Creating a Robust Desktop Grid using Peer-to-Peer Services

Alan Sussman

Department of Computer Science and UMIACS

Desktop Grid Computing

Growth of Internet (Internet Worlds Stats)

Confluence of P2P and Grid

Robustness, Reliability and Scalability?

Hard Problems / Issues

- Submitting jobs
- Finding a resource that meets the minimum resource requirements of a job
- Load balancing
- Resilience to failure

System Architecture

6 Return Job J

Workload Assumptions

- *Must* accommodate heterogeneous clusters of nodes running heterogeneous batches of jobs
- *Clustering* in nodes (resource capabilities) and jobs (requirements)
 - A small number of equivalent classes of nodes
 - Parameter sweeps, e.g., N-body or weather simulations

Jobs Nodes	Clustered	Mixed
Clustered		Condor
Mixed	BOINC/ SETI@Home	

Goals of Matchmaking Algorithms

- Low overhead
 - Routing must not add significant overhead
- Completeness
 - A valid assignment of a job to a node must be found if such an assignment exists
 - TTL-based mechanisms are not applicable
- Precision
 - Resources should not be wasted
- Load balance
 - Distribute load across multiple candidates

Basic Assumptions

- Underlying *Distributed Hash Table* (DHT)
 - Object location and routing in P2P network
 - Reformulate the problem of matchmaking to one of routing
- Job in the system
 - Data and associated profile
 - All jobs are *independent*
- Optimization criterion
 - Minimize time to complete all jobs (combination of throughput and response time)

Modified Content-Addressable Network

Basic CAN

- Logical *d*-dimensional space
 - zone, neighbors, greedy forwarding
- Formulate the matchmaking problem as a routing problem in CAN space
 - Treat each *resource type* as a distinct CAN dimension
 - Map nodes and jobs into the CAN space
 - Resource capabilities and Requirements, respectively
 - Search for *the closest node whose coordinates in all dimensions meet or exceed the job's requirements*

Modified Content-Addressable Network

- Virtual Dimension
 - Clustering of nodes and jobs
 - Resource capabilities and Requirements
 - Distribution of ownership of a zone and Load imbalance
 - Supplement the *real* dimensions
 - Corresponding to node capabilities
 - Coordinates for nodes and jobs for the virtual dimension generated *uniformly at random*

Modified Content-Addressable Network

Improving CAN-based Algorithm

• Employing Dynamic Aggregated Resource Information (HPDC'07)

- Aggregate Resource Information
- Choose the least loaded direction
- Push a job into underloaded region
- Stop pushing
- Choose the best run node

CPU Dimension

Rendezvous Node Tree

- Implicit tree built on top of P2P network
 - 1-1 mapping from DHT (*Chord*) nodes to RN-Tree nodes
- Why use a tree?
 - Need to *aggregate* current resource information to perform matchmaking
 - Aggregated Resource Information
 - *Maximal* amount of each resource available at some node in the subtree rooted at a node

Results from Simulations (Grid 2006)

- CAN and RN-Tree algorithms balance load almost as well as centralized algorithm
 - with low overhead (few messages)
- Overall, the CAN algorithm produces significantly lower wait times than RN-Tree for most workloads
 - with comparable overhead
 - and with dynamic aggregate load info, CAN is better for all workloads

Current Status

- Resource discovery algorithms thoroughly simulated and verified
- CAN-based implementation ongoing
 - Basic CAN services working node join, leave, job assignment
 - Basic CAN matchmaking working
 - Enhanced with dynamic aggregate load info under way
 - Basic authentication mechanism for hosts and jobs in place, based on certificates and public-key authentication
 - Job management and GUI client interface under development

Future Work

- Deploying the prototype system for real workloads and real machines
- Better characterization of real workloads
 - via consultation with Astronomy collaborators, and automated mining of Condor system logs

The Project Team

- Faculty members
 - Alan Sussman, Pete Keleher, Bobby Bhattacharjee, Derek Richardson (Astronomy), Dennis Wellnitz (Astronomy)
- Prototype implementation
 - Michael Marsh, Beomseok Nam
- Matchmaking algorithms and simulations
 Jik-Soo Kim
- Project funding from NASA and NSF
 - to develop algorithms, and build and deploy the system