback
	Adaptive Multiprocessor Scheduling
	Adaptive Multiprocessor Scheduling
	Two-Level Scheduling
	Two-Level Scheduling
	Two-Level Scheduling
	Two-Level Scheduling
	Our Contributions
	Outline
	Thread Schedulers
	TS 1: A-GREEDY
	TS 2: A-STEAL
	Trim Analysis
	Outline
	Dynamic Equipartitioning
	DEQ + Round Robin
	Outline
	Simulation: A-STEAL vs. ABP
	Simulation: Makespan
	Simulation: Mean Completion Time
	Current Research

