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Outline of This Talk

e Motivation
— The Basic Problem
— Objectives

— Our Approach: Hierarchical autonomic power and
performance management

e Research Approach and Results
- Component-level Management (Optimization)
- Preliminary Results
— Cluster-level Management (Game Theory)
- Preliminary Results

e Future Research Directions



Autonomic Middleware for Large Scale
Scientific and Engineering
Applications

e Physics Aware Programming Paradigm

e Autonomic Runtime Manager

- Automatic detection of application execution
phases and properties

- Select the appropriate algorithm, solver at runtime
- Select the appropriate resources and libraries
e Anomaly Based Management Framework
- Performance
- Fault

- Security
- Configuration



The Basic Problem

The Environmental fCurrent Density Levels 200 watts/sq. foot
Problem Energy Needs 80 TWh/year
 High CO, emission Energy Costs $8B/year @ 100$/MWh
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Objective of This Work

Methodology for autonomic

power & performance management

multi-layer management with bi-directional interactions
among all layers (data center level, cluster level,
component level)

online monitoring & analysis

adaptive learning & profiling strategy for data center
workloads

dynamically reconfigure CPU, Memory, 1/O

Use data mining and statistical techniques to implement
real-time identiflied management strategies
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Hierarchical Autonomic Power &
Performance Management
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Hierarchical Autonomic Power &
Performance Management

e Top-level AM: Distributes data center
workload based on workload profiling and
analysis

e Cluster-level AM: Uses game theory to
devise a power & performance aware
mapping of tasks to machines

e Component-level AM: Optimizes task
working-set data placement on fully-
iInterleaved memory modules.



Power and Performance Managed
Memory System
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Power and Performance Managed
Memory System

e Dynamically predict
application memory .

requirements 7
; 60 -

e Determine the smallest . \//\/\
memory configuration

required by the 20
application

e Transition the v
remaining modules to
low-power states

100 1000 10000

Time (s)

—o— Warehouse —3— Percent Overprovisioned

SPECjbb 2005 heap over provisioning
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Problem Formulation

Maximize performance/watt W, = 1
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Calculated & Actual Ranks

SPECjbb 2005 Working
Set Pages
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System State (Active Ranks)

Performance/Watt Analysis
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Performance/Watt Analysis
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Migration Strategies
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Expected Data

Migration Overhead

Migration Overhead
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Power and Performance Management
Cluster Level

e Co-operative Game Theory

- Centrally allocate tasks to machines
- Co-operate to achieve system-wide power and

performance improvement
e Non-cooperative Game Theory

- Distributed mapping of tasks to machines
- Machine competes with each other to

Improve its own power and performance.



Problem Formulation

min 2 2 Py%, such that minﬂ‘%étuxu subject to
1. % €{0,1},1=1,2,...,n; ] =1,2,..m.
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Experiments

e Comparisons against LINDO and min-min
heuristic.

e System heterogeneity is captured using the
Gamma method.

e diis calculated as K x wi x X, where K is a
pre-specified positive value for adjusting the
relative deadlines of tasks.
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Power Savings
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Makespan Comparision
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Future Research Directions

e Define accurate workload profiling parameters that can
be used at multiple level of the hierarchy

e Dynamic non-co-operative game theory
-~ Dynamic behaviors
—- Feedback from all layers

e Autonomic PP management of I/O, Processor, memory
— Autonomic Interleaved Memory System

e Data mining and statistical technigues to implement AM
control & management
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