
©
20

07
, K

ev
in

 S
ka

dr
on

Energy Management in Real-
time Multi-tier Servers

Tibor Horvath
Kevin Skadron
Univ. of Virginia

Tarek Abdelzaher
University of Illinois

(PhD expected Jan’07)



2

©
20

07
, K

ev
in

 S
ka

dr
on

• Originally funded by NSF Parallel and 
Distributed Operating Systems program

• Also partial funding from ARO re: graceful 
response to load spikes

• Now funded by AES track



3

©
20

07
, K

ev
in

 S
ka

dr
on

Multi-tier Servers

• Requests are processed by a server pipeline
• E.g. HTTP Front-end, Application Server, Database 

Server
• Functionally distributed
• Can be significantly imbalanced

• Each request has different resource needs on each stage



4

©
20

07
, K

ev
in

 S
ka

dr
on

Motivation

Source: Jonathan G. Koomey, Estimating Total Power Consumption By Servers In The U.S. And The World, 2007

Does not include many servers, e.g. Google data centers!



5

©
20

07
, K

ev
in

 S
ka

dr
on

Typical Workloads
• Peak load much 

higher than average
• Capacity is planned 

to satisfy worst-case 
load

• Light load during 
long periods of time

• The server sits idle
• Idle operation 

wastes energy
• Great potential for 

energy savings
• First focus: DVS

Source: Bohrer et al., The Case For Power Management In Web Servers (IBM Research)



6

©
20

07
, K

ev
in

 S
ka

dr
on

Constraints
• Soft real-time performance

• Power management must not impair user 
experience significantly

• User experience only end-to-end delay 
guarantees are relevant

• DVS settings across the pipeline must be 
coordinated to meet deadlines while minimizing 
power consumption

• Commodity server software
• Linux, Apache, JBoss, MySQL

• Dynamic workload with target latencies
• TPC-W benchmark



7

©
20

07
, K

ev
in

 S
ka

dr
on

Algorithms
• Simple DVS

• Good approximation for homogeneous systems
• Feedback controller with simple rules:

– If total latency > target speed up stage with 
maximal CPU utilization

– If total latency < target slow down stage with 
minimal CPU utilization

• Weighted DVS
• Based on analytical optimality condition

– With knowledge of workload and machine power 
characteristics

• Feedback controller adjusts CPU speeds to stay close to 
the optimality condition

– Dead zone feedback control
– Thresholds determined by max tolerable deadline 

miss ratio (eg, 5%), conditional probability analysis



8

©
20

07
, K

ev
in

 S
ka

dr
on

Optimality Condition
• Workload-dependent delay function:

• Di
CPU = Ti / (1 – Ui)

• Hardware-dependent power function:
• Pi = Aifin + Bi

• End-to-end latency constraint:
• ∑i=1

N Di
CPU + Di

block ≤ L
• Solution:

• W1H(U1) = W2H(U2) = … = WNH(UN)
• Wi : weight calculated from workload and power fns
• H(Ui) = (1 - Ui)2 / Ui

n+1

• Basic idea: weighted utilizations should be 
equalized across tiers



9

©
20

07
, K

ev
in

 S
ka

dr
on

Results

Testbed of 3 AthlonXP laptops with multiple DVS levels



10

©
20

07
, K

ev
in

 S
ka

dr
on

Results

• Target performance achieved
• End-to-end deadline miss rate within 3% of 

baseline (max tolerable set at 5%)
• Throughput was almost unaffected

• Up to 30% power savings are achieved
• Weighted DVS was superior
• Simple DVS was a good approximation

To appear in IEEE Trans. Computers, 4/07



11

©
20

07
, K

ev
in

 S
ka

dr
on

Service Prioritization
• Different clients – different performance 

requirements
• For example, interactive vs. background tasks; 

paying vs. free customers
• Deadlines of lower-priority requests can be relaxed
• Additional energy savings can be realized

• Servers need priority request scheduling
• DVS algorithm needs to recognize the different classes

• Questions:
• How to implement this with the least effort?
• How much energy can be saved?
• How much is the performance penalty?



12

©
20

07
, K

ev
in

 S
ka

dr
on

Multi-tier Server Prioritization
• Ideal design is expensive to implement:

• Server applications do not typically support priority 
scheduling; many are closed source

• Widely used server OSs do not support priorities for all 
resources

• Communication protocols between tiers do not 
propagate priority information

• Simple, inexpensive design:
• Run multiple server application instances, prioritized at 

the process level; no application or OS modification
• Requires real-time process priorities in OS
• Effectively creates separate queues and communication 

channels for each class of service
• Has limitations: e.g. databases, I/O-bound workloads

– Solution: minimize queuing in such tiers



13

©
20

07
, K

ev
in

 S
ka

dr
on

Prioritized System Results
• Load is evenly divided 

into 3 priority classes
• Comparison

• Baseline: no DVS
• NP-DVS: Non-priority 

aware DVS
• P-DVS: Priority-aware 

DVS

• Additional energy 
savings of up to 15%

• Less than 3% increase 
in average deadline 
miss rate

Testbed of 8 Athlon64 desktops: 
1 front end, 2 Apache, 4 JBoss, 1 MySQL



14

©
20

07
, K

ev
in

 S
ka

dr
on

Current Work
• Power management for large datacenters

• Sleep modes can be used (in addition to DVS)
–Comprehensive power management policy
–Find the optimal balance of the different 

power states available
• Dynamic assignment of machines to tiers

–Helpful if the bottleneck tier shifts over time
• New optimization problem

–New optimality conditions for:
• number of machines in each tier
• CPU frequencies for each tier

–More complex feedback controller needed
• Sensor-actuator based control framework



15

©
20

07
, K

ev
in

 S
ka

dr
on

Future Work
• AES project:

• Implications of multicore processors
• Supporting virtualized environments

–How will multi-tier apps be consolidated?
–How to ensure end-to-end delays?
–Dealing with sessions

• Accounting for thermal load



16

©
20

07
, K

ev
in

 S
ka

dr
on

Future Work
• NGS-related work (NSF SEI/IIS, Intel, NVIDIA)

• Hardware support to simplify parallel programming
– Key problem: legacy codes and legacy brains

• Can already support dozens of threads/core, hundreds of 
PEs/chip

– Let programmer use these for performance or
simplified programming model

• Must all be subject to power and thermal constraints
• Major complicating factor: heterogeneous architecture

– Accelerators
– Parameter variations and hard faults



17

©
20

07
, K

ev
in

 S
ka

dr
on

Bullet for Later Discussion
• How to make decentralized but globally 

optimal decisions while preserving real-time 
characteristics



18

©
20

07
, K

ev
in

 S
ka

dr
on

Backup



19

©
20

07
, K

ev
in

 S
ka

dr
on

Power Management Methods
• Sleep Modes

• Turn off unnecessary machines in a cluster
– Wakeup solution required

• Consolidate remaining work on alive machines
– Not possible with some workloads (e.g. large state)

• Saves most power
• High impact on:

– software design (must work in a dynamic cluster)
– performance (sleeping nodes perform no work)

• Dynamic Voltage Scaling (DVS)
• Slow down the CPUs of machines
• Saves significant power
• Low impact (all cluster nodes still work)
• Can take advantage of I/O bottlenecks

– CPU slowdown has very little effect on I/O delay


