
Creating a Robust Desktop Grid
using Peer-to-Peer Services 

Alan Sussman
Department of Computer Science

and UMIACS



Desktop Grid Computing

to Compute !
Growth of Internet (Internet Worlds Stats )

0

200

400

600

800

1000

1200

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Years

N
um

be
r 

of
 U

se
rs

 (m
ill

io
ns

)



Confluence of P2P and Grid

Server
Internet

Robustness, Reliability and Scalability?

Peer-to-Peer
Network

(Decentralized)



Hard Problems / Issues

• Submitting jobs
• Finding a resource that meets the

minimum resource requirements of a job
• Load balancing
• Resilience to failure



System Architecture

Clients
Injection

Node

Owner
Node

Run
Node

Insert 
Job J

Job J
Initiate

Route 
Job J

Assign GUID 
to Job J

J

FIFO Job Queue

Peer-to-Peer
Network
(DHT)

Peer-to-Peer
Network
(DHT)

Find

1

Return Job J

2

3

4

5

6

Matchmaking
Algorithm

Matchmaking
Algorithm

Send 
Job J

Heartbeat



Workload Assumptions

• Must accommodate heterogeneous clusters of
nodes running heterogeneous batches of jobs

• Clustering in nodes (resource capabilities) and
jobs (requirements)
– A small number of equivalent classes of nodes
– Parameter sweeps, e.g., N-body or weather simulations

Nodes
Jobs

Mixed

Clustered

Clustered Mixed

Condor

BOINC/
SETI@Home



Goals of Matchmaking Algorithms

• Low overhead
– Routing must not add significant overhead

• Completeness
– A valid assignment of a job to a node must be found if 

such an assignment exists
• TTL-based mechanisms are not applicable

• Precision
– Resources should not be wasted

• Load balance
– Distribute load across multiple candidates



Basic Assumptions

• Underlying Distributed Hash Table (DHT)
– Object location and routing in P2P network
– Reformulate the problem of matchmaking to one of 

routing
• Job in the system

– Data and associated profile
– All jobs are independent

• Optimization criterion 
– Minimize time to complete all jobs (combination of 

throughput and response time)



Modified Content-Addressable Network

• Basic CAN
– Logical d-dimensional space

• zone, neighbors, greedy forwarding
• Formulate the matchmaking problem as a 

routing problem in CAN space
– Treat each resource type as a distinct CAN dimension
– Map nodes and jobs into the CAN space

• Resource capabilities and Requirements, respectively
– Search for the closest node whose coordinates in all 

dimensions meet or exceed the job’s requirements



Modified Content-Addressable Network

• Virtual Dimension
– Clustering of nodes and jobs

• Resource capabilities and Requirements
• Distribution of ownership of a zone and Load imbalance

– Supplement the real dimensions 
• Corresponding to node capabilities

– Coordinates for nodes and jobs for the virtual dimension 
generated uniformly at random



New
Node

Modified Content-Addressable Network

CPU

Memory

Node C Node F Node I

C1 C2 C3

M1

M2

M3

Job J
CPU >= CJ

&&
Memory >= MJ

Insert J

1

3
Owner

Forward J

2

Node A

Node B Node E

Node D Node G

Node H

Job J Job J
5

Send J

4
New
Node

Run 
Node

Virtual 
Dimension

CJ

MJ



Improving CAN-based Algorithm

• Employing Dynamic Aggregated Resource 
Information (HPDC’07)

CPU Dimension

Memory
Dimension

Node A

Routing

Aggregate Resource
Information

Job

S

Node B

Job

Choose the least
loaded direction

Push a job into under-
loaded region

Stop pushing

Choose the best run
node



Rendezvous Node Tree

• Implicit tree built on top of P2P network
– 1-1 mapping from DHT (Chord) nodes to RN-Tree

nodes
• Why use a tree?

– Need to aggregate current resource information to 
perform matchmaking

– Aggregated Resource Information
• Maximal amount of each resource available at some node in

the subtree rooted at a node



Results from Simulations (Grid 2006)

• CAN and RN-Tree algorithms balance
load almost as well as centralized
algorithm
– with low overhead (few messages) 

• Overall, the CAN algorithm produces
significantly lower wait times than
RN-Tree for most workloads
– with comparable overhead
– and with dynamic aggregate load info, CAN is better for 

all workloads



Current Status

• Resource discovery algorithms thoroughly 
simulated and verified

• CAN-based implementation ongoing
– Basic CAN services working – node join, leave, job assignment
– Basic CAN matchmaking working

• Enhanced with dynamic aggregate load info under way
– Basic authentication mechanism for hosts and jobs in place, 

based on certificates and public-key authentication
– Job management and GUI client interface under development



Future Work

• Deploying the prototype system for real
workloads and real machines

• Better characterization of real workloads
– via consultation with Astronomy collaborators, and 

automated mining of Condor system logs



The Project Team

• Faculty members
– Alan Sussman, Pete Keleher, Bobby Bhattacharjee, 

Derek Richardson (Astronomy), Dennis Wellnitz 
(Astronomy)

• Prototype implementation
– Michael Marsh, Beomseok Nam

• Matchmaking algorithms and simulations
– Jik-Soo Kim

• Project funding from NASA and NSF
– to develop algorithms, and build and deploy the system


