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Hard Problems / Issues

• Submitting jobs
• Finding a resource that meets the

minimum resource requirements of a job
• Load balancing
• Resilience to failure



System Architecture
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Workload Assumptions

• Must accommodate heterogeneous clusters of
nodes running heterogeneous batches of jobs

• Clustering in nodes (resource capabilities) and
jobs (requirements)
– A small number of equivalent classes of nodes
– Parameter sweeps, e.g., N-body or weather simulations
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Goals of Matchmaking Algorithms

• Low overhead
– Routing must not add significant overhead

• Completeness
– A valid assignment of a job to a node must be found if 

such an assignment exists
• TTL-based mechanisms are not applicable

• Precision
– Resources should not be wasted

• Load balance
– Distribute load across multiple candidates



Basic Assumptions

• Underlying Distributed Hash Table (DHT)
– Object location and routing in P2P network
– Reformulate the problem of matchmaking to one of 

routing
• Job in the system

– Data and associated profile
– All jobs are independent

• Optimization criterion 
– Minimize time to complete all jobs (combination of 

throughput and response time)



Modified Content-Addressable Network

• Basic CAN
– Logical d-dimensional space

• zone, neighbors, greedy forwarding
• Formulate the matchmaking problem as a 

routing problem in CAN space
– Treat each resource type as a distinct CAN dimension
– Map nodes and jobs into the CAN space

• Resource capabilities and Requirements, respectively
– Search for the closest node whose coordinates in all 

dimensions meet or exceed the job’s requirements



Modified Content-Addressable Network

• Virtual Dimension
– Clustering of nodes and jobs

• Resource capabilities and Requirements
• Distribution of ownership of a zone and Load imbalance

– Supplement the real dimensions 
• Corresponding to node capabilities

– Coordinates for nodes and jobs for the virtual dimension 
generated uniformly at random
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Improving CAN-based Algorithm

• Employing Dynamic Aggregated Resource 
Information (HPDC’07)
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Rendezvous Node Tree

• Implicit tree built on top of P2P network
– 1-1 mapping from DHT (Chord) nodes to RN-Tree

nodes
• Why use a tree?

– Need to aggregate current resource information to 
perform matchmaking

– Aggregated Resource Information
• Maximal amount of each resource available at some node in

the subtree rooted at a node



Results from Simulations (Grid 2006)

• CAN and RN-Tree algorithms balance
load almost as well as centralized
algorithm
– with low overhead (few messages) 

• Overall, the CAN algorithm produces
significantly lower wait times than
RN-Tree for most workloads
– with comparable overhead
– and with dynamic aggregate load info, CAN is better for 

all workloads



Current Status

• Resource discovery algorithms thoroughly 
simulated and verified

• CAN-based implementation ongoing
– Basic CAN services working – node join, leave, job assignment
– Basic CAN matchmaking working

• Enhanced with dynamic aggregate load info under way
– Basic authentication mechanism for hosts and jobs in place, 

based on certificates and public-key authentication
– Job management and GUI client interface under development



Future Work

• Deploying the prototype system for real
workloads and real machines

• Better characterization of real workloads
– via consultation with Astronomy collaborators, and 

automated mining of Condor system logs
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