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Autonomic code generation

• Automatically produces efficient 
implementations for a wide range 
of platforms

• Related works

• PhiPAC (Berkeley), ATLAS 
(Tennessee) 

• Basic Linear Algebra Routines (BLAS)

• Spiral (CMU), FFTW (MIT)

• Signal Processing Algorithms
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Opportunities for improvement

• Adapt to input characteristics

• When the performance depends on 
inputs



Contributions of this project

• Apply machine learning 
techniques to generate code that 
adapts to input data 
characteristics

• At runtime, select one of a few 
algorithms

• Combine algorithms to generate new 
algorithms.



How to generate efficient 
sorting routines?
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Sorting routine candidates

• Quicksort

• Multi-way Merge Sort

• Radix Sort



Learn linear separable 
function

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5

Entropy(first digit)



Experiment platforms

• IBM Power3

• IBM Power4

• Intel Itanium 2

• Intel Xeon

• Sun UltraSparcIII

• SGI R12k

• AMD Athlon MP
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Generate efficient hybrid 
code

• Abstract basic operations

• sorting primitives

• Build hybrid sorting routines 
from primitives

• Adapt to architectural features 
and input characteristics



Abstract sorting primitives
• Partitioning methods

• Divide-with-pivot (DP)

• Divide-into-block (DB)

• Divide-by-digit-from-left (DR)

• Divide-by-digit-in-middle (DRU)

• How to choose a partitioning 
method

• Using the size of the partition 
(BN)

• Using the entropy of the partition 
(BE)

From Quicksort

From Merge Sort

From Radix Sort



Example of hybrid sorting
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Hybrid algorithms complicate 
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Build the best sorting 
routine

• Challenges

• Huge number of possible sorting 
routines

• Adapt to architectures and inputs 
in regions

• Use machine learning algorithms 
to guide the synthesis

• XCS, a Learning Classifier System
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Synthesize hybrid sorting 
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Summary and future work
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Summary and future work

• Predict and select the best 
“pure” sorting algorithm at 
runtime

• Accurate prediction with low 
overhead (~5%)

• Automatically generate hybrid 
sorting algorithms that 
outperform all vendor libraries

• > 20% faster than IBM ESSL using 
2% of time


