
Optimizing Sorting with 
Machine Learning Algorithms

Xiaoming Li*, María Jesús Garzarán, and 
David Padua

University of Illinois at Urbana-Champaign
* University of Delaware



Autonomic code generation

• Automatically produces efficient 
implementations for a wide range 
of platforms

• Related works

• PhiPAC (Berkeley), ATLAS 
(Tennessee) 

• Basic Linear Algebra Routines (BLAS)

• Spiral (CMU), FFTW (MIT)

• Signal Processing Algorithms



Autonomic Code Generation

High-
level

Descript
ion

Generat
e

Code

Selec
t

Autonomi
c Code 
Generati

on

Architectur
e

New version

Target Machine

Run

Measure



Opportunities for improvement

• Adapt to input characteristics

• When the performance depends on 
inputs



Contributions of this project

• Apply machine learning 
techniques to generate code that 
adapts to input data 
characteristics

• At runtime, select one of a few 
algorithms

• Combine algorithms to generate new 
algorithms.



How to generate efficient 
sorting routines?



Selection of the best sorting 
routine

Target 
Machine

Mapping
input data ➔ best 

algorithm

Learning 
Mechanism

Used at 
runtime

Training inputs



Sorting routine candidates

• Quicksort

• Multi-way Merge Sort

• Radix Sort



Learn linear separable 
function

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5

Entropy(first digit)



Experiment platforms

• IBM Power3

• IBM Power4

• Intel Itanium 2

• Intel Xeon

• Sun UltraSparcIII

• SGI R12k

• AMD Athlon MP



Results on IBM Power3

IBM Power3

Adapti
ve
Sort



Generate efficient hybrid 
code

• Abstract basic operations

• sorting primitives

• Build hybrid sorting routines 
from primitives

• Adapt to architectural features 
and input characteristics



Abstract sorting primitives
• Partitioning methods

• Divide-with-pivot (DP)

• Divide-into-block (DB)

• Divide-by-digit-from-left (DR)

• Divide-by-digit-in-middle (DRU)

• How to choose a partitioning 
method

• Using the size of the partition 
(BN)

• Using the entropy of the partition 
(BE)

From Quicksort

From Merge Sort

From Radix Sort



Example of hybrid sorting

Divide 
with 
pivot

Select 
with 

entropy

Divide 
into 
block

Sorting 
Genome

< theta ≥ theta

Divide by 
digit



Hybrid algorithms complicate 
partition

Hybrid 

routine 5

Hybrid 
routine 2

Hybrid 
routine 3

Hybrid 
routine 1

Hybrid
routine 4



Build the best sorting 
routine

• Challenges

• Huge number of possible sorting 
routines

• Adapt to architectures and inputs 
in regions

• Use machine learning algorithms 
to guide the synthesis

• XCS, a Learning Classifier System



Synthesize hybrid sorting 
routines

Target 
Machine

Learning 
Mechanism

Used at 
runtime

Training inputs

Mapping
input data ➔ best 

algorithm



Synthesize hybrid sorting 
routines

Target 
Machine

(1) Region
(2) Routine for each 

region

Learning 
Mechanism

Used at 
runtime

Training inputs



Performance

IBM Power3

26%

Classif
ier
Sort

IBM 
ESSL

C++ 
STL



Performance

IBM Power3

Classif
ier
Sort

IBM 
ESSL6 man-months

3 computer-
days



Summary and future work
High-
level

Descript
ion

Synthesi
s

Code

Selec
t

Autonomi
c Code 
Generati

on

Architectur

al features

Input 
Characteris

tics

Machine 
Learnin

g



Summary and future work

• Predict and select the best 
“pure” sorting algorithm at 
runtime

• Accurate prediction with low 
overhead (~5%)

• Automatically generate hybrid 
sorting algorithms that 
outperform all vendor libraries

• > 20% faster than IBM ESSL using 
2% of time


